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Numerical Methods for Civil Engineers 
Lecture Notes 

CE 311K - McKinney  
Introduction to Computer Methods 
Department of Civil Engineering 
The University of Texas at Austin 

 

Numerical Solution of Ordinary Differential Equations 

 

Problems involving ordinary differential equations (ODEs) fall into two general categories:  

(1) Initial value problems (IVPs), and  

(2) Boundary value problems (BVPs).   
 

Introduction 

Initial value problems are those for which conditions are specified at only one value of the 

independent variable.  These conditions are termed the initial conditions, whether or not they are 

specified at the point where the independent variable is actually equal to zero.  A typical initial 

value problem might be of the form 

 

 

 (a)

 

or 
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 (b)

 

 

The variable which is being differentiated is called the dependent variable, x in this case, and the 

variable with respect to which the dependent variable is differentiated is called the independent 

variable, t in this case.  When the problem involves one independent variable, the equation is 

called an ordinary differential equation.  Differential equations are classified as to the highest 

order derivative appearing in them.  In the case of Equation (a), the differential equation is of 

second order; Equation (b) is of first order.  Equation (a) could describe the forced response of a 

simple harmonic oscillator with time.  Since Equation (a) is a second-order differential equation, 

two conditions have been specified at t = 0.   

 

Boundary value problems are those for which conditions are specified at two values of the 

independent variable.  A typical boundary value problem might be of the form 

 

  

 

This problem could describe the steady-state temperature distribution in a rod of length L with 

temperature  at  and  at  .  These are called the boundary 

conditions. 
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Initial Value Problems 

Any initial value problem can be represented by a set of one or more coupled first-order ordinary 

differential equations, each with an initial condition.  For example, Equation (a) can be restated 

by making the substitution 

 

  

 

The differential equation is then written as 

 

  

 

With some rearrangement, the problem can now be written as  

 

  

 

with initial conditions (one for each equation in the set): 

 

  

 

Since any initial value problem can be reduced to a set of first-order ordinary differential 

equations, we shall concentrate on numerical methods for the solution of first-order differential 

equations  Thus, we consider an initial value problem of the form 
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Suppose that we know the solution to this equation over the interval .  The next step is 

to advance the solution to  by extrapolation.  We will consider techniques of the 

Runge-Kutta type, where the desired solution  is obtained in terms of , , and 

 evaluated for various estimated values of x between ti and ti+1.  The first such technique 

is Euler’s method and is discussed in the next section. 

 

 

 

Figure 3.  Initial value problem intermediate solution.  Solution is known to ti  solution is desired 

at ti+1. 

Euler’s Method 

Consider the first-order initial value problem 
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One solution method is to replace the derivative  by a simple forward finite difference 

approximation 

 

  

 

Solving for  yields 

 

  

 

Given an initial condition, , it is possible to proceed forward in time from t0, to obtain 

a value of x at each new value of t.  The slope at the beginning of an interval, , is taken 

as an approximation of the average slope over the whole interval as shown in Figure 2.  The new 

value of x, at , is predicted using the slope at the old point, xi, to extrapolate linearly over the 

step size t. 

 



CE311K 6 DCM  3/30/09 

 

Figure 4.  Illustration of Euler’s method. 

 

Example:  Use Euler’s method to find a numerical approximation for x(t) where  

 

   

 

from t = 0 to t = 4 using a step size of t = 0.5.   

 

By simple integration, the exact solution to this equation is 

 

 

 

The Euler formula for this equation is 
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Starting at t = 0 (i = 0) and using t = 0.5, we find x at t = 0.5 

 

  

 

The exact solution at this point is 

 

  

 

Next, we can advance the solution from t = 0.5 (i = 1) and find x at t = 1.0, using the value we 

just found as an initial condition 

 

  

 

The exact solution at this point is 

 

  

 

The calculations for several steps are plotted in Figure 5.  A C program for computing the answer 

to this problem using Euler’s method is presented in Figure 6.  The error in the calculations is 

illustrated in Figure 7.  The error in these calculations stems from two factors: (1) the use of 

finite precision arithmetic in the computer (roundoff error); and (2) the truncation of the Taylor 

series in the finite difference approximation of the first derivative in Euler’s method (truncation 

error).   
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Table.  Results of Euler Method Calculations. 

 Analytic  dt=0.50 Error 
t x t x e 
0.00 1.00 0.00 1.00 0.00 
0.50 3.22 0.50 1.63 0.50 
1.00 3.00 1.00 0.88 0.71 
1.50 2.22 1.50 0.25 0.89 
2.00 2.00 2.00 0.50 0.75 
2.50 2.72 2.50 1.63 0.40 
3.00 4.00 3.00 2.88 0.28 
3.50 4.72 3.50 2.75 0.42 
4.00 3.00 4.00 -1.00 1.33 

 

Figure 5.  Euler method example 
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Figure 6.  Error in Euler method example. 

 

Runge Kutta Formulas 

 

Among the most widely used formulas for numerically solving ordinary differential equations 

are the Runge-Kutta techniques.  High-order accuracy can be obtained by evaluating the righ-

hand-side function at selected points within the interval rather than at just the end points of the 

interval.  Consider again the first-order initial value problem 
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In the development of the Runge Kutta formulas, we assume that the estimate of the solution x(t) 

is 

 

  

 

where 

  

That is, the increment x is a weighted sum of function evaluations at points within the interval 

.  If we cut this estimate off after the first term, we have 

 

  

 

where 

  

 

Now, if we set w1 = 1, the result is Euler’s method (first-order Runge Kutta) 

 

  

 

If, instead, we cut the estimate off after the second term, we have 

 

  

 

where 
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Now, if we set w
1
 = w

2
 =  and c

2
= a

21
= 1, the result is the modified Euler’s method (second-

order Runge Kutta) 

 

  

 

This method is implemented as 

  

  

  

 

 

Figure 7.  Modified Euler method. 

The most widely used Runge-Kutta method is the fourth-order method, where we cut the 

estimate off after the fourth term 
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where 

  

and  
w

1
 = w

4
 = 1/6,  

w
2
 = w

3
 = 1/3 and  

c
2
= c

3
= a

21 = a
32

 =1/2, c
4
= 1, and  

a
31 = a

41 = a
42

 = 0   
 
The computational formula for the Fourth-order Runge-Kutta method is 
 

  

where 

  

 

Example: 

 

Analytical solution: 
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Euler method: 

 

 

Modified Euler (second-order Runge-Kutta) method: 

 

 

 

Fourth-order Runge-Kutta method: 

 

  

where 
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Figure 8.  Analytical solution versus Euler method approximation for two levels of discretization 
( t = 0.5 and t = 1.0). 

Table 1.  Analytical solution versus Euler method approximation for three levels of 
discretization ( t = 0.5, t = 1.0, and t = 2.0). 

t analytical Euler ( t = 0.5) Euler ( t = 1.0) Euler ( t = 2.0) 

1 1.000 1.000 1.000 1.000 

1.5 0.667 0.500   
2 0.500 0.375 0.000  

2.5 0.400 0.305   
3 0.333 0.258 0.000 -1.000 

3.5 0.286 0.225   
4 0.250 0.200 0.000  

4.5 0.222 0.180   
5 0.200 0.164 0.000 -3.000 

5.5 0.182 0.150   
6 0.167 0.139 0.000  

6.5 0.154 0.129   
7 0.143 0.121 0.000 -21.000 

7.5 0.133 0.114   
8 0.125 0.107 0.000  

8.5 0.118 0.101   
9 0.111 0.096 0.000 -903.000 

9.5 0.105 0.092   
10 0.100 0.087 0.000  

10.5 0.095 0.084   
11 0.091 0.080 0.000 -1.63E+06 

 

Table 2.  Modified Euler method (2-nd order Runge Kutta) approximation ( t = 0.5). 
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t xi* ( t = 0.5) Modified Euler 

1 1 1.000 

1.5 0.500 0.688 
2 0.451 0.518 

2.5 0.384 0.414 
3 0.329 0.344 

3.5 0.285 0.294 
4 0.251 0.257 

4.5 0.224 0.228 
5 0.202 0.205 

5.5 0.184 0.186 
6 0.169 0.170 

6.5 0.156 0.157 
7 0.145 0.145 

7.5 0.135 0.136 
8 0.126 0.127 

8.5 0.119 0.119 
9 0.112 0.113 

9.5 0.106 0.107 
10 0.101 0.101 

10.5 0.096 0.096 
11 0.092 0.092 

 

Table 3.  Fourth order Runge Kutta approximation ( t = 0.5). 

t K1 K2 K3 K4 xi+1 

1     1.000 

1.5 -0.500 -0.281 -0.369 -0.199 0.667 
2 -0.222 -0.154 -0.174 -0.121 0.500 

2.5 -0.125 -0.096 -0.102 -0.079 0.400 
3 -0.080 -0.065 -0.068 -0.055 0.333 

3.5 -0.056 -0.047 -0.048 -0.041 0.286 
4 -0.041 -0.035 -0.036 -0.031 0.250 

4.5 -0.031 -0.027 -0.028 -0.025 0.222 
5 -0.025 -0.022 -0.022 -0.020 0.200 

5.5 -0.020 -0.018 -0.018 -0.017 0.182 
6 -0.017 -0.015 -0.015 -0.014 0.167 

6.5 -0.014 -0.013 -0.013 -0.012 0.154 
7 -0.012 -0.011 -0.011 -0.010 0.143 

7.5 -0.010 -0.009 -0.010 -0.009 0.133 
8 -0.009 -0.008 -0.008 -0.008 0.125 

8.5 -0.008 -0.007 -0.007 -0.007 0.118 
9 -0.007 -0.007 -0.007 -0.006 0.111 

9.5 -0.006 -0.006 -0.006 -0.006 0.105 
10 -0.006 -0.005 -0.005 -0.005 0.100 

10.5 -0.005 -0.005 -0.005 -0.005 0.095 
11 -0.005 -0.004 -0.004 -0.004 0.091 
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Figure 9.  Comparison of analytical, Euler (1-st order RK), modified Euler (2-nd order RK), and 
4-th order Runge Kutta approximation ( t = 0.5).  

 
Table 4.  Comparison of analytical, Euler (1-st order RK), modified Euler (2-nd order RK), and 

4-th order Runge Kutta approximation ( t = 0.5). 
t analytical Euler Mod. Euler 4-th Order RK 

1 1.000 1.000 1.000 1.000 

1.5 0.667 0.500 0.688 0.667 
2 0.500 0.375 0.518 0.500 

2.5 0.400 0.305 0.414 0.400 
3 0.333 0.258 0.344 0.333 

3.5 0.286 0.225 0.294 0.286 
4 0.250 0.200 0.257 0.250 

4.5 0.222 0.180 0.228 0.222 
5 0.200 0.164 0.205 0.200 

5.5 0.182 0.150 0.186 0.182 
6 0.167 0.139 0.170 0.167 

6.5 0.154 0.129 0.157 0.154 
7 0.143 0.121 0.145 0.143 

7.5 0.133 0.114 0.136 0.133 
8 0.125 0.107 0.127 0.125 

8.5 0.118 0.101 0.119 0.118 
9 0.111 0.096 0.113 0.111 

9.5 0.105 0.092 0.107 0.105 
10 0.100 0.087 0.101 0.100 
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10.5 0.095 0.084 0.096 0.095 
11 0.091 0.080 0.092 0.091 

 

Boundary Value Problems 

 

Recall that boundary value problems are those for which conditions are specified at two values 

of the independent variable.  A typical boundary value problem might be of the form 

 

  

 

with boundary conditions 

 

  

 

Two methods are commonly used to solve boundary value problems: (1) the shooting method, 

and (2) finite-difference methods. 

 

Section under construction 

Example: Flow in a leaky confined aquifer 

 

Consider the steady flow from left to right in the semi-confined aquifer shown in Figure 2.  The 

aquitard is leaky.  Determine the head in the aquifer. 

 

Figure.  Flow in a leaky-confined aquifer. 
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The governing equation for flow in the aquifer can be written as 

 

K h  +  
 K 

 b 
(h0 h) =  0  

 

If the aquifer is considered to be homogeneous and isotropic, we can write this equation as 

 

2h  +  
h0 h

2
 =  0  

 

where 2 = bKb’/K’.  Now for one-dimensional flow, we have 

 

2 d
2h

dx2
  h  =  h0  

 

a second-order ordinary differential eqaution with constant coefficients which has the solution 

 

h(x)  =  h0   
(hA h0 )sinh(

L x
) + (hB h0 )sinh(

x
)

sinh(
L

)
 

 

Consider the values L = 1000 m, HA = 100 m, Hb = 80 m, K = 20 m/day (clean sand), B = 50 m, 

B’ = 2 m, K’ = 0.10 m/day (silt), n = 0.35.  The head distributions for the values of h0 are shown 

in Table 1 and plotted in Figure 3. 

 

Figure.  Semi-confined aquifer head values for various overlying aquifer head levels. 
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Table.  Semi-confined aquifer head values for various overlying aquifer head levels. 

 

X h0=110 h0=105 h0=100 h0=95 h0=90 

0.00 100.00 100.00 100.00 100.00 100.00 

100.00 105.03 102.50 99.97 97.45 94.92 

200.00 107.47 103.70 99.93 96.17 92.40 

300.00 108.59 104.23 99.86 95.49 91.13 

400.00 108.98 104.35 99.71 95.08 90.45 

500.00 108.84 104.13 99.42 94.71 90.00 

600.00 108.08 103.45 98.82 94.19 89.55 

700.00 106.33 101.97 97.60 93.24 88.87 

800.00 102.67 98.91 95.14 91.37 87.60 

900.00 95.19 92.67 90.14 87.61 85.08 

1000.00 80.00 80.00 80.00 80.00 80.00 

 

 

Systems of Ordinary Differential Equations 

 

Consider the system of ordinary differential equations 

 

 

 

Example:  Find a solution to the following system of two ODE’s using fourth-order Runge-

Kutta on the interval 0 x 2, x = 0.5 
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with initial conditions 

 

 

The formulas for fourth-order Runge-Kutta method are 

 

 

where 

 

and 

 

 

For the example problem: 

 

1)  Compute some K values: 
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2)  Compute some intermediate y values 
 

 

and some K values 

 

 

3)  Compute some more intermediate y values 

 

 

and some K values 

 

 

4)  Compute some more intermediate y values 

 

 

and some K values 
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5)  Now, compute the next y values 
 

 

 

Repeat steps (1) - (5) for i = 1,2,3,4. 

 

Example:  Predator - Prey models (Ricklefs, p. 536) 

 

In an ecosystem, the size (number) of the prey population is H and the rate of growth of the prey 

population ( ) is comprised of two components: 

 

1)  Unrestricted reproductive rate (growth rate) of prey population = g1H, where g1 is the growth 

rate of an individual in the population. 
 

2)  Removal of prey from the population by predators (death rate).  This is assumed to be 

proportional to the product of the prey and predator population sizes (PH, this term is 

proportional to the probability of an encounter between predator and prey) times a coefficient 

of predation d1. 
 

Thus, the overall increase in the size of the prey population is given by 

 

 

 

The growth rate of the predator population is proportional to the number of prey that the predator 

succeeds in capturing (d1PH) minus the death rate (d2) times the number of predators (P) 
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where g2 = ad1, and a is the efficiency with which predators convert food (prey) into offspring. 

 

When the predator and prey populations are in equilibrium 

 

 

 

where P* is the greatest number of predators that the prey population can sustain, and 

 

 

 

where H* is the minimum level of prey population required to sustain the predators.   

 

Example:  (Chapra and Canale, prob. 22.20) 

 

If P(0) = 5, H(0) = 20, g1 = 1, g2 = 0.02, d1 = 0.1, d2 = 0.5, compute P(t) and H(t) from t = 0 to 10 

using the fourth-order Runge-Kutta technique and t = 0.5. 

 

Reactor Mass Balance 

 

Consider the conservation of mass in a fully mixed reactor vessel as shown in the following 

Figure.   
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Figure 10. Conceptual diagram of a reactor vessel with 1 inlet and 1 outlet. 

 

Conservation of mass is a mass balance accounting of the material passing in or out of the 

reactor vessel, where 

 

Rate of Mass Input  -  Rate of Mass Output   =   Change in Mass Storage (Accumulation) 

 

At steady-state, we have 

 

Change in Mass Storage (Accumulation)  =  0 

or 

Rate of Mass Input  =  Rate of Mass Output 

 

 

 

However, if steady-state conditions do not exist in the system, then we must consider the time 

rate of accumulation of the substance in the reactor 

 

Accumulation =  

where  

 

 M is the mass of chemical in the reactor, and 
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 V is the (constant) volume of the reactor  

 

So that 

 

 

 

For example, if the vessel has is a single inlet and a single outlet, then 

 

 

 

If c = c0  @ t = 0, then the solution of this ODE is 

 

 

 

If cIN = 50 mg/m3, Q = 5 m3/min, V = 100 m3, and c0 = 10 mg/m3, we have 

 

 

 

Euler's method can be used to approximate the solution to the ODE. 

 

 

or 

 

 

Now, plugging in the numerical values, we have 
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Question:  What would the formulas for the modified Euler method look like? 
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Figure 11.  Comparison of analytical solution and Euler approximation. 

 

System of Coupled Reactors 

 

Consider the 5 interconnected reactors shown in the Figure.  We can write 5 simultaneous mass-

balance equations, one for each reactor, 

 



CE311K 27 DCM  3/30/09 

 

 

Now we must solve a system of ODE's instead of a single ODE.  We can still apply the Euler 

method to this system.   

 

 

 

Which may be written in a matrix-vector notation as 
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c1Q01, c01 c2 c4

c5

c3

Q12
Q24

Q25

Q15
Q54

Q34

Q23

Q13

Q55

Q03, c03

Q44

 

 

Figure 12. System of 5 interconnected reactors. 

 

Exercises 

1.  Solve the following initial value problem analytically over the interval from x = 0 to 2: 
 

 

 
where y(0) = 1.  Plot the solution. 
 

2.  Use Euler’s method with h = 0.5 and 0.25 to solve Problem 1.  Plot the results on the same 
graph to visually compare the accuracy of the two step sizes. 
 
3.  Use the Modified Euler method with h = 0.5 and 0.25 to solve the following initial value 
problem analytically over the interval from x = 0 to 2: 
 

 

 
where y(0) = 1.  Plot the solution. 
 

4.  Use the 4-th Order Runge – Kutta method with h = 0.25 to solve  
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where y(0) = 1.  Plot the solution. 
 
5.  (a) What are the advantages and disadvantages of using the Euler method to solve an 

Ordinary Differential Equation rather than using a 4-th Order Runge-Kutta method?  (b) Solve 

the following Ordinary Differential Equation using the Euler method from t = 0.0 to 1.0 with t 

= 0.2.  

         

 

6.  Use the Euler method and a step size of t = 0.25, solve the initial value problem on the 

interval t = [0, 1]  

 

 where x(0) = 1.  

 

7.  Population growth of any species is frequently modeled by an ordinary differential equation 

of the form 

dN

dt
  =   aN   bN2   

N(0)   =   N0  

where N is the population size, aN represents the birth rate, and bN2 represents the death rate due 

to all causes, such as disease, competition for food supplies, and so on.  If N0 = 100,000, a = 0.1, 

and b = 8x10-7, calculate N(t) for t = 0 to 20 using t = 1. 

 

8.  The population of two species competing for the same food supply can be modeled by the 

pair of ordinary differential equations 

dN1

dt
  =   N1(A1  B1N1   C1N2)   

N1(0)  =   N1,0  

dN2

dt
  =   N2(A2   B2N2   C2N1)   

N2(0)  =   N2,0  
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where AN is the birth rate, and BN2 represents the death rate due to disease, and CN1N2 models 

the death rate due to competition for the food supply.  If N1,0(0) = N2,0(0) = 100,000, A1 = 0.1, 

B1 = 8x10-7, C1 = 1x10-6, A2 = 0.1, B2 = 8x10-7, C2 = 1x10-6, calculate N1,0(t), and N2,0(t) for t = 

0 to 10 years using t = 1. 

 

9.  Solve the following pair of ODE's by the Euler method from t = 0.0 to 1.0, with t = 0.2: 

 

 

 

 

10.  The following equation is used to describe the conservation of mass for a reservoir 

 

dS

dt
  =  I( t)  Q(H )  (1) 

 

where S is the volume of water in storage in the reservoir, I(t) is the inflow into the reservoir as a 

function of time t, and Q(H) is the outflow from the reservoir, which is determined by the 

elevation H  of water in the reservoir.  The change in volume S of the water in the reservoir, due 

to a change in the water depth dH , is expressed as 

 

dS  =  AdH  

 

where A is the area of the reservoir (assumed constant in this problem) and H is the elevation of 

the water surface.  Equation (1) can then be written as 

 

dH

dt
  =   

1

A
[I(t)   Q(H)]  (2) 

 

Develop the equations necessary to solve Equation (2) using the fourth-order Runge Kutta 

method (just set up the equations!).  Assume that the function I(t) is known and  
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Q(H )  =   H   

 

where  and  are constants 

 

dH

dt
 =  f (H, t)  =   

1

A
[I(t)  H ]

H(t0) =  H0

 

 

11.  The following equation describes the steady-state diffusion of a dissolved substance into a 

quiescent fluid body in which a first-order reaction occurs: 

 

    D
d2c

dx2  -  Kc  = 0  (1) 

 

with boundary conditions: 

 

c(0) = 0, c(1) = C1 

 

where c(x) (M/L3) is the concentration of the dissolved substance, D (L/T2) is the diffusion 

coefficient, K (1/T) is the reaction rate, and C1 (M/L3) is a specified concentration on the right 

boundary of the domain.   

 

(a)  Write a finite-difference approximation of Equation (1)  

 

(b) Using 3 evenly spaced nodes with node spacing x = 0.5, write the finite difference equation 

that you developed in part (a) for each node at which the concentration is unknown in the 

system.   

(c) Solve for the unknown concentration using the numerical values for the coefficients:  

 D = 0.01 cm2/s, K = 0.1 s-1,  and C1  = 1.0 g/cm3.   
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12. Water quality models can be used to predict the concentration of various constituents in 

receiving waters (streams, lakes, and rivers).  Many of these models are extensions of the two 

simple equations proposed by Streeter and Phelps (1925)1 for predicting the biochemical oxygen 

demand (BOD) of various biodegradable constituents, and the resulting dissolved oxygen (DO) 

concentration in rivers.  The BOD concentration (B) and the dissolved oxygen deficit 

concentration (D) (i.e., the difference between the water's saturated dissolved oxygen 

concentration and the actual concentration--see Figure below) in a river are functions of 

simultaneous reactions which  can be described by the equations: 

 

dB

dt
  =   KdB

dD

dt
  =   KdB  KaD

  (1) 

 

where Kd is the deoxygenation rate constant (T-1), Ka is the reaeration rate constant (T-1), and t  

[T] is the time of flow along a section of river.  The solution of these equations for a single waste 

discharge at the beginning of a river section results in the dissolved oxygen sag curve shown in 

the following Figure. 

 

 

                                                

1 Streeter, H.W., and E.P. Phelps, A study of the pollution and natural purification of the Ohio River, U.S. Public 

Health Service, Publication Health Bulletin 146, Feb. 1925.  
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Initial Deficit
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Saturated dissolved
oxygen concentration

Deficit Di
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Distance downstream X
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Dissolved oxygen
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Figure.  Dissolved oxygen "sag" curve resulting from single point discharge of BOD and initial 

oxygen deficit concentration at X = 0. 

 

X

Initial BOD
discharge, B0

Initial DO
deficit, D0

D(X)

River section

 

 

Figure.  River section showing initial DO deficit and BOD discharge location. 

 

 

(a)  Develop the equations for applying Euler's method to solve the Streeter-Phelps equations for 

both BOD, B,  and dissolved oxygen deficit, D. 

 

(b) Solve for the BOD, B,  and dissolved oxygen deficit, D, in the river using the Euler method 

equations that you developed in part (a) using the following data:  
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Kd = 0.3 day-1 = deoxygenation rate constant 

Ka = 0.4 day-1 = reaeration rate constant 

Dsat = 8 mg/L = Saturated dissolved oxygen concentration 

D0 = 1.0 mg/L = Initial dissolved oxygen deficit 

B0 = 15 mg/L = Initial BOD concentration at the beginning of the river section 

t = 3/4 day 

 

Take 3 steps of the method. 

 

13.  Using the modified Euler method (second-order Runge Kutta method), take two steps of 

t =  0.1  for the following initial value problem  

 

dy

dt
 =  

4t

y
 +  ty, y(0) =  3  

 

a) 13 pts.  Solve the following Ordinary Differential Equation using the Euler method from t = 
0.0 to 1.0 with t = 0.2.    

 

  

14.  Euler method for systems  In the classic Lokta-Volterra equation of predator - prey 

modeling, the overall increase in the size of a prey population is given by 

 

 

 

where H is the size of the prey population, P is the size of the predator population, g2 is the 

growth rate of the prey population, and the death rate is d2.  The predator population is governed 

by the equation 
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where g2 is the growth rate of the predator population, and the death rate is d2.   

 

(a)  Show the formulas for the Euler method of solving these 2 ordinary differential equations 
(Don’t plug in any numbers yet, just show the formulas.) 

 

(b) Consider the initial conditions 

 

P(0) = 5, H(0) = 20 

 

and the numerical values  

 

g1 = 1, g2 = 0.02, 

d1 = 0.1, d2 = 0.5 

 

Compute P(t) and H(t) from t = 0 - 1.5 using the Euler method and t = 0.5. 

(b.1)  Show the calculation for the first time step (from 0 to 0.5) 

(b.2)  Show the calculation for the second time step (from 0.5 to 1) 

(b.3)  Show the calculation for the third time step (from 1 to 1.5) 

( c)  Explain the solution of these equations in terms of the sizes and behavior of the populations. 

 

15.  Leaky acres.  Consider the steady flow from left to right in the leaky aquifer shown in the 

Figure. The aquitard is leaky.  If there is no leakage up from below and flow in the aquitard is 

vertical, and we have another aquifer above the aquitard where the head is h0 , for one-

dimensional flow indicated in the figure, we have 
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where 2 = bKb’/K’ is called the leakage factor, K is the hydraulic conductivity and b is the 

aquifer thickness, h is the average head at a point in the aquifer, , and K’ and b’ are the 

conductivity and thickness, respectively, of the confining layer (aquitard). 

 

 

 

Figure.  Flow in a leaky-confined aquifer. 

 

Consider the values L = 1000 m, x = 200m, HA = 100 m, HB = 80 m, K = 20 m/day (clean sand), 

b = 50 m, b’ = 2 m, K’ = 0.10 m/day (silt).  The head distributions for values of h0 (head in the 

overlying aquifer) are shown in the Table. 

 

(a)  Apply a second-order accurate finite-difference approximation to the second derivative and 

write out the resulting equation. 

 

(b)  Write out the finite-difference equation for each node i where the head is unknown, that is, 

nodes 1 - 4.   

( c)  Show the resulting system of equations, written in matrix-vector form, if you move all the 

known values to the right-hand-side of the equation and leave the unknowns on the left. 

(d)  Discuss how you would solve this system of equations using a computer.  Draw a simple 
flowchart of your method of solution. 

 

16.  Use Euler’s method to find the solution to the initial value problem: 
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Compare your result at  with the value of the exact solution 

 

at the same point. 

 

17.  Modified Euler Method.  a.  Solve the following initial value problem analytically over the 

interval x = 0 to 1.  

 

 

 
where y(0) = 1.  
 
b.  Use the Modified Euler method with h = 0. 5 to solve the following initial value problem in 
Part (a) over the interval from x = 0 to 1: 
 
18.  Consider the following initial value problem: 

 

 

 

(a) Use Euler’s method to solve the initial value problem. 

(b) Use the Modified-Euler method to solve the initial value problem. 

(c) Compute the percent relative error from parts (a) and (b) at t = 0.5 by comparing to the value 

of the exact solution  

 

 

 

 

 


