Bridge Quality Assurance 1

Prepared by David R. Maidment, Tim Whiteaker and Andy Carter
Center for Water and the Environment
University of Texas at Austin

18 October 2024

We start with a state-wide collection of National Bridge Inventory (NBI) points, and we wish to verify three things:

- The bridge is connected to the correct TxDOT Roadway Inventory road line;
- 2. The bridge is connected to a **stream** that is forecast by the National Water Model;
- 3. The bridge has a satisfactory deck and stream **cross-section profile**, as obtained from the Tx-Bridge data.

The desired end result is an augmented NBI dataset that has ID's populated for the road line, the stream line and the Tx-Bridge profile, a field that says "Satisfactory" if the bridge passes all the tests, and a Comment field that contains space for an explanation if the bridge does not pass all the tests.

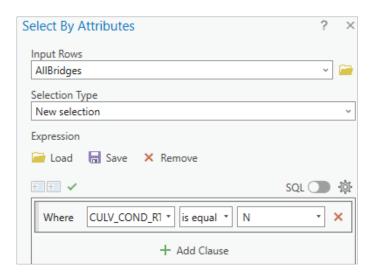
The assessment is done for all NBI bridges in a Maintenance Section.

In order to do this, we need a state-wide geodatabase containing all the necessary input information.

The ArcGIS Project and geodatabase from this exercise can be found at: https://utexas.box.com/s/frn7a8ut8yxgsp2j91gqktzsbgee4cyp

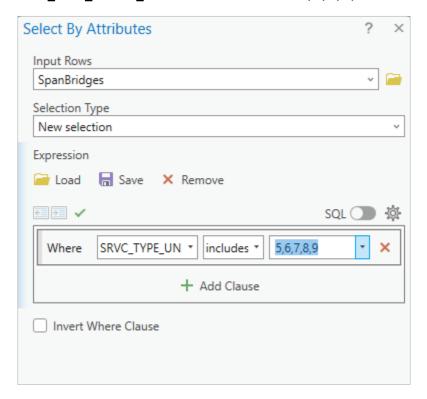
Building the State-wide Geodatabase

1. NBI Bridges


Start a new ArcGIS Pro project called BridgeQualityAssurance.

The TxDOT Bridges dataset, which contains National Bridge Inventory (NBI) bridges for Texas, is obtained from the TxDOT Open Data Portal: https://gis-

<u>txdot.opendata.arcgis.com/datasets/83af0d2957ca4c2eb340e4bd04a1046f_0/explore</u>. Download these bridges, add them to the map, and export them into the BridgeQualityAssurance as feature class **AllBridges**.


The NBI Bridges are of two types: **Span Bridges**, which have a deck supported on piers, and **Bridge-Class Culverts**, which are large multiple box culvert structures that are built into the road-bed and are designed to function satisfactorily even if they are overtopped.

The span bridges are identified by the query **CULV_COND_RATING = 'N'**

Some of the span bridges are bridges for one road crossing another road or a road crossing a railroad. The span bridges over water are identified by the query

SRVC_TYPE_UNDER_BRDG includes the values 5, 6, 7, 8, 9

Export these bridges to feature class NBIBridgesWater.

These two queries have reduced the number of bridges to be considered as shown in Table 1, which applies for data downloaded on 10 October 2024 (the number of bridges changes as new bridges are built and old ones are taken off-line).

Bridges	Number
All Bridges	57,955

Span Bridges	36,434	
NBI Bridges over Water	25,046	

Table 1. Number of bridges in each class

Delete the AllBridges, and SpanBridge feature classes from the BridgeQualityAssurance geodatabase to leave just the feature class that we want to deal with: **NBIBridgesWater**

Delete Unneeded Fields

The NBI database contains a large number of fields that are not needed for our project. These can be deleted by using the geoprocessing tool Delete Field, selecting "Delete All" which checks all the fields to be deleted, and then unchecking the fields that are to be retained. The result yields the set of fields shown below.

✓ Visible	Read Only	Field Name	Alias	Data Type
✓	✓	OBJECTID	OBJECTID	Object ID
✓		Shape	Shape	Geometry
✓		BRDG_ID	Bridge ID	Text
✓		STATE_HWY_DEPT_DIST	STATE_HWY_DEPT_DIST	Text
✓		MAINT_RSPNBL	MAINT_RSPNBL	Text
✓		OWNR	OWNR	Text
✓		MAINT_SECT_NBR	MAINT_SECT_NBR	Text
✓		SRVC_TYPE_UNDER_BRDG	SRVC_TYPE_UNDER_BRDG	Text
~		MEMB_TYPE	MEMB_TYPE	Text
✓		LNGTH_MAX_SPAN	LNGTH_MAX_SPAN	Double
~		STRUC_LNGTH	STRUC_LNGTH	Double
✓		LT_SDWALK_WIDTH	LT_SDWALK_WIDTH	Double
✓		RT_SDWALK_WIDTH	RT_SDWALK_WIDTH	Double
✓		BRDG_RDWAY_WIDTH_CURB_CURB	BRDG_RDWAY_WIDTH_CURB_CURB	Double
✓		DECK_WIDTH_OUT_OUT	DECK_WIDTH_OUT_OUT	Double
~		CULV_COND_RTNG	CULV_COND_RTNG	Text

The definition of these attributes is given at:

https://www.caee.utexas.edu/prof/maidment/StreamflowII/Documents/Bridge Data Dictionary.pdf and their Coding Guide is given at:

https://www.caee.utexas.edu/prof/maidment/StreamflowII/Documents/BridgeCodingGuide.pdf

The **MAINT_RSPNBL** and **OWNR** specifies who owns and maintains the bridge and if these values = 1, it means that TxDOT does that.

The bridge thickness is defined for our project from the attributes **MEMB_TYPE** and **LNGTH_MAX_SPAN**, using a set of rules specified at:

https://www.caee.utexas.edu/prof/maidment/StreamflowII/ReferenceDocs/0-7095-TM5B-Final.pdf on pp. 9-12.

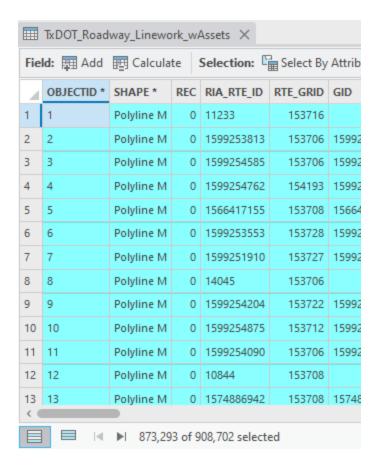
Additional Fields

In order to store the results of the Bridge Quality Assessment, two additional fields are included in the NBIBridgesWater feature class: **Satisfactory (Long Integer)** where **Satisfactory = 1** means the bridge is acceptable, and **Satisfactory = 0** means that it is not acceptable. The field **Comment (Text)** is there for explanation of what was determined for this bridge during the assessment.

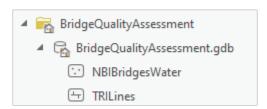
DECK_WIDTH_OUT_OUT	CULV_COND_RTNG	Satisfactory	Comment
46	N	<null></null>	<null></null>
44	N	<null></null>	<null></null>
66	N	<null></null>	<null></null>
56	N	<null></null>	<null></null>
76	N	<null></null>	<null></null>
50	N	<null></null>	<null></null>
	46 44 66 56 76	DECK_WIDTH_OUT_OUT	44 N <null> 66 N <null> 56 N <null> 76 N <null></null></null></null></null>

2. Roads

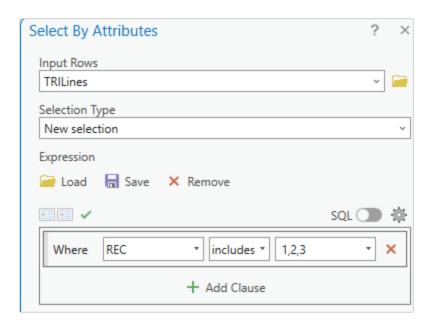
The roads are obtained from the TxDOT Open Data Portal at: https://gis-txdot.opendata.arcgis.com/datasets/843ebe994c114961a855ec76ddcde086_0/ Download these and load them into the project.

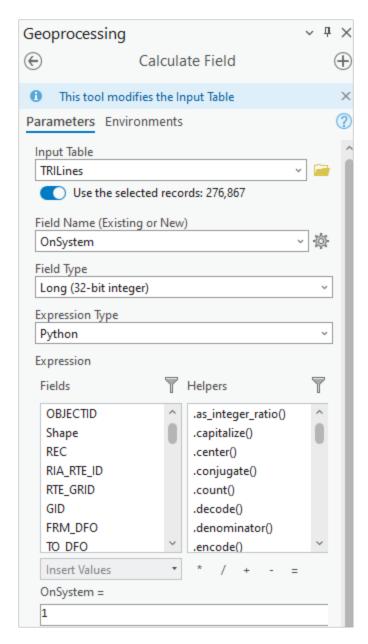

Some of these road lines are for a line down the median of a multilane highway, and we don't need these median lines, so filter them out by selecting the roads we want to keep with this query:

RDBD_ID IN ('GS', 'RG', 'AG', 'BG', 'LG', 'MG', 'PG', 'SG', 'XG', 'YG', 'TG')

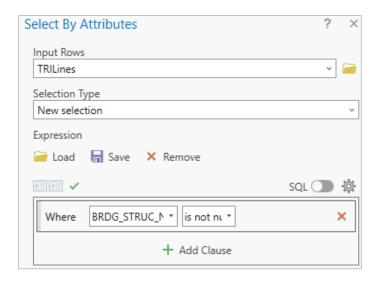

OR (RDBD_ID = 'KG' And (MED_TYPE = 0 Or HWY_DES NOT IN (0, 3, 4, 5)))

OR HSYS IN ('LS', 'CR')

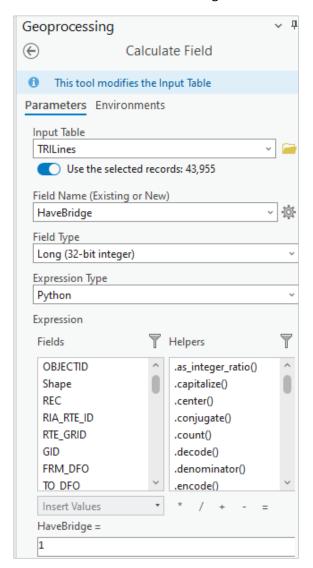

This yields 873,293 roads selected of 908,702 total


With the desired roads selected, export them to a new feature class TRILines

There are couple of classes of road lines of particular interest. The first of these are the On-System road lines, which are the ones that TxDOT owns and maintains.



There are 242,210 records of 873,293 that satisfy that criterion. For these records, Calculate a new field, OnSystem = 1, as shown below.



This yields an attribute OnSystem with values of 1 for OnSystem roads and <null> for OffSystem roads. Use **Select by Attributes** for OnSystem is null and Calculate Field **OnSystem = 0** for these roads.

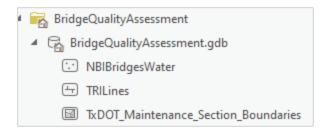
Another set of TRI lines are those that have a bridge identified on them. These can be selected using the query BRDG_STRUC_NBR is not Null (these lines have an NBI Bridge ID attributed for them). There are 41,448 out of 873.298 TRI road lines. This is an encouraging number but less than the number of NBI bridges in total, 57,955, so there are about 14,000 NBI bridges that do not have an associated bridge line in the TxDOT Roadway Inventory. Of the 43,955 TRI road lines that have bridges, 43,036 are located On-System (98%) and 919 Off-System (2%). This shows that the On-System bridges are well located on the TxDOT Roadway Inventory but not so for the Off-System bridges.

Calculate a new attribute HasBridge = 1 for these selected lines

So now we have identifiers that tell us if we have an On-System road and also if the road line has a bridge on it.

TMVC	DTRKVMT		OnSystem	HasBridge
27,000	7,020	121,001001	'	Sinuity
3133.508	48.72	1448.888763	1	<null></null>
288.672	98.064	89.389333	1	<null></null>
2231.485	21.534	185.594051	1	<null></null>
228.72	1.976	15.341408	1	1
21.735	1.8	83.664587	1	<null></null>
14.08	1.628	81.779548	1	1
15	1.42	18.240078	1	1
66.465	13.545	597.043193	1	<null></null>

Delete Fields

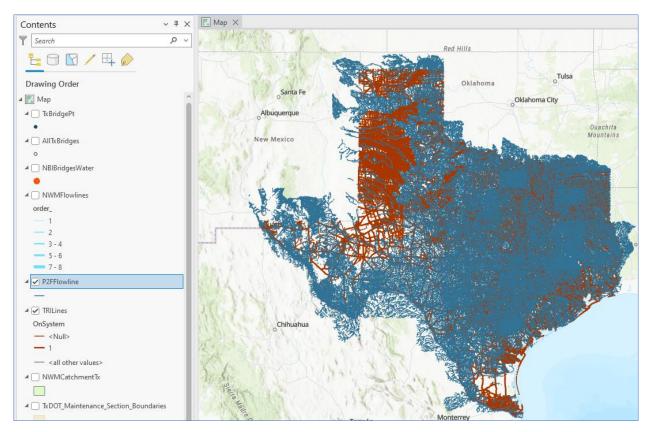

Similar to the NBI Bridges, there are many fields in the TxDOT Roadway Inventory that do not relate to our project. These have been deleted to leave the remaining attributes, shown below. The description of these attributes is given at:

https://www.caee.utexas.edu/prof/maidment/StreamflowII/Documents/TxDOT_Roadway_Inventory_S pecifications_2020.pdf

TRILines		*	
Read Only	Field Name	Alias	Data Typ
✓	OBJECTID	OBJECTID	Object II
	Shape	Shape	Geometi
	REC	REC	Short
	RIA_RTE_ID	RIA_RTE_ID	Text
	RTE_GRID	RTE_GRID	Long
	GID	GID	Long
	FRM_DFO	FRM_DFO	Double
	TO_DFO	TO_DFO	Double
	HWY	HWY	Text
	HSYS	HSYS	Text
	HNUM	HNUM	Text
	STE_NAM	STE_NAM	Text
	MAINT_DIS	MAINT_DIS	Short
	MNT_SEC	MNT_SEC	Short
	RDWAY_MAINT_AGCY	RDWAY_MAINT_AGCY	Short
	F_SYSTEM	F_SYSTEM	Short
	BRDG_STRUC_NBR	BRDG_STRUC_NBR	Text
	MED_WID	MED_WID	Short
	NUM_LANES	NUM_LANES	Short
	RB_WID	RB_WID	Short
	LANE_WIDTH	LANE_WIDTH	Short
	BASE_THCK	BASE_THCK	Short
	OnSystem	OnSystem	Long
	HasBridge	HasBridge	Long
~	Shape_Length	Shape_Length	Double

3. Maintenance Sections

The Maintenance Section Boundaries are obtained from the TxDOT Open Data Portal at: https://gis-txdot.opendata.arcgis.com/datasets/3209155fa26b470db63f56733dd17d36_0/ Download these and load them into the project. Export this feature class to the **BridgeQualityAssessment** geodatabase with the same name

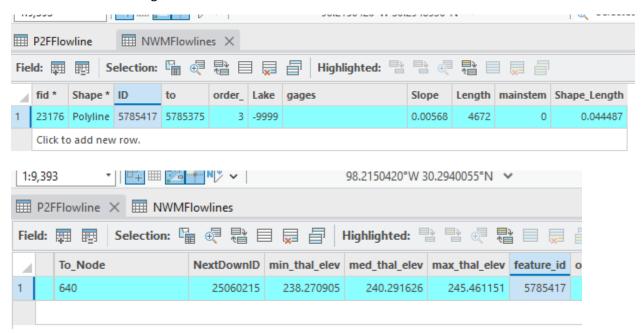

4. Pin2Flood Hydrofabric

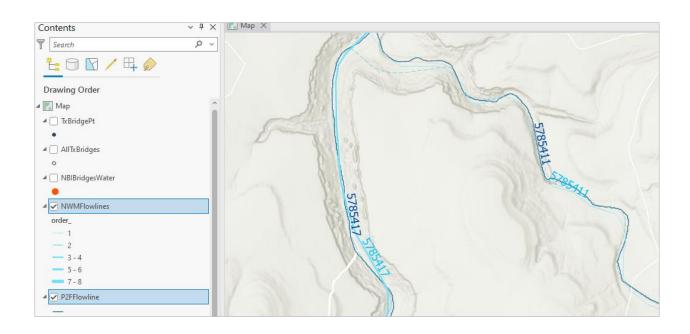
The National Water Model Hydrofabric was created with a 10m DEM, and for Texas a more refined Pin2Flood Hydrofabric was created in a previous project done for the Texas Division of Emergency Management (TDEM) by the project team.

The flowlines created in this Pin2Flood processing are accessible at:

https://web.corral.tacc.utexas.edu/nfiedata/pin2flood/texas/streams_texas.gdb.zip

Export this dataset to the BridgeQualityAssessment geodatabase as P2FFlowline

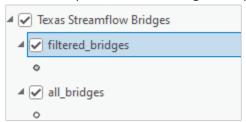



5. National Water Model Hydrofabric

The National Water Model Hydrofabric is accessible in Geopackage format. I have a copy of the FIM3 version of the NWM Flowlines, which I have incorporated into this geodatabase. There is a newer

version, FIM4, which is available at: https://web.corral.tacc.utexas.edu/nfiedata/fim4/inputs.zip We need to check that these two sets of flowlines are consistent.

The **ID** field from the **NWM Flowlines**, should be the same as the **feature_id** field of the **P2FFlowlines**, as illustrated in the images below.

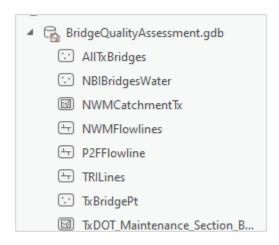


6. Tx-Bridge Profiles

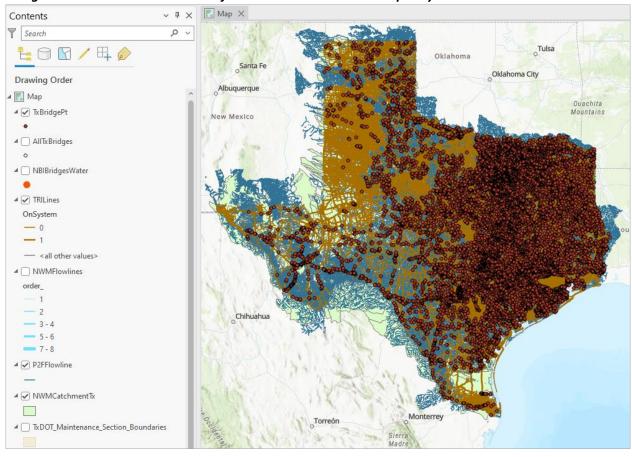
Tx-bridge is a project created by Andy Carter for extracting bridge geometry and hydraulic properties from lidar data (https://github.com/andycarter-pe/tx-bridge). We need to associate the Tx-Bridge bridge deck, low chord and bed cross-section profiles with the NBI bridge points. The bridge points are available via an ArcGIS Online feature service: In Pro, click the dropdown for **Add Data**, and click **Data From Path**.

https://ut-austin.maps.arcgis.com/home/item.html?id=c36ee7a51fa34c649f7b6b6d1f44a0cf

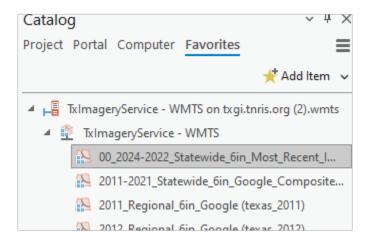
In Contents pane, click the triangle to expand Texas Streamflow Bridges.


The filtered bridges (18, 722) were selected using the following criteria:

- * Must be associated with NWM flowline (feature_id is not null; and, the feature_id must be present in an example NWM streamflow file)
- * Must have a HAND rating curve computed (hand r is not null or empty string)
- * Must be less than 200 feet from stream (dist river < 200)
- * Must have a minimum streamflow conveyance area greater than 1 sq ft (convey_ar > 1)
- * Minimum low chord elevation must be present (min low ch <> -99)
- * Sometimes there are duplicate unids with different hydroids (HAND catchments). Manually inspect and keep the best match. Result is to remove the following:


```
uuid == 'ac8e03ad-0636-4669-af7d-0dad8c8168d8' and hydroid == '24421109' uuid == 'ca985d1d-5bec-4f98-9804-2264fed52003' and hydroid == '24781489'
```

In Geoprocessing use Copy Features to copy the **filtered_bridges** to the **BridgeQualityAssessment** geodatabase as **TxBridgePt**.


As a backup, all bridges (37,488) created by Tx-Bridge are copied into the Bridge Quality Assurance geodatabase as feature class **AllTxBridges**.

This geodatabase contains all the information needed to do the quality assessment.

7. Background Imagery

TxDOT licenses a high resolution imagery file from TxGIO and this can be added with a login and password as shown above.

The ArcGIS Project and geodatabase from this exercise can be found at: https://utexas.box.com/s/frn7a8ut8yxgsp2j91gqktzsbgee4cyp

Appendix

Andy Carter, PE Senior Engineering Scientist

The University of Texas at Austin
Center for Water and the Environment
Reference data used in computing the tx-bridge data are available at

https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-global-input-20231027/

including:

- a) Nbi bridges texas 4326.shp --- TxDOT provided nbi points
- b) texas_osm_transport_dissolve_ln_4326.gpkg --- Open street map road lines as Geopackage
- c) nwm_flows.gpkg --- National Water Model flow lines
- d) nhd h texas state flowline 4269.gpkg --- NHD Flowlines (used for getting the stream name)
- e) demDerived reaches split filtered addedAttributes crosswalked.gpkg --- Yans 3m hydrofabric
- f) hydroTable_rp_bf_Imtdischarge_cda.parquet --- Yans rating curves

Looking at an example bridge '0178de33-3f8e-458a-b9ed-9b1ad890eb8a' from geojson located at ...

https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-db-20240430/

https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-db-20240430/tx bridge 3857 20240430.geojson

	Property	Value
0	adj_hull	0.0
1	bad_hull	0.0
2	hull_len	99.97
3	avg_width	17.8
4	nhd_name	Smith Creek
5	reachcode	12030105000267
6	name	Cut-Off Road
7	ref	None
8	file_path	/work2/08140/acarter/stampede2/tx_bridge_20230
9	mjr_ax_idx	196
10	hull_idx	299
11	sta	0.0, 1.01, 2.02, 3.03, 4.04, 5.05, 6.06, 7.07,
12	ground_elv	329.13, 329.13, 329.29, 329.29, 329.29, 329.22
13	deck_elev	329.13, 329.13, 329.29, 329.29, 329.29, 329.22
14	hull_wkt	POLYGON ((2595398.9277714803 6830143.431016326
15	latitude	32.3879
16	longitude	-96.4692
17	aoi_name	run_437_HUC_12030105_collection_001
18	copc_name	ellis_hill_johnson_navarro
19	copc_date	20220113
20	copc_name_s	001
21	uuid	0178de33-3f8e-458a-b9ed-9b1ad890eb8a
22	feature_id	1262529
23	order_	3
24	dist_river	0.0
25	nbi_asset	180710AA0475002
26	nbi_thick	1.24
27	nbi_dist	10.37
28	score	0.985
29	score_dist	0.948
30	score_span	1.0

Example:

(1) Bridge cross sections --- static plots

https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-xs-plots/

Example:

https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-xs-plots/0178de33-3f8e-458a-b9ed-9b1ad890eb8a.png

All cross section images as a compressed (tar.gz)... 4.9 Gb

.... https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-xs-plots/000000 archive xs gzip.tar.gz

(2) Bridge DEM --- Geotiff

https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-dem/

Example:

https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-dem/0178de33-3f8e-458a-b9ed-9b1ad890eb8a.tif

All bridge deck dems as a compressed (tar.gz)... 723 Mb

.... https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-dem/000000 archive gzip.tar.gz

(3) Collection bridge deck point clouds

https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-copc-20231027/

This bridge is on copc collection 001

Example:

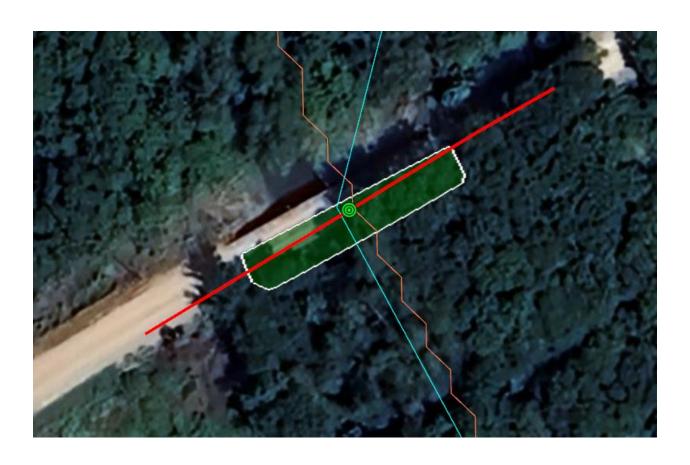
https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-copc-20231027/001 bridge merge.copc.laz

COPC point clouds are best viewed in QGIS or at https://viewer.copc.io/

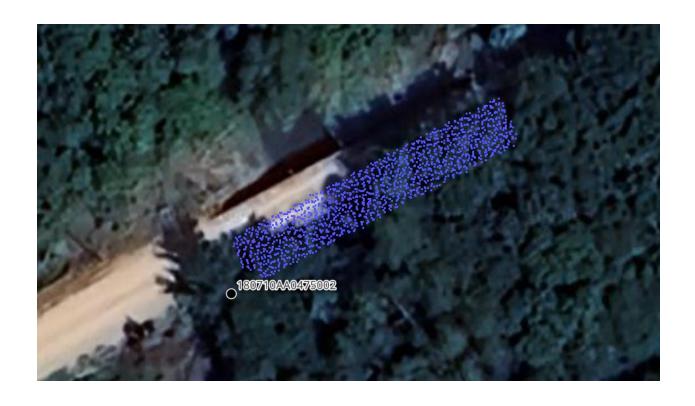
(4) View run KMZ

https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-kml/

This bridge was part of run #437, HUC-8: 12030105, LiDAR collection #001


A 'run' is a combination of Lidar collection in a given HUC-8 watershed.


Example:


https://web.corral.tacc.utexas.edu/nfiedata/acarter/tx-bridge-kml/run 437 HUC 12030105 collection 001 001 20230914.kmz

View KMZ in Google Earth

Sample Images of this bridge's data...

