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ABSTRACT 23 

Privately owned and shared autonomous passenger vehicles (AVs and SAVs) and automated 24 
heavy-duty trucks (ATrucks) are expected to one day be widely available across the US and other 25 
nations. This study extends Texas’ Statewide Analysis Model (SAM) to compare scenarios with 26 
and without AVs, SAVs, and ATrucks. Results suggest that, on average, individuals are likely to 27 
choose more remote destinations, as seen by an 18% rise in average trip length of long-distance 28 
(50-400 miles) business travel (from 121 to 142 miles) and 13% for non-business travel (135 to 29 
151 miles). AVs and SAVs collectively accounted for 14% of one-person long-distance trips 30 
across Texas, contributing to a 17 percentage-point reduction in trips over 50 miles made by 31 
human-driven vehicles. For trips between 50 to 400 miles, SAVs carrying 3+ passengers accounted 32 
for 14.4% of the total 310 million person-miles traveled, two-passenger SAVs made up 7.8%, and 33 
one-person AV trips represented 10.7%. In the freight sector, ATrucks were the preferred mode, 34 
handling 35% of freight ton-miles, surpassing rail at 24% and human-driven trucks at 16% (vs 35 
52% and 33% via HTrucks and rail, respectively, before the inclusion of ATrucks). Results suggest 36 
serious congestion issues if travel demand management measures are not implemented, with 37 
statewide daily VMT rising 24% (from 1.10 to 1.36 billion vehicle-miles) and weighted average 38 
speeds falling 37% (from 25.8 to 18.9 miles per hour).  39 

Keywords: Long-Distance Travel, Autonomous Vehicles, Mode Choice, Autonomous Trucks, 40 
Freight. 41 
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BACKGROUND  1 

The rise of automated vehicles (AVs) is leading to significant developments in passenger and 2 
freight travel across urban and regional landscapes. As traditional barriers like the burden of 3 
driving and the hefty, fixed costs of vehicle ownership diminish, distant destinations and ground-4 
based travel alternatives become more appealing, fundamentally altering mode choice (Zhao and 5 
Kockelman, 2018; Perrine et al., 2020; LaMondia et al., 2016). ATrucks free operators from 6 
driving duties and increase truck use by enabling rest breaks during the trip (Lee et al., 2023; 7 
Engholm and Pernestål, 2021). Currently, trucks dominate US inland freight transport (64% of the 8 
weight of annual shipments), moving 13,139 million tons in 2023 after pipeline and rail (5,297 9 
million tons) (FAF5, 2021). Future integration of truck platooning via low-latency vehicle-to-10 
vehicle communication will also improve freight efficiency (Huang et al., 2020). The possibility 11 
of ATrucks performing additional tasks, such as autonomous freight pickups and deliveries, may 12 
also improve supply chains.  13 

While AVs may dramatically lower crash counts, improving access for the elderly, disabled, and 14 
others (Harper et al., 2016; Fagnant and Kockelman 2015; Gurumurthy and Kockelman, 2018), 15 
their introduction will also change how people travel. AVs are projected to increase vehicle-miles 16 
traveled (VMT) and attract passengers away from public transit. LaMondia et al. (2016) and 17 
Perrine et al. (2020) estimated 50% shifts away from airlines and driving, and toward AVs and 18 
SAVs (especially for trips under 500 miles each way). The availability of SAVs is also expected 19 
to reduce US car ownership (Gurumurthy and Kockelman, 2018). This study not only integrates 20 
AVs and SAVs but also considers the effects of different vehicle occupancies of AVs and SAVs 21 
on transportation networks. Numerous recent studies have explored how SAVs may impact car 22 
ownership. In their study, Mamdoohi et al. (2023) showed that approximately 26% of participants 23 
were willing to reduce their private car ownership in favor of SAVs. Fonzone et al. (2024) also did 24 
similar research and showed that 7.3% of respondents were willing to use an autonomous bus (AB) 25 
as soon as it became available (indicating early adoption), while 13.3% of respondents expressed 26 
willingness to use an AB soon after they are available. The numbers showed a cautious but 27 
substantial interest in using ABs when integrated into the transportation network.  28 

Hamadneh et al. (2023) found that men and high-income individuals are more inclined to use 29 
privately owned SAVs than women and lower-income groups. However, a notable gap exists in 30 
understanding how these vehicles are used across different party sizes. The ride-hailing service 31 
providers with SAV fleets have the potential to streamline passenger flow, reducing wait times 32 
and enhancing connectivity between various modes of transportation. Furthermore, these providers 33 
improve fleet usage by optimizing routes and schedules based on real-time data, thus minimizing 34 
idle times and boosting the operational efficiency of transport services (Xu et al., 2024). Despite 35 
numerous studies investigating public preferences for AVs across various travel distances and 36 
purposes (e.g., Maleki and Arani, 2021; Ashkrof et al., 2019; Truong et al., 2017; Haboucha and 37 
Shiftan, 2017), there remains a notable gap in the application of studies across realistic settings. 38 
This study fills this gap by integrating AVs, SAVs, and ATrucks into Texas' statewide demand 39 
model (SAM) and evaluating their impacts on freight and long-distance passenger travel. The 40 
following sections describe the model briefly, detail changes to the mode choice modules, provide 41 
simulation results, and then deliver conclusions.  42 

DATA SET 43 
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This study centers on travel demand modeling using TransCAD software, which supports a four-1 
step travel demand model called SAM. SAM is a multi-modal travel tool maintained by the Texas 2 
Department of Transportation (TxDOT) and developed by the Alliance Transportation Group 3 
(ATG). SAM covers North America, focusing on regions in and around Texas. Figure 1 represents 4 
the state's extensive network of highways, railways, and airline routes, with 228,562 links, 166,039 5 
nodes, and 6,860 traffic analysis zones (TAZs).  It has passenger and freight models, which follow 6 
a four-step structure (from trip generation to destination, mode, and route choices, with feedback). 7 
Passenger vehicles and freight trucks are combined for network loading in the highway assignment 8 
step. The SAM simulation comprehensively analyzes travel patterns involving a substantial 9 
population of 40.2 million individuals distributed across 13.5 million households within Texas. 10 
These households have an average size of 2.98 individuals, and the population-to-employment 11 
ratio is 2.1.  12 

             13 
                                        a. Texas TAZs                         b. Network  14 

Figure 1. SAM-V4 TAZ and Network File  15 
Passenger Model 16 
The passenger model in SAM-V4 uses destination choice models to distribute most short-distance 17 
trips (less than 50 miles) and all long-distance trips (50 miles or greater). In contrast, gravity 18 
models are applied for other short-distance trips such as home-based K-12 school trips, non-home-19 
based visitor trips, and non-freight truck trips. The model time-of-day step categorizes highway 20 
passenger trips and freight truck trips into four time periods: morning (AM) peak period, mid-day 21 
(MD) period, afternoon (PM) peak period, and night (NT) period, for final assignment according 22 
to these periods. Mode share factors, which vary based on the transit accessibility of a TAZ, are 23 
applied for short-distance trips. A four-level nested-logit mode choice model is used for long-24 
distance trips, including auto, intercity rail, high-speed rail, and air travel.  25 

The passenger model reflects three trip types: short-distance, long-distance, and non-freight truck 26 
trips. Short-distance passenger trips are those under 50 miles one-way, including home-based work 27 
trips (HBW), home-based other trips (HBO), home-based K-12 school trips (HBS), non-home-28 
based other trips (NHBO), and non-home-based visitor trips (NHBV) trips. Long-distance trips 29 
are those over 50 miles (one-way) within Texas or between Texas and the continental US (and 30 
may take more than 24 hours). SAM-V4 distinguishes these by purpose and distance: infrequent 31 
long-distance business and non-business/other trips are between 50 and 400 miles (ILDB and 32 
ILDO), while infrequent and very long- (or “long long”) distance trips (400+ miles) for business 33 
and non-business/other purposes are ILLB and ILLO. Non-freight truck trips are short-distance 34 
trips not captured by the freight model, serving local areas with purposes like contractors 35 
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delivering goods and services to households. Fixed mode-split factors were applied to estimate the 1 
mode split for short-distance trips, while a nested logit (Figure 2) was used for trips over 50 miles. 2 

 3 
Figure 2. SAM-V4 Passenger Long-Distance Mode Choice Nested-Logit Structure and Nesting 4 

Coefficients (Source: Alliance Transportation Group, 2019) 5 
Note: DA = Drive Alone, SR = Share Ride, ICR = Intercity Rail, HSR = High-Speed Rail 6 

 7 

Freight Model  8 
The SAM-V4 freight models were developed using 2015 TranSearch data, classifying goods into 9 
15 distinct groups, as shown in Table 1. A four-step travel demand model combines freight trips 10 
with passenger travel in the final step of traffic assignment. The freight mode choice model consists 11 
of truck, carload rail, intermodal rail, water, and air, as shown in Figure 3. An incremental logit 12 
choice method pivots off existing mode shares (as found in the base scenario) as time and cost 13 
parameters change. The freight model’s coefficients were estimated using Texas 2015 TranSearch 14 
commodities flow data, with results shown in Table 2. After mode splits are produced, SAM’s 15 
tonnage estimates (by commodity) are divided into separate truck trips and loaded on the roadway 16 
network. Interestingly, the freight model has just 348 TAZs: 254 Texas counties plus 48 US states 17 
(all but Hawaii), the District of Columbia, 32 Mexico states, and 13 Canadian provinces. 18 

 19 
Figure 3. SAM-V4 Freight Mode Choice Structure (Source: ATG, 2019) 20 

 21 

 22 

Table 1. SAM-V4 Freight Mode Choice Coefficients (Source: ATG, 2019) 23 
 
# Commodity Name Carload 

Constant 
IMX 

Constant 
Cost 
Coef. 

Time 
Coef. 

# of 
IMX 
Coef. 
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1 Agriculture 5.481 -4.277 -0.0063 0 0.0469 
2 Metallic Ore & Coal 

Mining 4.124 -3.1 -0.0032 -0.0584 0 

3 Crude Petroleum or Nat. 
Gas 3.549 0 0 -0.0162 0 

4 Nonmetallic Minerals -0.679 -8.4338 -0.0061 0 0.0998 
5 Food -3.279 -2.7486 -0.0058 0 0.0406 
6 Consumer Manufacturing 0 0 -0.0019 -0.042 0.0409 
7 Non-Durable 

Manufacturing -3.757 -6.5606 -0.0059 0 0.0279 

8 Lumber -4.016 -8.0001 -0.0011 -0.0131 0.0461 
9 Durable Manufacturing -2.860 -6.4946 -0.0017 0 0.0317 
10 Paper -0.619 -3.0581 -0.009 0 0.0414 
11 Chemicals -2.341 -6.0239 -0.0045 0 0 
12 Petroleum -3.092 -8.4885 -0.0056 0 0.0854 
13 Clay, Concrete, Glass -3.336 -7.1387 -0.0064 0 0.0368 
14 Primary Metal -1.887 -4.321 -0.006 0 0 
15 Secondary & Misc. 

Mixed -3.176 4.5037 -0.0077 0 0.0529 

 1 
Table 2. SAV-V4 Mode Choice Parameters (Source: ATG, 2019) 2 

Parameters Mode 
 Truck Carload IMX 

Cost rate ($/ton-
mile) 0.1986 0.0191 0.0362 

Time rate 1 1 1 
Cost Constant 0 10.3 42.94 

Drayage access - - 0.1986 

METHODOLOGY 3 

The mode choice models for passenger and freight transportation were updated to incorporate 4 
AVs, SAVs, and ATrucks. To account for the anticipated spike in vehicle-miles traveled due to 5 
the implementation of AVs, a 15% rise in trip production rates has been included. The rise 6 
acknowledges a potential growth in ground travel demand that would result from providing 7 
transportation for people who are elderly, those who do not have driver's licenses, or those with 8 
mobility limitations. These modifications align with research by Harper et al. (2016), which 9 
calculated a 14% rise in U.S. VMT due to non-driving individuals, senior citizens, and people with 10 
medical issues that hinder traditional modes of transportation.  11 

Short-Distance Passenger Mode Choice 12 
SAM uses mode shares determined by transit availability for various trip purposes and income 13 
brackets for short-distance trips. Four different options are being evaluated for short travels, 14 
including Drive-alone (DA), Shared-Ride 2 (SR2), Shared-Ride 3 or more people (SR3+), and 15 
"Other" modes. The "Other" category includes transportation modes such as buses, urban rail, 16 
ferries, and other modes not specified in the survey questionnaire. It uses several parameters 17 
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depending on three sorts of areas: "No Transit Available Area," "Bus Available Area," and "Urban 1 
Rail Available Area." In areas without transit, DA, SR2, and SR3+ values of 40% for HVs, 40% 2 
for AVs, and 20% for SAVs were assumed. Similarly, in areas with transit availability (bus and 3 
urban rail available areas), 40% for HVs, 40% for AVs, and 20% for SAVs were assumed for DA, 4 
SR2, and SR3+, mirroring the previous case with a 50% reduction in the mode shares of “Other” 5 
modes. Zhao et al. (2018) predicted that 66% of all automobile users will choose AVs or SAVs. 6 
Litman (2020) predicted that AVs will make up 30% of the U.S. fleet by 2040, while other research 7 
suggests that AVs might range from 25% to 87% of the U.S. fleet by 2045, depending on various 8 
assumptions (Bansal and Kockelman, 2016). Huang et al. (2021) found that for trips between 75 9 
and 500 miles, business trips were split approximately 23% HV, 28% AV, and 17% SAV, whereas 10 
non-business trips were split 37% HV, 15% AV, and 34% SAV. 11 

Long-Distance Passenger Mode Choice  12 
SAM's nested logit model was adjusted to include HV, AV, and SAV for trips exceeding 50 miles. 13 
The modes were categorized under DA, SR2, and SR3+. The nesting order was established based 14 
on individuals' tendency to choose a transportation mode depending on party size. Figure 4 shows 15 
the revised nesting structure along with the assumed nesting coefficients. Table 3 presents the 16 
mode choice constants (ASCs), explanatory variable coefficients used in the model, and the default 17 
values established in the base. The parameters were chosen using the SAM-V4 base model and a 18 
comparable model adjusted by Huang et al. (2020). Individual trips generated at the mode choice 19 
stage are converted into vehicle trips before traffic assignment. Auto occupancy rates for SR3+ 20 
trips in SAM were determined according to trip purpose and income group using NHTS data. 21 
These rates ranged from 3 to 4.79, except for a rate of 7.57 for ILLO trips by those in income 22 
group 3. This 7.57 seems relatively high, especially since the long-distance mode choice model 23 
does not include bus modes. This could be a potential error in SAM, where a small sample of bus 24 
modes in the NHTS was accidentally considered while estimating these rates.  25 
 26 
 27 

 28 
Figure 4. AV/ATruck Scenario Long-Distance Mode Choice Nested-Logit Structure and Nesting 29 
Coefficients (DA – Drive Alone, SR – Share Ride, ICR – Intercity Rail, HSR – High-Speed Rail) 30 

 31 

Table 3. Passenger Model Parameters 32 
NO-AV SCENARIO 
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Mode ILDB ILDO ILLB ILLO 
Drive Alone (DA) N/A N/A N/A N/A 

Shared-Ride 2 (SR2) -1.5 -0.1 -3 -0.8 
SR 3+ (SR3+) -2 -0.2 -4.2 -2 

High-Speed Rail (HSR) -1.1 -2.5 2.5 -0.4 
Intercity Rail (ICR) -5 -3.8 -5 -2.5 

Air -1.1 -2.5 2.5 0 
Auto Operating Cost ($/mile) 0.346 0.17 0.346 0.17 
In-Vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 

Out-of-Vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 

Travel Cost 
Coefficient 

Income I -0.1664 -0.1109 -0.1664 -0.1109 
Income II -0.0555 -0.037 -0.0555 -0.037 
Income III -0.0277 -0.0185 -0.0277 -0.0185 
Income IV -0.0166 -0.0111 -0.0166 -0.0111 

AV/ATRUCK SCENARIO 
Mode ILDB ILDO ILLB ILLO 

DA 

Human-Driven Vehicles (HV) N/A N/A N/A N/A 
Autonomous Vehicles (AV) -0.05 -0.05 -0.05 -0.05 

Shared Autonomous Vehicles 
(SAV) -0.2 -0.2 -0.2 -0.2 

SR2 
HV -1.5 -0.1 -3 -0.8 
AV -1.55 -0.15 -3.05 -0.85 

SAV -1.7 -0.3 -3.2 -1 

SR3+ 
HV -2 -0.2 -4.2 -2 
AV -2.05 -0.25 -4.25 -2.05 

SAV -2.2 -0.4 -4.4 -2.2 
High-Speed Rail (HSR) -1.10 -2.50 2.50 -0.40 

Intercity Rail (ICR) -5 -3.8 -5 -2.5 
Air -1.1 -2.5 2.5 -0.4 

HV Operating Cost ($/mile) 0.346 0.17 0.346 0.17 
AV Operating Cost ($/mile) 0.6 0.6 0.6 0.6 

SAV Operating Cost ($/mile) 1 1 1 1 
In-vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 

Out-of-vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 

Travel Cost 
Coefficient 

Income I -0.1664 -0.1109 -0.1664 -0.1109 
Income II -0.0555 -0.037 -0.0555 -0.037 
Income III -0.0277 -0.0185 -0.0277 -0.0185 
Income IV -0.0166 -0.0111 -0.0166 -0.0111 

 1 

Freight Mode Choice 2 

The freight mode choice was updated to include ATrucks as a new category. These ATrucks are 3 
nested under the broader truck mode, separating automated trucks (ATrucks) from human-driven 4 
trucks (HTrucks). The Texas megaregion study by Huang et al. (2020) was again used as a starting 5 
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point for the model parameters, assuming a nesting coefficient of 0.7 for HTrucks to reflect the 1 
relative substitutability between the two modes. The operating costs for ATrucks were assumed to 2 
be 50% more than those of HTrucks to account for automation equipment costs and additional 3 
training expenses for humans supervising the truck, with a 25% reduction in VOTT. No rest time 4 
was assumed for ATrucks (as opposed to the 13 hours of rest accounted for HTrucks after every 5 
11 hours of driving). The ATruck travel time skim was assumed to be 0.42 times that of HTruck, 6 
reflecting the ability of automated trucks to drive 24 hours a day. The time coefficient for 11 of 15 7 
commodities in SAM-V4 is 0.00 (Table 4). Therefore, time and cost coefficients were re-estimated 8 
for the 11 commodities by halving the beta of cost and choosing the beta time coefficients carefully 9 
so those newly added multiples would make up for the reduction in the beta cost*cost terms. This 10 
was done by taking half the cost coefficients and selecting 11-time coefficients to minimize errors 11 
in hitting current rail/truck splits (no AV scenario) for each commodity's top 50+ OD pairs. This 12 
process was repeated for 11 commodities. Table 4 shows the updated coefficients for all the 13 
commodities.  14 

Table 4 Freight Mode Choice Coefficients  15 

Commodity 
Group # 

Original Modified Original 
Time 
Coeff. 

Cost 
Coeff. 

Time 
Coeff. 

Cost 
Coeff. 

Carload 
Constant 

IMX 
Constant 

IMX # 
Coeff. 

1 0 -
0.0063 

-
0.01843 

-
0.00315 5.4809 -0.4277 0.0469 

2 -0.0584 -
0.0032 -0.0584 -0.0032 4.1237 -3.1 0 

3 -0.0162 0 -0.0162 0 3.549 0 0 

4 0 -
0.0061 

-
0.18701 

-
0.00305 -0.6799 -8.4338 0.0998 

5 0 -
0.0058 

-
0.01368 -0.0029 -3.2788 -2.7486 0.0406 

6 -0.042 -
0.0019 -0.042 -0.0019 0 0 0.0409 

7 0 -
0.0059 

-
0.05899 

-
0.00295 -3.7565 -6.5606 0.0279 

8 -0.0131 -
0.0011 -0.0131 -0.0011 -4.0162 -8.0001 0.0461 

9 0 -
0.0017 

-
0.00595 

-
0.00085 -2.8602 -6.4946 0.0317 

10 0 -0.009 -0.0365 -0.0045 -0.6198 -3.0581 0.0414 

11 0 -
0.0045 

-
0.04677 

-
0.00225 -2.3405 -6.0239 0 

12 0 -
0.0056 

-
0.36019 -0.0028 -3.0916 -8.4885 0.0854 

13 0 -
0.0064 

-
0.41205 -0.0032 -3.3361 -7.1387 0.0368 

14 0 -0.006 -0.0098 -0.003 -1.8875 -4.321 0 

15 0 -
0.0077 

-
0.02697 

-
0.00385 -3.1761 4.5037 0.0529 
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As mentioned, the SAM-V4 freight mode choice model uses an incremental logit structure that 1 
builds upon existing base share. However, with the introduction of ATruck and the associated 2 
changes in the model structure, the calculations for mode shares needed to be updated. 3 

 4 
Figure 5. AV/ATruck Scenario Mode Choice Structure and Nesting Coefficient 5 

The utilities of HTruck and ATruck for every commodity group and zone pair were computed 6 
using travel time, cost, and modal constant terms, similar to the approach followed in the base 7 
model. The utility calculation for ATruck is shown as an example below: 8 

𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴 + 𝛽𝛽𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 + 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑇𝑇𝐶𝐶𝑇𝑇 𝑝𝑝𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝑡𝑡 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇9 

∗ 𝐷𝐷𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑡𝑡𝐷𝐷𝑇𝑇𝑖𝑖𝑖𝑖) 10 

where 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴 is the alternate specific constant, 𝛽𝛽𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the time coefficient, and 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 11 
is the cost coefficient for ATrucks, for commodity k from zone i to j. Next, the utility of the truck 12 
mode was determined by calculating the log sum of the utilities of HTruck and ATruck, 13 
considering the nesting coefficient. The formula for this calculation is expressed below: 14 

𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴 = 𝜃𝜃 ∗𝑇𝑇𝐶𝐶𝑙𝑙 𝑇𝑇𝐶𝐶𝑙𝑙 �𝑇𝑇(

𝑈𝑈𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻

𝜃𝜃 ) + 𝑇𝑇(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻

𝜃𝜃 )�  15 

where 𝜃𝜃   = Nesting Coefficient and 𝑈𝑈𝑖𝑖𝑖𝑖  = Utility for specified mode for commodity k from zone 16 
i to j. Following this, the new truck share or probability was calculated using the same methodology 17 
as before, using the base mode shares. The incremental logit model form as followed in the AV 18 
base or no AV scenario model is shown below: For every mode m, in commodity group k, from 19 
zone i to j:  20 

𝑁𝑁𝑇𝑇𝑁𝑁 𝑀𝑀𝐶𝐶𝑀𝑀𝑇𝑇 𝐴𝐴ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑚𝑚,𝐴𝐴 =

𝐸𝐸𝐸𝐸𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑡𝑡𝑙𝑙 𝑀𝑀𝐶𝐶𝑀𝑀𝑇𝑇 𝐴𝐴ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑚𝑚,𝐴𝐴 ∗ 𝑇𝑇∆𝑈𝑈𝑖𝑖𝑖𝑖

𝑚𝑚,𝐻𝐻

∑ �𝐸𝐸𝐸𝐸𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑡𝑡𝑙𝑙 𝑀𝑀𝐶𝐶𝑀𝑀𝑇𝑇 𝐴𝐴ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑚𝑚,𝐴𝐴 ∗ 𝑇𝑇∆𝑈𝑈𝑖𝑖𝑖𝑖

𝑚𝑚,𝐻𝐻
� 𝑓𝑓𝐶𝐶𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇 𝑇𝑇𝑡𝑡 𝑘𝑘

 21 

where ∆𝑈𝑈𝑖𝑖𝑖𝑖
𝑚𝑚,𝐴𝐴 = Change in Utility  22 

For Truck mode, the change in utility is determined by comparing the newly calculated utility of 23 
the truck mode, which involves taking the log sum of HTruck and ATruck with the previous utility 24 
of the truck mode before introducing the new mode (and nest). The shares of ATruck and HTruck 25 
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in every zone pair) were then derived from the total number of truck trips (which is calculated by 1 
multiplying the new truck share with the total number of trips from each zone i to zone j) as shown 2 
below: 3 

𝐴𝐴𝑇𝑇𝑇𝑇𝐴𝐴ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝐴𝐴 = 𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝐴𝐴𝐷𝐷𝑘𝑘 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝐶𝐶 ∗
𝑇𝑇(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻

𝜃𝜃 )

𝑇𝑇(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻

𝜃𝜃 ) + 𝑇𝑇(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻

𝜃𝜃 )

𝐻𝐻𝑇𝑇𝑇𝑇𝐴𝐴𝐷𝐷𝑘𝑘 𝐴𝐴ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝐴𝐴4 

= 𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝐴𝐴𝐷𝐷𝑘𝑘 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝐶𝐶 ∗
𝑇𝑇(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻

𝜃𝜃 )

𝑇𝑇(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻

𝜃𝜃 ) + 𝑇𝑇(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻

𝜃𝜃 )

 5 

where 𝜃𝜃   = Nesting Coefficient and 𝑈𝑈𝑖𝑖𝑖𝑖  = Utility for specified mode for commodity k from zone 6 
i to j.  7 

RESULTS  8 

The “No-AV/ATruck Scenario” model serves as a benchmark for assessing the impacts of 9 
AV/ATruck inclusion in the network. For both models, SAM's weekday module selected a typical 10 
weekday as the basis for the analysis. Feedback loops iterating from traffic assignment’s 11 
equilibrium travel times to trip distribution’s destination choices were not included in these model 12 
runs because run times were extremely long (24+ hours per scenario). SAV occupancy was 13 
reduced by 20% after the mode choice stage to ensure the appropriate inclusion of empty VMT 14 
(eVMT). The VOTT for AVs and SAVs was assumed to be 20% less than traditional HVs (HVs), 15 
and ATrucks were assumed to have a 25% reduced VOTT compared to HTrucks. No rest time was 16 
assumed for ATrucks (as opposed to the 13 hours of rest accounted for HTrucks after every 11 17 
hours of driving). The ATruck travel time skim was assumed to be 0.42 times that of HTruck, 18 
reflecting the ability of automated trucks to drive 24 hours a day. Previously, the time coefficient 19 
for 11 out of 15 commodities in SAM-V4 was 0. Therefore, time and cost coefficients were re-20 
estimated for these commodities by adjusting betas of cost and time. 21 

 The mode splits for short-distance trips (<50 miles) remained fixed even with the introduction of 22 
AVs. Integrating AVs into the mode choice model for long-distance (> 50 miles) passenger travel 23 
revealed that personal AVs captured a 14% market share. At the same time, the human-driven 24 
"drive alone" mode experienced a 17% fall as individuals shifted to AVs. This shift may be 25 
attributed to a 25% reduction in VOTT, allowing individuals to use their time more effectively 26 
with AVs. Additionally, mode shares showed a 7% rise in AV driving with two occupants and an 27 
11% in AV driving with three or more occupants, as shown in Figure 11. Figure 12 shows that the 28 
introduction of AVs has led to a rise in business trips, with SAVs spanning 50-400 miles and non-29 
business trips exceeding 400 miles by 44% and 47%, respectively. At the same time, air mode lost 30 
20% of business trips and 15% of non-business trips within 400 miles. The surge in air travel 31 
within the 400-mile range can be attributed to the assumption of a 15% rise in trip frequency 32 
following the introduction of AVs. Inter-city rail, too, witnessed a decline in market share by 15% 33 
and 13% for business and non-business long-distance trips, respectively.  34 
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 1 
Figure 6. Percentage Change in Person Trips of Long-Distance Travel (> 50 miles one way) No-2 

AV vs AV Base Scenario  3 

 4 
Figure 7. Percentage Change in Person Trips for Ground Travel: No-AV vs AV Base Scenario 5 

(HV = human-driven vehicle, DA = drive alone, SR2/3 = shared ride with 2/3 persons) 6 

In the case of SAV driving, there was a modest 3% rise in AV driving with two occupants and a 7 
4% rise with three or more occupants. On the other hand, there was a 5% and 10% decrease in 8 
human-driven shared rides with two occupants and shared human driving with three or more 9 
occupants, respectively. As shown in Figure 8 (a), incorporating AVs into the transportation 10 
system has led travelers to opt for more distant locations than their previous choices. Additionally, 11 
the ability to spend time in alternative ways while inside AVs has increased the possibility of 12 
making trips, particularly for work-related trips that were previously deemed too far. Hence, we 13 
observed an 18% rise in average trip length for infrequent long-distance business trips and a 13% 14 
rise for non-business trips exceeding 50 miles but less than 400 miles. As shown in Figure 8 (b), 15 
there was a substantial rise in average trip length across various vehicle categories, with light-duty, 16 
medium-duty, and heavy-duty trucks witnessing rises of 35%, 32%, and 28%, respectively. This 17 
trend suggests a tendency to cover greater distances, likely due to removing driving burdens in AV 18 
modes. Furthermore, the rise in the number of hours vehicles spend on all types of roads also 19 
indicates a fall in average speeds.  20 

Figure 10 illustrates the PMT in ton-miles for business and non-business travel ranging from 50 to 21 
400 miles, across passenger cars in the AV scenario. AV inclusion has impacted the person-miles 22 
traveled (PMT) across various travel and trip purposes. Specifically for business trips, the PMT 23 
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for 'drive alone' and ‘shared rides with two passengers’ rose by 7.6% and 12.2%, respectively. 1 
Additionally, there was a substantial 49% rise in shared rides with three passengers. The results 2 
show a 37% rise in shared rides with three passengers for non-business trips. Business trips indicate 3 
a strong dependence on conventional vehicles (HVs). Solo drivers using HVs compromise the 4 
most PMT at 35.7 million (0.89 miles/day/capita), while AVs have a decent level of acceptance 5 
for individual business trips, covering 0.516 miles/day/capita (Figure 10). On the other hand, SAVs 6 
are used very little, with only 3.8 million person-miles traveled. This could suggest that SAVs are 7 
not widely available or that people are not very interested in using them, even when not sharing a 8 
car with others. Regarding shared rides, HVs with two passengers had a 14.6% share in total PMT 9 
(vs. 27% before AVs), and HVs with 3+ passengers made up 18% as opposed to 33% before AVs. 10 

AV use for non-business individual travel resulted in 0.36 PMT per capita, accounting for 6% of 11 
total PMT, while HVs comprised 20%. AVs constituted 8% of the total PMT for trips with two 12 
passengers, while HVs represented 18%. Trips with three or more passengers saw AVs covering 13 
16% of the PMT, lower than HVs at 22%. In shared rides, high-occupancy HVs performed better 14 
than AVs and single-occupancy shared autonomous vehicles (SAVs). HVs with multiple 15 
passengers covered 37.25 million person-miles, or 18% of total PMT, which is significantly higher 16 
than the 8% for AVs and 2% for SAVs. Traditional vehicles remain the favored option for leisure 17 
travel, with a 3+ party size covering 1.2 PMT per capita. Prior to the implementation of AVs, 18 
HTrucks were the leading competitor in the freight market, accounting for 1326.9 billion freight 19 
ton-miles (Figure 11). Rail transport was extensively employed, with 827.7 billion ton-miles 20 
recorded. Water and Intermodal (IMX) transport accounted for 108.19 and 263.51 billion ton-21 
miles, respectively. Despite its high speed, air transport was used sparingly due to its high 22 
expenses, as seen by its modest ton-miles of 5.24 billion. This mode of transportation is suitable 23 
mainly for valued or time-sensitive shipments.  24 

ATrucks do not require a driver, so they are not constrained by fixed schedules related to drivers’ 25 
availability. Thus, results show an overall 15% rise in ton-miles transported after their 26 
introduction. Additionally, freight distribution saw significant shifts: traditional trucking, air 27 
freight, rail, and water transport experienced reductions of 65%, 25%, and 17% in ton-miles, 28 
respectively, compared to the period before the introduction of ATrucks. Meanwhile, ATrucks 29 
accounted for 35% of the total ton-miles following their deployment. 30 

         31 
(a)      (b) 32 

Figure 8. Percentage Change in Average Trip Length Across Trip Types (a) and Vehicle Types 33 
(b) 34 

 35 
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 1 
Figure 10. Person-miles Travelled for Trips Exceeding 50 miles: No-AV vs AV Base Scenario  2 

 3 
Figure 11. Ton miles Moved across Commodities: No-AV vs AV Scenario 4 

VMT experienced a notable rise across all time periods, as shown in Figure 12. During the AM 5 
and PM periods, VMT rose by more than 28%, followed by a 22% rise during the afternoon. 6 
Passenger VMT saw a 26% rise, while truck VMT rose 7%. This upward trend in VMT due to 7 
ATrucks is expected to increase further as they become more cost-effective than HTrucks. 8 
Expressways and freeways witnessed a significant rise of over 20% in passenger VMT, as shown 9 
in Figure 13. Furthermore, the rise in the number of hours vehicles spent on all types of roads 10 
(Figure 14) also indicates decreases in average speeds. Arterial roads, collector roads, and 11 
interstate highways were significantly impacted, with average speeds decreasing by more than 12 
60%, as shown in Figure 15. The results suggest that there is increased traffic congestion in AV 13 
scenarios. The most significant reductions in speed are observed during morning and evening 14 
hours, followed by afternoons, and then nights. 15 
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 1 
Figure 12. Percentage Change in VMT for Trips Exceeding 50 Miles: No-AV vs AV Base 2 

Scenario 3 

 4 
Figure 13. Percentage Change in Passenger VMT across Road Types: No-AV vs AV Base 5 

Scenario 6 

 7 
Figure 14. Percentage Change in VHT for Trips Exceeding 50 Miles: No-AV vs AV Base 8 

Scenario 9 
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 1 
Figure 15 Percentage Change in Average Speed Across Road Types: No-AV vs AV Scenario 2 

CONCLUSIONS  3 

This study extends TxDOT’s SAM model via its mode choice options to predict the travel and 4 
traffic impacts of AVs, SAVs, and ATrucks on passenger and freight flows across Texas and 5 
beyond. For passenger trips over 50 miles (one-way), SAM’s logit model was modified to include 6 
AVs and SAVs. The “No AV/ATruck Scenario,” has TxDOT’s default SAM settings, while the 7 
second model allows for AV, SAV, and ATruck modes. The “No AV/ATruck Scenario” model 8 
serves as a benchmark against AV/ATruck scenarios, allowing for a comprehensive analysis of 9 
the changes and benefits of introducing these advanced transportation technologies. For both 10 
models, SAM's weekday module selected a typical weekday as the basis for the analysis. For trips 11 
that are shorter than 50 miles, the mode split stays the same. However, for trips that are longer 12 
than 50 miles, the nested logit model was modified to include AVs, SAVs, and ATrucks.  13 

AV simulation revealed that AVs and SAVs (personal) captured 14% of the market share, 14 
accompanied by a 17 percentage-point decline in human-driven "drive alone" mode for trips over 15 
50 miles. This shift can be attributed to a 25% reduction in Vehicle VOTT, allowing individuals 16 
to use their time more effectively. The ability to use time effectively in AVs has encouraged 17 
travelers to opt for more distant locations, resulting in an 18% rise in average trip length (from 121 18 
miles to 142 miles) for infrequent long-distance business trips and a 13% rise (135 miles to 151 19 
miles) for non-business trips within 50 to 400 miles. For business-related travels, PMT for driving 20 
alone and two-passenger shared rides increased by 7.6% and 12.2%, respectively, with a 21 
significant 49% rise in three-passenger shared rides. AVs and SAVs show lower adoption rates for 22 
leisure trips, with HVs dominating larger group travels and significantly leading in PMT, 23 
indicating a strong preference for conventional vehicles in recreational contexts.  24 
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In the freight sector, ATrucks were the preferred mode, handling 35% of freight ton-miles, 1 
surpassing rail at 24% and human-driven trucks at 16% (vs. 52% and 33% via HTrucks and rail, 2 
respectively, before the inclusion of ATrucks). Average trip length rose across all vehicle 3 
categories, with light, medium, and heavy-duty trucks experiencing a rise of 35%, 32%, and 28% 4 
in their mean trip distances traveled. This trend indicates an inclination to cover greater distances, 5 
likely due to removing driving burdens in AV modes. Without travel demand management (like 6 
credit-based congestion pricing), congestion issues will grow, thanks to an average VMT rise of 7 
25.6% (from 1.09 to 1.37 billion miles per day). Of course, about 14% of this VMT rise is due to 8 
our starting assumption that AVs enable 15% more trip generation by passengers (for all trip 9 
purposes by all household types). The other 11% results from more driving, longer trips, less 10 
flying, and a shift to ATrucks.  The AV inclusion influenced PMT distribution across modes for 11 
business and non-business trips.  12 

Due to much higher VMT loads on the Texas network (as encoded in SAM, about 80% of 13 
centerline miles in the State of Texas), travel speeds are estimated to fall by about 36.9% on 14 
average (for the coded network). The VHT jumped by about 304%, largely due to passenger travel 15 
favoring the AM and PM peaks and mid-day. Speeds during night-time remained steady. Although 16 
AVs are gaining acceptance for business travel, HVs remain the preferred option for business and 17 
leisure purposes, especially for shared rides. This study's limitation is the scope of the 18 
modifications made for the AV scenario; integrating AVs, SAVs, and ATrucks was restricted to 19 
the mode choice step.  20 

While these changes can predict shifts in trip distribution, mode splits, and trip assignments with 21 
feedback loops, they cannot predict the change in trip production. For a more realistic model, the 22 
enhancement of the trip generation step is required and will be the next step in future work planned. 23 
Due to their long run times, these models do not include full feedback loops from traffic 24 
assignment to trip distribution. This omission limits the ability to produce realistic travel times, 25 
which may affect the accuracy of the results. Another limitation comes from fixed mode share 26 
splits for short-distance trips. While SAM is primarily designed for large-scale studies and is not 27 
intended to replace urban models for city-level analyses, the reliance on fixed shares affects the 28 
ability to fully assess the impacts of AVs.  29 
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