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Abstract 
 
Fully automated trucks (ATrucks) will impact the US freight flow patterns, due to time and 
cost savings compared to human-driven trucks (HTrucks). This paper advances the random-
utility-multiregional input-output (RUBMRIO) model to have explicit mode’s commodity-
pricing impacts and predicts impacts of ATrucks on freight mode and origin choices across 
20 commodity sectors across US. Assuming ATrucks’ operating cost to be 60% of that for 
HTrucks, results suggest that time and cost savings from the use of ATrucks not only 
accommodate the need to acquire high-value goods from more closer locations but also 
facilitates the transportation of goods with the same value from farther away. HTrucks’ 
shares diminish as distance rises with ATrucks’ mode share in transported value fairly stable 
at 50% across all distance, however, rail’s share is minimal for shorter distances but rises to 
approximately 20% for trips longer than 250 miles. Overnight time savings lead to an 
increase in the total value and ton-miles of goods transported by ATrucks, peaking at an 
increase of 11% for trips between 500 and 750 miles. Based on the sensitivity analysis of 
varying ATrucks’ operating cost, ATrucks transport three times the ton-miles of HTrucks 
when there is an 80% reduction of the operating cost, while they still transport double the 
HTruck ton-miles when they have 40% increased cost due to time savings. 
 
Key Words: automated trucks; spatial input-output model; nationwide trade flow patterns; 
integrated transportation-land use modeling  
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1. Introduction 
The implementation of autonomous trucking will bring sweeping changes to the world of 
freight transport. Semi-automated trucks, which function under supervised automated driving 
conditions, are already being tested globally as part of pilot programs on interstate highways 
or designated areas by trucking companies such as TuSimple, Aurora, and Kodiak Robotics. 
In the foreseeable future, fully automated self-driving trucks (referred to as ATrucks in this 
paper), may autonomously depart from truck terminals or warehouses, navigating to their 
intended destinations without requiring human intervention. Notably, TuSimple made 
headlines in 2023 by completing a fully autonomous truck run on open public roads 
(TuSimple, 2023), while Kodiak Robotics has outlined plans to commence full driverless 
operations in 2024 (Delandro, 2023). 
Trucks transported 2.43 trillion ton-miles of freight across the United States in 2020, 
constituting 46.2% of the nation’s total ton-miles for that year (BTS, 2023). Furthermore, in 
2021, 28% of the overall U.S. energy consumption was attributed to the transportation of 
people and goods, with 24.5% of transportation energy consumption stemming from 
commercial and freight trucks (U.S. Department of Energy, 2024). The use of ATrucks, along 
with platooned convoys, are expected to reduce lower crash rates, increase line-haul 
transportation efficiency and mitigate negative environmental impacts (Clements and 
Kockelman, 2017; Barth et al., 2004). The extensive adoption of ATrucks may occur before 
the automation of passenger vehicles, driven by apparent economic advantages that could 
result in a notable reduction of diesel fuel costs, potentially up to 7% (Liu and Kockelman, 
2017; Shladover et al., 2006; Uranga, 2017). 
In ATrucks, no onboard drivers are required although remote operators might be necessary to 
perform vehicle control tasks. While an attendant might still be present onboard for 
paperwork or coordination duties (Yankelevich, et al., 2018), this setup allows for extended 
utilization of commercial trucks, potentially operating every hour of every day (if effectively 
coordinated), leading to increased labor productivity. Consequently, the removal of onboard 
drivers is expected to yield reduced freight transportation costs, whether measured on a per-
mile or per-ton-mile basis. The resulting changes in both time and cost for freight 
transportation brought by ATrucks have implications not only for national and regional 
economies but also for trade patterns, production levels, and goods pricing. 
While significant attention is directed towards advancing the automation technology of 
ATrucks on highways (e.g., Lee et al., 2021; Calvert et al., 2019) and envisioning ATruck 
implementations (e.g., Slowik and Sharpe, 2018; Bhoopalam et al., 2023), there remains a 
gap in research examining the time and cost impacts of ATrucks on national freight travel. 
This study utilizes Freight Analysis Framework 5 (FAF5) data to estimate the mode and 
origin choices of freight carriers. The model parameters derived from these estimations are 
then integrated into the random-utility-based multi-regional input-output (RUBMRIO) model 
(refer to Cascetta et al., 2008; Ruiz and Kockelman, 2006; Bachmann, 2016) to investigate 
how patterns of freight flow may change based on the impacts of automation technology on 
truck cost and operation. Ruiz and Kockelman (2006) applied RUBMRIO model for 18 
economic sectors across Texas’ 254 counties, to assess project impacts on trade, production, 
and worker locations. Cascetta et al. (2008) calibrated RUBMRIO parameters to anticipate 
freight demand impacts across long-term scenarios in Italy. Bachmann (2016) applied the 
RUBMRIO model to Canada, and concluded that Canada’s important trade relationship with 
US made it susceptible to negative economic impacts caused by decreases in global 
transportation costs. Huang and Kockelman (2020) used the RUBMRIO model to estimate 
US trade flows based on Year 2012 FAF4 data. If ATrucks lower trucking costs by 25% (per 
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ton-mile delivered), the model predicts an 11% increase in truck flow volumes, and 4.8% fall 
in rail flows. But those studies did not separate the impacts of individual mode on commodity 
pricing, and had just one overall impact represented as the mode choice logsum. 
This paper is based on previous RUBMRIO model from Huang and Kockelman (2020), 
which used year 2012 (FAF4) data. This paper contributes by bringing the model data 
sources to the most recent FAF5 data, enhancing model structure to accommodate explicit 
mode’s commodity-pricing impacts with weighted shipping costs, and updating sub-model 
parameters to reflect more current shipping behavior. ATrucks’ per-mile operating cost is 
assumed to be 60% of that for human-driven trucks (HTruck), factoring in the benefits of 
increased safety, a lower wage bill for truck drivers, and a higher initial cost (e.g., purchase 
of tractor) to introduce ATrucks. Sensitivity analysis is also added to explore the impacts of 
various ATruck’s per-mile operating cost compared to HTrucks. 
The remainder of this paper proceeds through each component of the freight models, showing 
the datasets that are used, how each part of the RUBMRIO model is estimated and 
parameterized, and offering insight into significant trends that will affect nationwide freight 
trade flows. This paper then concludes with a summary of results and actions for further 
development. 

2. Data Sets  

This section introduces the prepared datasets for the freight model, as well as the model 
estimations. The estimated models used in the RUBMRIO model will be specified in the 
following section.  

2.1. Freight Analysis Framework (FAF5) Data 
FAF5 integrates trade information from diverse industry sources, with a primary focus on the 
Census Bureau’s 2017 Commodity Flow Survey (CFS) and international trade data (Census 
Bureau, 2021). The platform provides estimates of US trade flows, measured in tonnage, ton-
miles and dollar value, segmented by industry and distributed between the 129 aggregate 
zones within the US across eight transportation modes (truck, rail, water, air, multiple modes 
and mail, pipeline, non-domestic, and others). Utilizing FAF5’s origin-destination-
commodity-mode matrices, this study employs these annual freight flow matrices to project 
domestic and export trade flows by zone. Analysis of FAF5 data reveals that foreign export 
flows depart the US from 117 of the 129 zones, as depicted in gray in Figure 1(a). 
Consequently, these same 117 zones function as both production and export zones within the 
trade modeling system presented in this paper. 

  
(a)  (b) 

Figure 1. Continental US Domestic and Export Zones for Trade Modeling, (a) FAF5 129 Zones, with 117 
Export Zones (shown in gray) and (b) 3109 Domestic Freight Counties. 
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The FAF5 zones were further broken down into county-level matrices utilizing the 2017 
Commodity Flow Survey (CFS) boundary data, which identifies the counties associated with 
each FAF5 zone. In the year 2017, ten metropolitan areas were incorporated into the CFS 
data, resulting in a total of 3,109 contiguous counties (depicted in Figure 1(b)) after excluding 
the geographically distant states of Hawaii and Alaska. Travel times and costs between zones 
were calculated for the 3,109 × 3,109 county matrix, considering interzonal transportation by 
rail, ATruck, and HTruck, based on the shortest highway and railway paths in terms of free-
flow travel time. All travel distances within a county were assumed to be the radii of circles 
with the same area as that county. 

2.2. Economic Interaction Data 
The technical coefficients and regional purchase coefficients (RPCs) within the model's 
embedded input-output (IO) matrices were obtained from IMPLAN's transaction tables, 
derived from US inter-industry accounts. Technical coefficients reflect production technology 
or opportunities, detailing how dollars of input in one industry sector are utilized to generate 
dollars of product in another sector. These coefficients are fundamental parameters in any IO 
model. RPCs represent the share of local demand that is supplied by domestic producers. In 
this context, RPC values are assumed to be constant across US counties due to unknown 
variations. However, counties closer to international borders are more likely to “leak” sales 
(as exports) than those located centrally, everything else constant. And production processes 
or technologies can vary across counties (and within industries, across specific manufacturers 
and product types, of course). This application assumes that all US counties have access to 
the same production technologies or technical coefficients table. Furthermore, IMPLAN’s 
440-sector transaction table was consolidated into 20 industry sectors, along with Household 
and Government sectors, to represent the US economy in this trade-modeling exercise. 

3. Model Parameters  

3.1. Freight Mode Choice  
The freight mode choice model serves as a key component in the RUBMRIO model, as it 
distributes the freight flow for an origin-destination (OD) pair by mode. The freight mode 
choice model was estimated by leveraging data assembled from different sources. FAF5 
freight flow data provides freight flow records, with skims supported by FAF4, rJourney 
(Outwater and Bradley, 2018), and county-level population data. Considering the significant 
disparity in the magnitudes of transported values for different commodities, a unique mode 
choice model was estimated for each commodity. FAF5 encompasses 42 distinct commodity 
types, which were further aggregated into 20 types that align with the input-output table 
(Table 1). Sector/Industry 3 is considered similar to sector 2, so they are estimated as the 
same category. Ton-miles of each commodity transported between OD pairs by modes are 
used as the weights for each freight flow record, and weights are further normalized and 
transformed using a log function to maintain a reasonable scale. Sectors 14 to 20 do not have 
specific Standard Classification of Transported Goods (SCTG) code, so their parameters are 
the average of all other sectors.  
Table 1. Description of Economic Sectors in RUBMRIO Model 

Sector Description IMPLAN 
Code 

NAICS 
Code 

SCTG 
Code 

Value Transported in 
2022 (billion) 

1 Agriculture, Forestry, Fishing, 
and Hunting 1 to 19 11 1 98.1 

2 Mining 20 to 30 21 10 to 15 3413.8 
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3 Construction 34 to 40 23 

4 Food, Beverage, and Tobacco 
Product Manufacturing 41 to 74 311, 312 2 to 9 3191.6 

5 Petroleum and Coal Product 
Manufacturing 115 to 119 324 16 to 19 2177.6 

6 Chemicals, Plastics, and 
Rubber Product Manufacturing 120 to 152 325, 326 20 to 24 824.9 

7 Primary Metal Manufacturing 170 to 180 331 32 267.5 

8 Fabricated Metal 
Manufacturing 181 to 202 332 33 131.5 

9 Machinery Manufacturing 203 to 233 333 34 126.9 

10 
Computer, Electronic Product, 
and Electrical Equipment 
Manufacturing 

234 to 275 334, 335 35, 38 104.1 

11 Transportation Equipment 
Manufacturing 276 to 294 336 36, 37 210.3 

12 Other Durable and Non-
Durable Manufacturing 

75 to 114, 
153 to 169, 
295 to 304 

313 to 316, 
321 to 323, 

327, 337 

25 to 31, 
39 2476.9 

13 Miscellaneous Manufacturing 305 to 318 339 40, 41, 43 518.1 

14 Transportation, 
Communication and Utilities 

31 to 33, 332 
to 353 

22, 48, 49, 
51 -- -- 

15 Wholesale Trade 319 42 -- -- 
16 Retail Trade 320 to 331 44, 45 -- -- 

17 FIRE (Finance, Insurance and 
Real Estate) 354 to 366 52, 53 -- -- 

18 Services 367 to 440 
54 to 56, 61, 
62, 71, 72, 

81, 92 
-- -- 

19 Household -- -- -- -- 
20 Government -- -- -- -- 

 
For each model, four skim tables are used as variables in the utility function: truck travel 
time, truck cost, rail travel time, and rail cost. Truck travel time was derived from the 2010 
rJourney data (Outwater and Bradley, 2018), which provides passenger travel times between 
National User Model Areas (NUMAs) across the US. NUMAs are zones utilized for the 
rJourney model that are comprised of counties or Census Public Use Microdata Areas 
(PUMAs). The origin and destination’s population-weighted travel times at the NUMA level 
are aggregated into FAF zone level to offer an average passenger travel time between FAF 
zones. Since truck trips require more time than the highway travel time estimated for 
passenger vehicles, the following equation is used to transform highway travel time to truck 
travel time from zone i to zone j (Cambridge Systematics, 2002):  

𝑡𝑡𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
+ �𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
/ℎ � ∗ ℎ′ (1) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the highway distance in miles, 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the average truck speed 
(assumed to be 45 miles per hour), h is daily working hours (assumed to be 10 hours), and h’ 
is the additional hours needed for every 10 hour work shift (assumed to be 14 hours). The ⌊ ⌋ 
operator rounds down the digit number to the nearest whole number. 
Rail time from zone i to zone j is calculated based on the rail distance, with further 
adjustments from the equation in Texas’s statewide analysis model (SAM) to show a fixed 30 
hours’ dwelling time ℎ𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟 and an average speed 𝑣𝑣𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟 of 21.72 miles per hour on railways: 
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𝑡𝑡𝑖𝑖𝑖𝑖,𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟 = ℎ𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟 + 
𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖,𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟

𝑣𝑣𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟
  (2) 

In addition, travel times are transformed from hours into minutes with a log transformation 
further applied, to maintain a reasonable scale for both truck and rail.  

Truck cost and rail cost from zone i to zone j (𝑑𝑑𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑑𝑑𝑖𝑖𝑖𝑖,𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟, respectively) are 
calculated based on travel distances. The American Transportation Research Institute (ATRI) 
gives an average truck cost for 2022 of $2.251 per mile, with drivers’ wage accounting for 
40% and fuel for 28% of that cost (ATRI, 2023). Rail cost was about $1.59 per mile on 
average in 2019 (Ashe, 2022). Truck and rail distances are calculated based on FAF5, by 
dividing total ton-mile by total tons transported to demonstrate the average distance per ton 
for each FAF’s OD pair by commodity. The cost terms are used directly, without a log 
transformation, as this is easier to normalize to the unit of one dollar when using the 
equations in the RUBMRIO model.  
With freight flow records and skim tables obtained, the model was estimated in the R 
computer language using the Apollo package (Hess and Palma, 2019). Generic time and cost 
coefficients now ensure just one value of travel time for each commodity type. Table 2 
presents model results with generic time and cost coefficients for both truck and rail (𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡𝑚𝑚  
and 𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚 , respectively), setting truck as the baseline (𝛽𝛽0𝑚𝑚 = 0). This gives the following 
utility function for truck and rail to transport commodity m from zone i to zone j: 

𝑉𝑉𝑖𝑖𝑖𝑖
𝑚𝑚,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛽𝛽0

𝑚𝑚 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑑𝑑𝑡𝑡
𝑚𝑚 ⋅ 𝑑𝑑𝑑𝑑𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡 + 𝛽𝛽𝑡𝑡𝑑𝑑𝑚𝑚𝑡𝑡

𝑚𝑚 ⋅ 𝑡𝑡𝑑𝑑𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡 (3) 

𝑉𝑉𝑖𝑖𝑖𝑖
𝑚𝑚,𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟 = 𝛽𝛽0

𝑚𝑚 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑑𝑑𝑡𝑡
𝑚𝑚 ⋅ 𝑑𝑑𝑑𝑑𝑖𝑖,𝑡𝑡𝑟𝑟𝑑𝑑𝑟𝑟 + 𝛽𝛽𝑡𝑡𝑑𝑑𝑚𝑚𝑡𝑡

𝑚𝑚 ⋅ 𝑡𝑡𝑑𝑑𝑖𝑖,𝑡𝑡𝑟𝑟𝑑𝑑𝑟𝑟 (4) 

Results show a disutility with increased travel times and costs, and trucks are preferred in 
general over rail. Most coefficients are significant at 0.05, except “Agriculture, Forestry, 
Fishing, and Hunting,” “Primary Metal Manufacturing,” and “Miscellaneous Manufacturing.” 
This may be due to one or more commodities within the category showing a pattern distinct 
from the rest.  
Table 2. Freight Model Choice Parameter Estimates using FAF5 Data 

Sector Parameters Estimate Std. Err. t-stat P-value 

 (1) Agriculture, Forestry, 
Fishing, and Hunting 

𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟1
 -6.671 7.867 -0.848 0.397 

𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
1  -1.080 3.203 -0.337 0.736 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡1  -1.024 3.152 -0.325 0.745 

(2) Mining and Construction 
𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟2  0.283 0.102 2.769 0.006 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
2  -0.562 0.037 -15.170 0.000 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡2  -0.208 0.044 -4.755 0.000 

(4) Food, Beverage, and Tobacco 
Product Manufacturing  

𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟4  -0.679 0.074 -9.228 0.000 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
4  -0.451 0.029 -15.464 0.000 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡4  -0.219 0.027 -8.145 0.000 

(5) Petroleum and Coal Product 
Manufacturing  

𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟5  0.332 0.115 2.873 0.004 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
5  -0.586 0.042 -14.027 0.000 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡5  -0.351 0.049 -7.098 0.000 

(6) Chemicals, Plastics, and 
Rubber Product Manufacturing 

𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟6  -0.306 0.076 -4.024 0.000 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
6  -0.465 0.030 -15.398 0.000 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡6  -0.128 0.029 -4.463 0.000 

(7) Primary Metal Manufacturing 𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟7  -1.356 0.160 -8.472 0.000 
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Sector Parameters Estimate Std. Err. t-stat P-value 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
7  -0.087 0.061 -1.432 0.152 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡7  -0.422 0.064 -6.610 0.000 

(8) Fabricated Metal 
Manufacturing 

𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟8  -1.231 0.168 -7.348 0.000 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
8  -0.237 0.066 -3.566 0.000 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡8  -0.326 0.061 -5.344 0.000 

(9) Machinery Manufacturing 
𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟9  -1.541 0.184 -8.369 0.000 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
9  -0.230 0.074 -3.106 0.002 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡9  -0.303 0.065 -4.655 0.000 

(10) Computer, Electronic 
Product, and Electrical 

Equipment Manufacturing 

𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟10  -1.394 0.142 -9.852 0.000 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
10  -0.248 0.057 -4.356 0.000 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡10  -0.219 0.049 -4.443 0.000 

(11) Transportation Equipment 
Manufacturing 

𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟11  -1.270 0.118 -10.745 0.000 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
11  -0.180 0.048 -3.777 0.000 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡11  -0.276 0.042 -6.596 0.000 

(12) Other Durable and Non-
Durable Manufacturing 

𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟12  -0.981 0.065 -15.100 0.000 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
12  -0.324 0.025 -12.720 0.000 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡12  -0.265 0.024 -11.110 0.000 

(13) Miscellaneous 
Manufacturing 

𝛽𝛽𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟13  -2.771 0.177 -15.676 0.000 
𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
13  -0.064 0.069 -0.924 0.356 
𝛽𝛽𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡13  -0.480 0.060 -8.026 0.000 

3.2. Freight Origin Choice  
The freight origin choice model is also a key component in the RUBMRIO model, as it 
distributes freight flow across different potential origins. The freight origin choice model uses 
similar freight flow records as the mode choice model estimation but aggregates records by 
modes. We used two components for the utility in the origin choice model. One is the 
population, which is the most common size factor in location choice models, and the natural 
log of population ensures that choice probabilities scale properly. The second component is 
the logsum across mode alternatives, which is also standard, since logsums reflect the 
expected maximum utility of the competing modes that can serve that journey. The utility 
function to transport commodity m from i to j is as follows: 

𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚 = 𝛾𝛾𝑚𝑚 log �𝑝𝑝𝑐𝑐𝑝𝑝𝑖𝑖� + 𝛿𝛿𝑚𝑚ln�� exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�
𝑑𝑑∈𝐷𝐷

� (5) 

where 𝛾𝛾𝑚𝑚 and 𝛿𝛿𝑚𝑚 are parameters to be estimated for log of population and mode choice 
logsum, respectively, and 𝐷𝐷 = {𝑇𝑇𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡,𝑅𝑅𝑟𝑟𝑑𝑑𝑟𝑟}. The model was also estimated using the 
Apollo package in R software (Hess and Palma, 2019), with iterative coding for 132 different 
FAF zones as origins, while excluding any origins that are unavailable. “Unavailable” here 
indicates FAF OD pairs that do not have freight flow between them. Table 3 shows the model 
estimates.  
 
Table 3. Freight Origin Choice Model Estimates 

Sector Parameters Estimate Std. Err. t-stat 
(1) Agriculture, Forestry, 

Fishing, and Hunting 
𝛾𝛾1 0.247 0.052 4.800 
𝛿𝛿1 0.382 0.016 23.702 

(2) Mining and Construction 𝛾𝛾2 0.287 0.019 14.883 
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Sector Parameters Estimate Std. Err. t-stat 
𝛿𝛿2 2.503 0.036 68.788 

(4) Food, Beverage, and 
Tobacco Product Manufacturing 

𝛾𝛾4 0.504 0.010 48.738 
𝛿𝛿4 1.842 0.016 116.724 

(5) Petroleum and Coal Product 
Manufacturing 

𝛾𝛾5 0.314 0.026 12.167 
𝛿𝛿5 2.395 0.039 61.141 

(6) Chemicals, Plastics, and 
Rubber Product Manufacturing 

𝛾𝛾6 0.533 0.011 49.029 
𝛿𝛿6 1.807 0.017 104.318 

(7) Primary Metal 
Manufacturing 

𝛾𝛾7 0.449 0.022 20.835 
𝛿𝛿7 2.393 0.055 43.243 

(8) Fabricated Metal 
Manufacturing 

𝛾𝛾8 0.531 0.020 26.208 
𝛿𝛿8 1.785 0.042 42.292 

(9) Machinery Manufacturing 
𝛾𝛾9 0.524 0.019 26.898 
𝛿𝛿9 1.291 0.031 41.230 

(10) Computer, Electronic 
Product, and Electrical 

Equipment Manufacturing 

𝛾𝛾10 0.742 0.016 47.376 

𝛿𝛿10 1.077 0.024 45.364 

(11) Transportation Equipment 
Manufacturing 

𝛾𝛾11 0.574 0.016 36.781 
𝛿𝛿11 2.001 0.034 59.185 

(12) Other Durable and Non-
Durable Manufacturing 

𝛾𝛾12 0.602 0.009 69.883 
𝛿𝛿12 1.640 0.014 116.103 

(13) Miscellaneous 
Manufacturing 

𝛾𝛾13 0.624 0.015 40.549 
𝛿𝛿13 0.741 0.011 66.529 

 

3.3 Truck Mode Choice 
In order to reflect the impacts from automated trucks (ATrucks), ATrucks are added as an 
additional mode nested within the truck mode, and thus the utility of truck in the mode choice 
nest is the logsum of the truck-type choice model. Truck-type choice model borrows the cost 
and time coefficients from the upper nest for truck and rail. The alternative specific constants 
(ASCs) for ATrucks are set as −0.1 to recognize the initial high cost and the gradual adoption 
and preference for automation technology. The operating cost of ATrucks is taken to be 60% 
of that of HTrucks, based on the assumption of increased safety, a lower wage bill for truck 
drivers, and a higher initial cost. Figure 2 shows the nesting structure of the mode and origin 
choices. The detailed mode choice equations follow Huang and Kockelman (2020).  
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Figure 2. Origin, Mode, and Truck-Type Choice Structure 

The parameters are shown in Table 4, based on the estimates from Table 2 and Table 3. The 
nesting coefficients are set as 1, 1/1.2 and 1/1.4 to reflect the nests from a joint structure to 
lower-level choices that have more correlations. With more data about the user preference of 
ATrucks, future work can dedicate more efforts in estimating a large three-level nesting 
model instead of the two models that are estimated separately in this paper.  
 

Table 4. Parameter Estimates for Origin, Mode, and Truck-Type Choice Equations 

Sector 

Origin Choice Parameters Mode Choice Parameters Truck-Type Choice Parameter 

θij
m=1 θij,mode

m =1/1.2 θij,truck
m =1/1.4 

γm λm β1, rail
m  βtime, rail

m  βcost, rail
m  β1, Atruck

m  βtruck,time
m  βtruck,cost

m  

1 0.25 0.38 -6.67 -1.08 -1.02 -0.10 -1.08 -1.02 

2 0.29 2.50 0.28 -0.56 -0.21 -0.10 -0.56 -0.21 

4 0.50 1.84 -0.68 -0.45 -0.22 -0.10 -0.45 -0.22 

5 0.31 2.40 0.33 -0.59 -0.35 -0.10 -0.59 -0.35 

6 0.53 1.81 -0.31 -0.47 -0.13 -0.10 -0.47 -0.13 

7 0.45 2.39 -1.36 -0.09 -0.42 -0.10 -0.09 -0.42 

8 0.53 1.79 -1.23 -0.24 -0.33 -0.10 -0.24 -0.33 

9 0.52 1.29 -1.54 -0.23 -0.30 -0.10 -0.23 -0.30 

10 0.74 1.08 -1.39 -0.25 -0.22 -0.10 -0.25 -0.22 

11 0.57 2.00 -1.27 -0.18 -0.28 -0.10 -0.18 -0.28 

12 0.60 1.64 -0.98 -0.32 -0.27 -0.10 -0.32 -0.27 

13 0.62 0.74 -2.77 -0.06 -0.48 -0.10 -0.06 -0.48 
 

4. Random-Utility-Based Multiregional Input-Output Model Specifications 

This section introduces different components of the RUBMRIO model, including the 
disutility function, production function, and trade flows. The proof of the existence and the 
uniqueness of the RUBMRIO variant model is also shown. 
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4.1. Disutility Function 
In the RUBMRIO model, both internal trade flows and external trade flows (from counties to 
export zones/customs districts) are based on the disutility of acquiring some commodity m 
from origin zone i and consuming it in zone j, shown in equation (6) (or exporting it to zone 
k, shown in equation (7)).  

𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚 = −𝑝𝑝𝑖𝑖𝑚𝑚 + 𝛾𝛾𝑚𝑚 log(𝑝𝑝𝑐𝑐𝑝𝑝) + 𝛿𝛿𝑚𝑚ln�� exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�
𝑑𝑑∈𝐷𝐷

� (6) 

𝑉𝑉𝑖𝑖𝑡𝑡𝑚𝑚 = −𝑝𝑝𝑖𝑖𝑚𝑚 + 𝛾𝛾𝑚𝑚 log(𝑝𝑝𝑐𝑐𝑝𝑝) + 𝛿𝛿𝑚𝑚ln�� exp�𝑉𝑉𝑖𝑖𝑡𝑡𝑚𝑚𝑑𝑑�
𝑑𝑑∈𝐷𝐷

� (7) 

where 𝐷𝐷 = {𝑇𝑇𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡,𝑅𝑅𝑟𝑟𝑑𝑑𝑟𝑟}, with 𝑉𝑉𝑖𝑖𝑖𝑖
𝑚𝑚,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑉𝑉𝑖𝑖𝑖𝑖

𝑚𝑚,𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟 defined in equations (3) and (4), 𝑝𝑝𝑖𝑖𝑚𝑚 is 
the price of purchasing $1 of commodity m in zone i (in units of utility), and 𝛾𝛾𝑚𝑚 and 𝛿𝛿𝑚𝑚 are 
estimated parameters based on origin and shipping-mode choice by zone and sector from 
section 2.  

4.2. Production Function 
The behavior of land and transport markets are highly affected by the components’ market 
prices, including land rents and transport costs, which in turn affect production, consumption, 
and location decisions. The cost of producing one unit of commodity n in zone i is a function 
of the cost of inputs from other firms at other locations and the corresponding transport costs. 
The form of the overall manufacturing cost and ultimate sales price is shown in equation (8). 

𝑝𝑝𝑖𝑖𝑛𝑛 = ��𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 ∙ 𝑐𝑐𝑖𝑖𝑚𝑚�
𝑚𝑚

 ∀𝑖𝑖, 𝑛𝑛 (8) 

where 𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 is the technical coefficient for zone j, which defines the fractional amount of 
commodity m required to produce one unit of commodity n in zone j, and 𝑐𝑐𝑖𝑖𝑚𝑚 is the weighted-
average cost of input m in zone j. These technical coefficients, 𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛, come from the original 
year 2008 IMPLAN transactions tables (Minnesota IMPLAN Group, 1997) for total 
purchases, both local and imported. IMPLAN (Impact Analysis for Planning) is a social 
accounting and impact analysis software, developed by the Minnesota IMPLAN Group. It is 
assumed that every commodity has the same value-weight ratio to sustain equation (8) since 
the technical coefficients are measured in value instead of quantity (see more discussions in 
Cascetta et al., 2008). The input costs, 𝑐𝑐𝑖𝑖𝑚𝑚, are a weighted average of input purchase price 𝑝𝑝𝑖𝑖𝑚𝑚 
for commodity m for all input zones i plus the associated generalized transport costs 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 
(from each zone i to zone j using mode d), as shown in equations (9) and (10). The weight 
factors are the interzonal trade flows by mode (𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑). This is the key improvement from 
previous studies that they used a single logsum term in equation (9) to represent the expected 
mode choice utility, but here a weighted average for each mode 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 (utility that considers 
origin population and mode choice) makes it explicit in mode’s commodity-pricing impacts.  

𝐵𝐵𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 = 𝑝𝑝𝑖𝑖𝑚𝑚 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∀𝑑𝑑,𝑚𝑚 (9) 

𝑐𝑐𝑖𝑖𝑚𝑚 =
∑ ∑ �𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∙ 𝐵𝐵𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�𝑑𝑑𝑖𝑖

∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑑𝑑𝑖𝑖
 ∀𝑖𝑖,𝑚𝑚 (10) 
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4.3. Trade Flows 
Trade flows can be calculated when all the other values are given, including export demands, 
production costs, technical coefficients, and transport costs. Under an assumption of profit-
maximizing/cost-minimizing behavior, with unobserved heterogeneity in alternatives, 
consumers (both final and intermediate) will buy from the producer(s) that can supply the 
lowest total price (including transport costs) of any input. Unobserved heterogeneity 
introduces the random element, which, under an assumption of iid Gumbel distribution, leads 
to the multinomial logit model for origin and mode choices. Two kinds of trade flow are 
estimated in the current RUBMRIO model; these are the interzonal trade flows by modes, 
𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑, and the flows to export zones by modes, 𝑌𝑌𝑖𝑖𝑡𝑡𝑚𝑚𝑑𝑑, as shown here: 

  

𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 = 𝐶𝐶𝑖𝑖𝑚𝑚
exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�
∑ exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�𝑖𝑖

exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�
∑ exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�𝑑𝑑

 ∀𝑑𝑑, 𝑖𝑖,𝑚𝑚, 𝑑𝑑 (11) 

  

𝑌𝑌𝑖𝑖𝑡𝑡𝑚𝑚𝑑𝑑 = 𝑌𝑌𝑡𝑡𝑚𝑚
exp(𝑉𝑉𝑖𝑖𝑡𝑡𝑚𝑚)
∑ exp(𝑉𝑉𝑖𝑖𝑡𝑡𝑚𝑚)𝑖𝑖

exp�𝑉𝑉𝑖𝑖𝑡𝑡𝑚𝑚𝑑𝑑�
∑ exp�𝑉𝑉𝑖𝑖𝑡𝑡𝑚𝑚𝑑𝑑�𝑑𝑑

  ∀𝑑𝑑, 𝑡𝑡,𝑚𝑚, 𝑑𝑑 (12) 

where 𝐶𝐶𝑖𝑖𝑚𝑚 is the total volume of m consumed in zone j, which can be calculated based on 
equation (13): 

𝐶𝐶𝑖𝑖𝑚𝑚 = ��𝑟𝑟𝑖𝑖𝑚𝑚𝑛𝑛 ∙ 𝑥𝑥𝑖𝑖𝑛𝑛�
𝑛𝑛

 ∀𝑖𝑖,𝑚𝑚 (13) 

Here, 𝑟𝑟𝑖𝑖𝑚𝑚𝑛𝑛 is the technical coefficient matrix (following leakage considerations) for zone j, 
which defines the amount of commodity m required (from within the state) to produce one 
unit of commodity n in zone j. And 𝑥𝑥𝑖𝑖𝑚𝑚 is the total production of commodity n in zone i, 
which is the sum of the trade flows leaving zone i to meet the demands of other producers 
and export zones. 
  

𝑥𝑥𝑖𝑖𝑚𝑚 = ��𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑

𝑑𝑑𝑖𝑖

+ ��𝑌𝑌𝑖𝑖𝑡𝑡𝑚𝑚𝑑𝑑

𝑑𝑑𝑡𝑡

 ∀𝑑𝑑,𝑚𝑚 (14) 

Equations 6 through 14 constitute the majority of the RUBMRIO model; these equations are 
solved iteratively to achieve an equilibrium trade pattern. To resolve this set of equations 
(and achieve a convergent solution), the iterations begin by setting all prices to zero, solving 
for trade-flow probabilities, and generating an initial pattern of trade. This alters the price 
structure, and thus the trade pattern.  We continue updating prices and patterns until 
convergence. Zhao and Kockelman’s work (2002) describes this process. 

4.4. Solution Existence and Uniqueness 
This section presents the fixed-point RUBMRIO variant problem that incorporates the cost of 
modes in the average cost calculations for commodities, compared to the general form in Zhao 
and Kockelman (2004), which uses an average cost term as logsum. 

Define 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 as the probability that region j purchases input m from region i and 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 as the 
probability of choosing mode d given that region j purchases input m from region i: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 =
exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�
∑ exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�𝑖𝑖

(15) 
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𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 =
exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�

∑ exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�𝑑𝑑
(16) 

Then we can reformulate the average cost: 

𝑝𝑝𝑖𝑖𝑛𝑛 = �𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 ∙ 𝑐𝑐𝑖𝑖𝑚𝑚

𝑚𝑚

= �𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 ∙
∑ ∑ �𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∙ 𝐵𝐵𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�𝑑𝑑𝑖𝑖

∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑑𝑑𝑖𝑖𝑚𝑚

 

= �𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 ∙
∑ ∑ �𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∙ �𝑝𝑝𝑖𝑖𝑚𝑚 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑��𝑑𝑑𝑖𝑖

∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑑𝑑𝑖𝑖𝑚𝑚

 

= �𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 ∙
∑ ∑ �𝐶𝐶𝑖𝑖𝑚𝑚

exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�
∑ exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�𝑖𝑖

exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�
∑ exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�𝑑𝑑

∙ �𝑝𝑝𝑖𝑖𝑚𝑚 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑��𝑑𝑑𝑖𝑖

∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑑𝑑𝑖𝑖𝑚𝑚

 

 

= �𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 ∙
𝐶𝐶𝑖𝑖𝑚𝑚 ∑ ∑ �

exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�
∑ exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�𝑖𝑖

exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�
∑ exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�𝑑𝑑

∙ �𝑝𝑝𝑖𝑖𝑚𝑚 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑��𝑑𝑑𝑖𝑖

𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚

 

= �𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 ∙���
exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�
∑ exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�𝑖𝑖

exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�
∑ exp�𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�𝑑𝑑

∙ �𝑝𝑝𝑖𝑖𝑚𝑚 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑��
𝑑𝑑𝑖𝑖𝑚𝑚

 

= �𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 ∙���𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∙ �𝑝𝑝𝑖𝑖𝑚𝑚 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑��
𝑑𝑑𝑖𝑖𝑚𝑚

 

We then denote:  

�⃑�𝑝 = {𝑝𝑝𝑖𝑖𝑛𝑛} 

Therefore 

𝑓𝑓𝑖𝑖𝑛𝑛(�⃑�𝑝) =  �𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 ∙���𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚(�⃑�𝑝)𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∙ �𝑝𝑝𝑖𝑖𝑚𝑚 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑��
𝑑𝑑𝑖𝑖𝑚𝑚

= �𝑟𝑟0𝑖𝑖𝑚𝑚𝑛𝑛 ∙�𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚(�⃑�𝑝)
𝑖𝑖

∙
𝑚𝑚

�𝑝𝑝𝑖𝑖𝑚𝑚 + ��𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∙ 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�
𝑑𝑑

� 

Therefore, we have a fixed-point problem as follows:  

�⃑�𝑝 = 𝑓𝑓(�⃑�𝑝) (17) 
Compared to Zhao and Kockelman (2004), this fixed-point problem variant replaces the 
generic transportation price (regardless of modes) with the probability-weighted 
transportation cost for different modes. The proof of existence and uniqueness of the solution 
to this fixed-point model follows Zhao and Kockelman (2004): 
(1) Existence condition for the price solution 
First, we impose a rather weak condition on the feasible set to ensure the existence of a 
solution. Let 𝐾𝐾𝑝𝑝 = �𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛 |0 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛∗,∀𝑑𝑑, 𝑖𝑖,𝑛𝑛�, where �𝒑𝒑𝒊𝒊𝒊𝒊𝒏𝒏∗� are upper bounds that we 
assume can be determined a priori (in practice, one can usually choose very large numbers as 
upper bounds). Then 𝐾𝐾𝑝𝑝 is a bounded and closed convex subset (therefore, a compact set) on 
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the space 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀. We can easily observe that if the prices are bounded, the function 𝑓𝑓 also can 
be considered bounded, since it is a convex combination of prices (plus transportation costs) 
across space (i.e., ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 = 1,∀𝑚𝑚) and economic sectors (i.e., ∑ 𝑟𝑟𝑖𝑖𝑚𝑚𝑛𝑛𝑚𝑚 ≤ 1,∀𝑛𝑛, 𝑖𝑖). If one 
assumes that 𝑓𝑓’s upper bounds are also �𝒑𝒑𝒊𝒊𝒊𝒊𝒏𝒏∗�, one essentially assumes that the upper bounds 
are large enough to accommodate the transportation prices’ contributions to 𝑓𝑓. Then, 𝑓𝑓 is a 
mapping 𝐾𝐾𝑝𝑝 → 𝐾𝐾𝑝𝑝, and it is continuous. Following Brouwer’s theorem (see Khamsi and Kirk, 
2001), we then have the following condition: 
The fixed-point problem (17) provides at least one solution if and only if there exist positive 
constants �𝒑𝒑𝒊𝒊𝒊𝒊𝒏𝒏∗� such that the fixed-point problem (17) provides at least one feasible solution 
in the space 𝑲𝑲𝒃𝒃. 
(2) Uniqueness condition for the price solution 
Sufficient conditions for the uniqueness of the solution of a fixed-point problem are given by 
Banach’s theorem (see Border, 1985), which requires that the function be contractive over a 
complete set or the function be quasi-contractive (implying monotonicity) over a compact set.  
We consider that 𝐾𝐾𝑝𝑝 is in a normed space, due to the mean-value theorem (see Khamsi and 
Kirk, 2001), if �∇𝑓𝑓(�⃑�𝑝)� < 1; then the fixed-point problem has a unique solution, and the 
sequence �⃑�𝑝(𝑡𝑡+1) = 𝑓𝑓(�⃑�𝑝(𝑡𝑡)) converges on the unique solution 𝑝𝑝 = 𝑓𝑓(�⃑�𝑝), if �⃑�𝑝(𝑐𝑐) ∈ 𝐾𝐾𝑝𝑝. 

Now consider the general case of a dispersion parameter 𝜆𝜆𝑚𝑚 for the origin choice model: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 =
exp�𝜆𝜆𝑚𝑚𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�
∑ exp�𝜆𝜆𝑚𝑚𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚�𝑖𝑖

(18) 

Follow the same process in Zhao and Kockelman (2004), when the probabilities are 
determined by relative disutilities, which depend on prices: 

𝜕𝜕𝑓𝑓𝑖𝑖𝑛𝑛(�⃑�𝑝)
𝜕𝜕𝑝𝑝𝑖𝑖𝑚𝑚

=
𝜕𝜕

𝜕𝜕𝑝𝑝𝑖𝑖𝑚𝑚
��𝑟𝑟𝑖𝑖𝑚𝑚𝑛𝑛

𝑚𝑚

�𝑃𝑃𝑡𝑡𝑖𝑖𝑚𝑚(�⃑�𝑝)
𝑡𝑡

⋅ �𝑝𝑝𝑡𝑡𝑚𝑚 + 𝑝𝑝𝑡𝑡𝑚𝑚 + ��𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∙ 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�
𝑑𝑑

�� 

= 𝑟𝑟𝑖𝑖𝑚𝑚𝑛𝑛
𝜕𝜕

𝜕𝜕𝑝𝑝𝑖𝑖𝑚𝑚
��𝑃𝑃𝑡𝑡𝑖𝑖𝑚𝑚(�⃑�𝑝) ⋅ �𝑝𝑝𝑡𝑡𝑚𝑚 + ��𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∙ 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�

𝑑𝑑

�
𝑡𝑡

� 

= 𝑟𝑟𝑖𝑖𝑚𝑚𝑛𝑛 ⋅ 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 ⋅ �1 − 𝜆𝜆𝑚𝑚 ��𝑝𝑝𝑖𝑖𝑚𝑚 + ��𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∙ 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�
𝑑𝑑

� − 𝑐𝑐𝑖𝑖𝑚𝑚�� (19) 

Letting 𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑 = ∑ �𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑 ∙ 𝑏𝑏𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�𝑑𝑑 , equation (19) can be written as: 

𝜕𝜕𝑓𝑓𝑖𝑖𝑛𝑛(�⃑�𝑝)
𝜕𝜕𝑝𝑝𝑖𝑖𝑚𝑚

= 𝑟𝑟𝑖𝑖𝑚𝑚𝑛𝑛 ⋅ 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 ⋅ �1 − 𝜆𝜆𝑚𝑚�𝑝𝑝𝑖𝑖𝑚𝑚 + 𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑 − 𝑐𝑐𝑖𝑖𝑚𝑚�� 

which is the same equation as (3.14) in the Zhao and Kockelman (2004) paper. This proof 
then merges with the proof in Zhao and Kockelman (2004) (equation 3.14 forward) to show 
that �∇𝑓𝑓(�⃑�𝑝)� < 1, and we reach the following restrictive uniqueness condition for price 
solution: 
The fixed-point problem (17) results in at most one equilibrium price solution if the 
dispersion parameters {𝝀𝝀𝒎𝒎} are sufficiently small such that the inequality 𝜆𝜆𝑚𝑚 <
1/ 𝑚𝑚𝑟𝑟𝑥𝑥

1≤𝑖𝑖,𝑖𝑖≤𝑀𝑀
�𝑝𝑝𝑖𝑖𝑚𝑚 + 𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚 − 𝑐𝑐𝑖𝑖𝑚𝑚� ∀𝑚𝑚 holds.  

http://carbon.cudenver.edu/%7Ehgreenbe/glossary/N.html#Norm
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5. Scenario Experiment and Analysis 
The base case scenario of the model was set on year 2020, when only human-driven trucks 
(HTrucks) were available, while ATrucks are added as an additional mode nested within the 
truck mode. The base case scenario without ATrucks shows a total $1.06 trillion export 
demand and $11.1 trillion domestic demand, with trucks dominating the market, generally 
moving 95% of product value while rail moves the other 5%. When measured by transported 
ton-mile, trucks represent 91%, and rail represents 8%. Given that the model is primarily 
driven by export demand, this remains consistent in both the base case and the ATruck 
scenarios, with total domestic flow showing minimal differences across scenarios (less than a 
0.1% variation). With the ATruck option added in the model, the flow and ton-mile 
transported shifted among the shipping distances. As indicated in Table 5, a substantial 
increase in domestic flows is observed between 500 miles and 1,500 miles after the 
introduction of ATrucks, accompanied by a decline between 1,500 miles and 3,000 miles. 
Mid-long-distance origins become more favorable choices compared to super long-haul 
origins, attributed to the overall reduced shipping cost that compensates for the necessity of 
obtaining high-value goods from more distant locations. However, the trend is different for 
ton-miles. Transported domestic and export ton-miles increased for all distances, which 
indicates an overall trend of shipments from longer distance origins, due to the low cost and 
shortened shipment time that make it easy for goods to be transported from farther away.  
 
Table 5. Change in Flow ($) and Ton-miles after ATruck Introduction 

Distances 
(miles) <100 100-249 250-499 500-749 1000-

1499 
1500-
2000 

2000-
3000 3000+ 

Domestic 
flow ($) -0.1% 12.6% 11.8% 46.9% 54.4% -16.8% -53.2% 4.6% 

Export flow 
($) 8.2% 5.4% -16.6% 6.8% 12.5% 2.5% 5.6% 9.4% 

Domestic 
ton-miles 1.8% 12.7% 11.1% 66.6% 68.1% 38.2% 27.2% 6.6% 

Export ton-
miles 26.5% 15.0% 3.6% 30.5% 36.2% 23.6% 27.2% 27.0% 

 
Figure 3 shows the percentage change in truck (sum of ATruck and HTruck) and rail mode 
choice for domestic and export flow in ton-miles after the introduction of ATrucks. The 
implementation of ATrucks leads to an overall increase in domestic and export truck ton-
miles across all distances, with a notable surge observed in the 500 to 1,500-mile range. 
Export rail ton-miles experience a shift towards trucks, while domestic rail’s share increases, 
particularly for trips shorter than 1,500 miles. This outcome is a result of a combined 
modeling effect arising from the overall reduced shipping cost facilitated by ATrucks and the 
weighted shipping cost, prompting the selection of closer origins for high-value goods in both 
truck and rail scenarios. For export shipments, there is a decrease for rail across all distances, 
which shifted to ATrucks.  



 

15 

 
Figure 3. Change in Domestic and Export Ton-Miles by Mode after the Introduction of ATrucks  

The introduction of ATrucks brings the shift in mode share. Figure 4 shows the mode split (in 
terms of transported value) among HTrucks, ATrucks, and rail in the ATruck scenario (with 
60% of the operating cost of HTrucks). HTrucks’ mode share diminishes as the distance 
increases, while ATrucks’ share is fairly stable across all distances at about 50%. Rail’s mode 
share is minimal for shorter distances but rises to approximately 20% for trips longer than 
250 miles. 

 
Figure 4. Mode Share with Introduction of ATrucks 
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Figure 5. Change in Value and Ton-Miles Transported when ATrucks’ Overnight Time Savings and Cost 

Savings Are Taken into Account (Compared to Cost Savings Only) 

As mentioned, a major benefit of ATrucks is that, unlike HTrucks, whose drivers need to rest 
nightly, they can keep driving overnight. In the mode choice model estimates, an extra 14 
hours of non-driving time is assumed for every 10 hours of an HTruck’s on-road travel time. 
Figure 5 provides a comparison of two ATruck scenarios, one where ATrucks reduce cost by 
40% and also eliminate overnight resting time, and another where ATrucks only reduce the 
cost without realizing any time savings. Figure 5 demonstrates that if the travel time saved by 
ATrucks is taken into consideration, they attract up to 11% more value and 8% more ton-
miles. This increase diminishes as distances become longer, with ATrucks’ transported value 
experiencing a 6% rise for trips exceeding 1,500 miles. However, the most substantial 
increase in ton-miles occurs within the distance range of 500 to 750 miles, where time 
savings begin to manifest over a single night, and for distances exceeding 3,000 miles, where 
the cumulative time saved becomes significant, as these longer trips used to span multiple 
days. 
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Figure 6. Sensitivity Analysis on Domestic ATruck Flow to HTruck Flow Ratio by Distances  

Initially, the operating cost of ATrucks was assumed to be 60% of that of HTrucks. However, 
considering the potential need for more skilled operators and the higher initial training costs 
for operators to ensure safety benefits, a sensitivity analysis was performed to examine 
scenarios ranging from high initial costs for ATrucks until they become mature, fully 
functional, and widely applied. The relative cost of ATruck to HTruck was varied from 0.2 to 
1.4 in this analysis, demonstrating a range from an 80% reduction in operating cost to a 40% 
increase compared to HTrucks, with a step of a 20% increase. 
The ratio of value transported by ATruck to the value by Htruck is shown in Figure 6. At a 
distance of 100 miles, all scenarios show a value of about 0.95, primarily due to the setting in 
the utility function, where time and cost considerations are not significant for such short 
distances. As the origins become farther away, the time and cost benefits of ATrucks become 
more evident. For scenarios where ATrucks have the same operating cost as HTrucks (the 
line with round markers), the ratio increases with distance, reaching around 1 when the 
origins are 500 miles away or more. In cases where ATrucks have a lower cost, the ratio 
rises, favoring ATrucks up to a ratio of 2.5 (for shipping distances over 3,000 miles) when 
there is an 80% reduction in operating cost. Conversely, the ratio drops to 0.7 (for shipping 
distances over 3,000 miles) when the operating cost of ATruck is 40% higher than HTrucks. 
Figure 7 shows the ATruck to Htruck ratio by value and ton-miles, for domestic and export 
flow respectively. All trends decrease with the rise of ATruck’s operating cost. ATrucks have 
a higher ratio to HTrucks in terms of ton-miles, which also fall faster when operating cost 
increases. ATrucks transport three times the ton-miles of HTrucks when there is an 80% 
reduction of the operating cost, while they still transport double the HTruck ton-miles when 
they have 40% more cost. This is attributed to the time savings that ATrucks can provide, 
enabling faster transportation of goods to more distant customers. 
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Figure 7. Sensitivity Analysis on Share of ATrucks (vs. HTrucks) by ATruck’s Operating Cost 

6. Conclusion 
This paper anticipates the US trade flow before and after the introduction of automated 
trucks, leveraging the RUBMRIO model with estimated origin and mode choice parameters 
from FAF5 data. Automated trucks’ per-mile operating cost is assumed as 60% of the cost of 
human-driven trucks, due to the elimination of drivers’ wages, and the former are also 
assumed to save 14 hours by not stopping overnight. A sensitivity analysis was also 
conducted to see how varying ATrucks’ cost savings can impact nationwide trade flows.  
Model results show that ATrucks bring an overall increase in domestic and export truck ton-
miles across all distances, especially in the 500 to 1,500-mile range. In terms of the value 
transported, a substantial increase in domestic flows is observed between 500 miles and 1,500 
miles after the introduction of ATrucks, accompanied by a decline between 1,500 miles and 
3,000 miles. The change in value and ton-miles show that time and cost savings from the use 
of ATrucks not only accommodate the need to acquire high-value goods from more closer 
locations but also facilitates the transportation of goods with the same value from farther 
away. 
Compared to just cost savings, travel time saved by ATrucks can attract up to 11% more 
value and 8% more ton-miles. In terms of mode share between HTrucks and ATrucks, 
HTrucks have a slightly higher mode share in transported value for short-distance 
transportation. However, ATrucks are the preferred mode for origin-destination pairs 
separated by more than 250 miles. ATrucks transport three times the ton-miles of HTrucks 
when there is an 80% reduction of the operating cost, while they still transport double the 
HTruck ton-miles when they have 40% more cost. 
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Future work on freight predictions that account for ATrucks would extract the origin and 
destination information of different states to explore more detailed local domestic and export 
patterns. A sensitivity analysis that looks at ATrucks manned by attendants across a range of 
pay and job duty ranges can be conducted to see how the varying operating costs of ATrucks 
impacts mode choice.  
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