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ABSTRACT  

This study introduces system dynamics (SD) modeling as a tool for transportation system design. It is 

used here to size a fleet of shared autonomous vehicles (SAVs) in concert with an agent-based model 

(ABM) of travel demand, recognizing wait times and within-day demand dynamics across the Austin, 

Texas region. This approach balances profitability for a business alongside customer service levels. Here, 

SD’s inclusion improves fleet operations and vehicle use while moderating user delays, suggesting that 

SD-based fleet sizing is one way to design for realistically complex conditions with current and future 

mobility systems.  
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1. QUESTIONS  

Agent-based modeling (ABM) of travel demand across metro regions with dynamic traffic assignment 

(DTA), as in POLARIS (Auld and Mohammadian, 2009; Auld et al. 2016), MATSim (Balmer et al., 

2009; Zhuge et al., 2021) and TRANSIMS (Jeihani et al. 2006), requires a highly complex and variable 

system of equations. Any market with a large number of customers, like transit buses or airport operations 

(Peng et al., 2021), international trade and supply chains (Rathore, Thakkar, and Jha, 2021), vehicle 

manufacture and factory staffing (Song et al., 2020), energy sourcing and power delivery (Akbari, 

Mahpour, and Ahadi, 2020), or housing development, can be viewed this with agent-based modeling. SD 

modeling can reflect complex feedback loops that exist between supply and demand systems, affecting 
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costs and service quality (Sun et al., 2023). In a transportation context, key system performance metrics 

include cost per passenger or ton-mile, delay, empty vehicle-miles traveled (eVMT), noise, and 

emissions, while destination, mode and departure-time (and even party-size) choices vary (Karamanis et 

al., 2020; Monteiro et al., 2021; Dean et al., 2023).  

Given the numerous decision variables that fleet service suppliers must provide, most studies and 

simulations of realistic market settings assume a single fleet size (Dean et al., 2022; Kavianipour et al., 

2024) or perform very limited sensitivity testing of that key design variable to improve service 

performance (Seppecher and Leclercq, 2024). We are not aware of any studies of realistic regions using 

both ABM and DTA that endogenize fleet size, leading to the following research questions:  

1. Can one use an SD model for SAV fleet sizing in a realistic urban system? 

2. How do different SAV fleet sizes affect traveler wait times, fleet revenue, and other key metrics?  

2. METHODS 

Developing an SD model to emulate complex system behaviors (including iterative feedback) requires 

defining a causal (multi-) loop diagram (CLD) and its many underlying equations. The CLD illustrates 

dynamic interactions between various factors (demand, supply, travel cost, time, and other variables). 

Figure 1 shows the mobility service model used here for sizing an SAV fleet, with magenta contents 

indicating improvements to Smith’s (2023) AV-fleet model, red arrows representing balancing (negative) 

feedback, and blue arrows for reinforcing (positive) feedbacks. Variables inside rectangles denote stocks 

or accumulations, such as SAV fleet size and mode share. Other variables, like fares and area size, are 

exogenous (in green) or auxiliary (in black–like SAV fleet revenues and SAV density).  

 



Figure 1. Causal Loop Diagram (CLD) for Shared-Fleet Sizing System (pivoting off of Smith et al.’s 

(2023) fleet-size model) 

This model has three major subsystems: the business model, service performance, and user response. 

Fleet size, a key business model output, adjusts based on monthly revenue and vehicle use fraction. When 

revenue is positive and fleet use exceeds the target, additional vehicle needs are estimated by Eq. 1., 

bringing costs that influence profit through balancing loops.  

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 =  𝐹𝑙𝑒𝑒𝑡 𝑠𝑖𝑧𝑒 ×  𝑚𝑎𝑥 (0, 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑢𝑠𝑒 –  𝑡𝑎𝑟𝑔𝑒𝑡 𝑢𝑠𝑒)                                    𝐸𝑞. 1 

Fleet size affects both vehicle density and use fraction, which are important causal inputs for estimating 

average traveler wait time. Based on queuing theory, wait time for an available vehicle is proportional to 
1

1−𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑢𝑠𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛
. Wait time, along with fare, impacts SAV utility and mode share components 

through balancing loops, iteratively aligning SAV trips served with fleet size and mode share.  

POLARIS, an agent-based modeling tool developed for simulating large-scale transportation networks 

(Auld et al., 2016), is used to simulate both individuals and SAVs within the 6-county Austin region 

(containing 5300 square miles and 1.8 million residents in 2018) to run in sync with the SD model. By 

dynamically loading demand on the transportation network, enabling dynamic ridesharing, tracking 

individual agents and vehicle trajectories at the link level, and post-processing the simulation outputs, 

POLARIS reveals how ride-hailing fleet assumptions impact fleet performance and network operations. 

Table 1 outlines key assumptions for SAV fleet operations, allowing the SD model to focus on the fleet 

size variable and POLARIS focus on fleet performance examination.  

 

 

Table 1. SAV Fleet Key Parameter Assumptions 

Model Parameter Description Assumption 

P
O

L
A

R
IS

 

Initial fleet size Initial SAV fleet size 15,000 SAVs 

SAV max wait time Maximum wait time before a new ride request 10 minutes 

SAV fixed cost Cost for owning an SAV $40/day 

SAV operating cost  Cost associated with running SAV fleet $0.6/mile 

SAV base fare Fixed pickup fee for each SAV trip $1 pickup fee 

SAV fare per mile  SAV trip fare by cost per mile $1.05/mile 

SAV ride-share fare per mile  SAV trip fare by cost per mile with ride-sharing $1.5/mile 

SAV fare per minute SAV trip fare by cost per minute $0.25/minute 

SAV ride-share fare per 

minute  
SAV trip fare by cost per minute with ride-

sharing 
$0.175/minute 

S
D

 m
o
d
el

 

SAV starting mode share Initial SAV mode share 6.54% SAV mode 

Initial # of residents per SAV Inverse of SAV fleet size per resident 125 persons/SAV 

Maximum induced trip factor 

Multiplier applied to total trips to estimate 

additional trips triggered by an attractive mode in 

terms of price or wait time 

0.2 

Empty-distance multiplier 
Multiplier in eVMT equations to reflect 
inefficiency 

0.5 

 

Figure 2 shows how the SD model ties to POLARIS to improve SAV fleet efficiency and performance 

through an iterative process. In each iteration, POLARIS variables (like fleet size and person-trip records 



by mode) are processed as key inputs for the SD model. The SD model then runs thousands of iterations 

to determine a stable fleet size (within 1% fluctuation), which is input to POLARIS for the next iteration. 

Simulations were conducted on a 13th Gen Intel ® Core ™ i9-13900 with 128 GB RAM. The SD model 

normally completes 5000 iterations in 30 seconds, while a single POLARIS simulation for 100% 

synthetic population takes 4.5 hours.  

 

Figure 2. Integrated POLARIS + SD Framework 

3. FINDINGS 

Figure 3 illustrates changes in the metro area’s SAV fleet size and SAV use fraction over 5,000 iterations 

in the SD model (before feedback into POLARIS). Starting with 15,000 SAVs, the SD model ultimately 

stabilizes at a recommended fleet size of 5,654 SAVs (for 1.8M travelers), considering cost, fleet 

performance, and supply-demand feedback. The fleet-use fraction rises from 0.28 to 0.90, reflecting 

improved efficiency as the system converges. Table 2 summarizes POLARIS-simulated fleet performance 

metrics using an exogenous fleet size in the initial POLARIS iteration versus the SD model-derived 

endogenous fleet size approach in the subsequent iteration.  
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Figure 3. Fleet Size and Fleet Vehicle Utilization over SD Model Iterations  

Table 2. POLARIS Simulated SAV Fleet Performance 

Parameters Fixed fleet size (exogenous) 
SD model-driven fleet size 

(endogenous) 

Fleet size 15,000 vehicles 6,875 vehicles 

Served demand 418,767 trips 197,259 trips 

SAV VMT on simulated day 2,840,893 miles 1,352,599 miles 

SAV loaded VMT  2,129,910 miles 1,010,512 miles 

Avg daily VMT per SAV 189.4 mi/day/SAV 198.4 mi/day/SAV 

Avg daily pickups per SAV 29.0 pickups/day/SAV 30.7 pickups/day/SAV 

SAV Fleet eVMT% 25% empty VMT 25% empty VMT 

Avg. wait time for traveler 9.9 minutes 9.5 minutes 

Median wait time for traveler 6.5 minutes 6.6 minutes 

Avg. SAV trip fare $8.5/trip $8.6/trip 

Avg. repositioning distance per 

SAV trip 
3.5 miles 3.5 miles 

Avg. vehicle occupancy (AVO) 

per revenue-mile 
1.8 1.8 

SAV fleet cost ($) $2,304,536/day $1,108,884/day 

SAV fleet income ($) $3,576,582/day $1,724,214/day 

Daily profit per SAV ($/SAV/day) $84.8/SAV/day $89.5/SAV/day 

The SD-driven fleet size model achieves a better balance between operational costs and demand. Average 

daily VMT per SAV is higher under the endogenous fleet model (198.4 miles vs 189.4 miles). There is 

also a rise in average daily travel-party pickups per SAV, showing 30.7 vs 29.0 party-trips served per day 

per SAV. This highlights the SD model’s ability to intensify SAV fleet use, benefiting sustainable 

businesses amid fluctuating demand.  

While maintaining a similar service level, as indicated by median traveler total wait time (6.6 minutes vs 

6.5 minutes), the SD model reduces TNC operating cost by 52%. Net profit per SAV rises to $89.50, 

compared to $84.80, in the exogenous fleet scenario. These findings highlight the SD model’s capability 

to efficiently scale fleet size in response to dynamic demand, making it a promising approach for 

simulating future complex mobility systems and supporting sustainable business operations.  

While the SD model effectively balances supply and demand and enhances resource use, notable 

limitations are its reliance on aggregated (average) inputs and a reduced ability to track agent-level data. 

Future research could bridge these gaps by incorporating finer simulation scales and enhancing 

optimization settings.  
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