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ABSTRACT  

Ride-hailing providers like Uber, Lyft, and Didi compete daily in global markets, yet existing 

research has largely overlooked the dynamic interdependence between fares and demand across 

time, location, and service providers. This study addresses that gap by jointly estimating the 

simultaneous relationship between demand and per-mile fares for Uber and Lyft in New York City 

(NYC). A system of simultaneous equations is solved using instrumental variables that account for 

cross-equation correlation and endogeneity. The analysis leverages operator-specific fare data and 

served-trip demand every 10 minutes over a 15-day period across NYC’s 260 taxi zones. Weather 

variables (precipitation, temperature, wind speed) are used as instrumental variables to identify 

exogenous shifts in demand. A multiway-clustered variance estimator reflects heteroskedasticity 

plus correlations across time and space, and multiway block bootstrapping captures cross-cluster 

correlations. Model estimates suggest that a one-standard-deviation (1 SD) rise in Uber’s and 

Lyft’s fares will lower their respective demands by 27% and 89%, a 1 SD rise in precipitation 

lowers demand by 17%, and a 1 SD rise in temperature and wind speed raises demand by 4.4% 

and 3.7%, respectively. The cross-equation effects suggest that a 1 SD rise in demand results in a 

9% rise in Uber’s per-mile fares but just 2.2% in Lyft’s fares, suggesting far more surge protection 

under Lyft’s pricing plans.   

Keywords: ride-hailing services, market competition, supply and demand, TNCs, demand 

prediction, pricing strategies.  
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BACKGROUND  

On-demand ride-hailing services are transforming urban travel patterns by facilitating efficient 

matching between drivers and passengers through smartphone apps (Wang et al., 2016; Chen et 

al., 2020; Ke et al., 2020; Zhou et al., 2022a and Zhou et al., 2022b). These apps collect real-time 

data from passengers and drivers, giving them control over short-term supply and demand. On the 

demand side, surge pricing, which varies based on time and location, influences passengers' choice 

of provider (e.g., Uber or Waymo rather than Lyft). On the supply side, providers adjust surge 

pricing and vehicle dispatching strategies to manage the availability of vehicles throughout the day 

(Chen et al., 2020). Ride-hailing apps are popular not just because of their convenience and 

technology but also due to their pricing strategies. To draw in more users, many of these apps give 

subsidies to both passengers and drivers (Wang et. al., 2016). It is also common for these operators 

to strategize their fares and services to capture a larger market share while competing in local 

markets. For instance, Didi and Uber China were in a price war until 2016, but by November 2023, 

Uber regained a portion of its lost market share, stabilizing competitive dynamics between the two 

companies. Didi also faces competition from Chinese rivals, like Shouqi, Meituan, and Shenzhou 

(Zhou et al., 2022a). Currently, Uber and Lyft compete in the U.S., while Grab and Gojek compete 

in Southeast Asia, Ola and Uber in India, Bolt and Uber in Europe, and Careem and Uber in the 

Middle East (Wang and Yang, 2019).   

Most existing ride-hailing companies provide customers with choices between standard-sized 

economy vehicles (e.g., UberX and Lyft Line), premium vehicles (e.g., Lyft Lux and Uber Black), 

and extra seating options (e.g., UberXL and Lyft XL). However, many studies in the past (e.g., 

Paronda et al., 2016; Huang et al., 2023) have overlooked service type distinctions when modeling 

competition among ride-hailing operators. For instance, Paronda et al. (2016) analyzed Uber, 

conventional taxis, and GrabCar in the Philippines, finding that Uber's service was 75% faster than 

its competitors and 35% and 28% cheaper than GrabCar and taxis, respectively. Their findings also 

revealed that GrabCar was the most reliable for vehicle availability, while Uber received the 

highest service-quality ratings. But they did not consider the role of drivers as a third party in the 

competition and did not differentiate between the various ride options offered within each operator.   

Some of these limitations were later addressed by Huang et al. (2023), who analyzed 

spatiotemporal variations in ride-hailing fares and driver behavior characteristics to assess the 

social welfare of passengers and drivers. They also evaluated market share and competition 

intensity to capture the competitive dynamics among four operators in New York City (NYC): 

Uber, Lyft, Juno, and Via. The results showed that competition was most intense during weekday 

morning rush hours (6 to 8 a.m.), significantly higher than on weekends. This study highlighted 

that greater competition intensity lowers passenger costs and raises driver income, although 

excessive competition reduces the profitability of ride-hailing operators. Similarly, Meskar et al. 

(2023) investigated spatiotemporal pricing, driver compensation, and matching rates on a dynamic 

fleet-based ride-hailing operator aimed at maximizing profits. Their study considered drivers' 

possibility to accept or decline ride requests and showed that networks with balanced demand 

patterns were the most profitable. They concluded that the more balanced the demand across the 

network, the higher the potential profit for the operator. But neither of these studies allowed for 

feedbacks between provider fares and (instantaneous) service demands.  
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A few studies have emphasized the effects of pricing dynamics on operator revenue in a 

competitive market (Chen et al., 2023; Huang 2023). Rather than directly using the intractable 

stochastic dynamic program to balance spatial–temporal mismatches between passenger demand 

and driver supply, Chen et al., 2023 proposed a deterministic convex program (DCP) that captures 

the trade-off between pricing revenue and vehicle availability across regions and time. Findings 

show that dynamic pricing adjusts to local shortages/surpluses when tested on NYC market and 

yielded 5–6% higher revenue and serves 3–4% more passengers versus a best‐available static 

schedule. Huang (2023) focused more on fare strategy modelling using machine learning methods.  

He predicted NYC taxi fares using trip distance (computed via the Haversine formula) and 

passenger count, comparing linear regression, decision tree, and random forest models. As 

expected, all three achieve reasonably low error; the two tree‐based methods gives more accurate 

results than ordinary least squares. The linear regression model yields an RMSE of 1.718, decision 

tree cuts that error by roughly 26% down to 1.277, and the random forest improves accuracy further 

with an RMSE of 1.264—an additional 1% improvement over the decision tree alone.  

Fare-setting strategies under competition are not limited to ride-hailing markets. Airlines adjust 

fares to capture the market and optimize profits across millions of OD pairs and departure times. 

Paithankar et al. (2024) analyzed seasonality, cabin type, and other features affecting US-carrier 

airline fares using feasible generalized least square regression. They found that international trips 

from the U.S. between October and December are more expensive than those in June, and 

businessclass tickets cost nearly five times more expensive than economy-class tickets. While 

these studies shed light on pricing strategies, they fail to account for simultaneity between fares 

and demand levels, by day of year, departure time, and OD pair. In reality, fare adjustments 

influence demand, and demand fluctuations, in turn, affect fares, creating an endogeneity issue that 

requires a more robust estimation to capture these interdependencies effectively.   

This simultaneity issue has been partially addressed by Parvez et al. (2023), who analyzed both the 

continuous decision of trip fare and the discrete destination choice of TNC users. They modeled 

fare with a linear regression (LR) whose right-hand side includes trip attributes (distance, 

peakperiod indicators, shared‐ride flag), origin and destination activity measures (recent demand, 

distance to CBD), built-environment and weather covariates, plus a term for unobserved factors 

shared with destination choice. Destination choice is predicted by a multinomial logit (MNL) over 

30 census‐tract alternatives, with utilities that depend on origin–destination distance, land-use mix, 

infrastructure (bus stops, bike lanes, transit score), demographics, and the same latent factor in the 

LR. Their results show that the joint LR-MNL model outperforms separate fare and destination 

models: the joint system achieves a higher log-likelihood (LL = 222,717.00 vs. 222,857.92 for the 

independent models) and a lower Bayesian information criterion (BIC = 45,793.20 vs. 46,075.04). 

In the fare equation, trip distance is the strongest positive driver of cost, peak-period trips carry a 

significant surcharge, shared trips command lower fares, and both built-environment (e.g., distance 

from CBD, nearby transit stations) and weather (snow depth) show measurable influence on fares. 

In the destination choice model, longer OD distances and residential or institutional land uses 

suppress choice probability, while commercial/recreational areas, higher transit and walk scores, 

and street density attract more trips. All else equal, rides that begin farther from the central business 

district had higher fares, presumably due to drivers covering longer distances empty (“dead 

heading”) to pick up riders located far from other trip-makers, resulting in more empty miles (as 

discussed in Gurumurthy et al., 2021, for example).   
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Related to this, Özkan (2020) derived structural insights into when simple “charge-everyone-

thesame” fares and “serve-only-local” matches suffice, and when operators must instead tailor 

prices by origin and allow cross-zone matching to beat one-size-fits-all policies by embedding both 

pricing and matching decisions into one optimization, subject only to supply-demand flow 

conservation and the requirement that drivers earn the same per-unit-time revenue wherever they 

sit. He showed that, under realistic heterogeneity in willingness to pay, the joint “origin-based 

pricing + cross-matching” scheme can raise total match rates by up to 60% over price-only or 

match-only baselines—even when accounting for dead-heading costs—whereas in the special case 

of uniform valuations simple constant fares and local matching are already optimal.   

Unlike Özkan (2020), Dey et al. (2021) did a data‐driven, city‐wide analysis of NYC’s taxi market 

by jointly modeling two linked phenomena: the total number of monthly trips originating (from 

January 2015 to December 2018) in each of the city’s 259 taxi zones, and the proportion of those 

trips served by Yellow taxis, Green taxis, or TNCs (Uber/Lyft/Juno/Via). They fit a joint 

econometric system made up of a negative‐binomial count model for total trips and a multinomial 

fractional‐split model for service shares, linked through shared latent‐factor terms and estimated 

via simulated maximum likelihood using scrambled Halton sequences. Their results reveal that 

ride-hailing demand more than doubled over the study period—TNCs grew from 13% to 70% of 

all dispatches by late 2018—while traditional taxi volumes fell sharply. In the demand model, 

zones with higher job density, more zero-car households, and greater transit access saw the largest 

increases in trip counts, whereas snow depth and dense bike-lane networks depressed ride-hailing 

use. In the share model, higher population and median-income areas tended to favor yellow taxis, 

while zones farther from airports and with lower transit access shifted toward TNCs; zero-car 

households also raised both Green-taxi and TNC shares. A positive correlation term confirms that 

unobserved factors boosting the Yellow-taxi share also tend to boost the TNC share.  

Although most prior studies overlook distinctions by vehicle type, a few have examined 

servicespecific attributes and pricing. Schwieterman (2019) conducts a paired-trip analysis of Lyft, 

Lyft Line, UberX, UberPool, and Chicago Transit Authority (CTA) services in Chicago and finds 

that ride-hailing fares cost between $42 and $108 per hour of travel-time saved—far above the 

$14.95 per hour value of time for personal travel recommended by the U.S. DOT (UDOT 2016, in 

2018 dollars). Nevertheless, for business travelers—who the same guidance values at $28.85 per 

hour— and for trips between neighborhoods poorly served by transit, ride-hailing often remains a 

costeffective alternative. Meanwhile, Chao (2019) took a more focused approach and analyzed 

UberX’s surge pricing, which adjusts fares in real-time based on demand, supply, and other 

external conditions. He used real-time operational data from Uber's APIs for ten different 

origindestination pairs, and controlled for weather (thunderstorms, squalls, mist/clouds), time of 

day, and day of the week. However, Schweiterman (2019) and Chao (2019) did not control for or 

discuss competition between providers. This gap is important to address, since competition can 

dramatically affect total demand, mode splits, provider profits, and traveler welfare. Demand 

fluctuates across time and space, as a function of trip type, land uses, traveler wealth, impatience, 

and so on. For example, passengers from higher-income residential areas are more willing to pay 

for shorter wait times and more luxurious vehicles. As a result, competition may vary greatly across 

different parts of a city and region, depending on the availability and popularity of ridehailing 

services by neighborhood and time of year.   
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Several studies highlight demographic and built environment impacts on taxi demand (and, to some 

extent, supply). McNally and Rafiq (2021) identified population and employment as key factors, 

while Qian and Ukkusuri (2015) linked lower income neighborhoods to fewer NYC taxi trips. Yu 

& Peng (2019) emphasized the effects of the built environment on ride-sourcing. Spatial 

imbalances dominate taxi demand, with 90% of trips concentrated in Manhattan (Qian and 

Ukkusuri, 2015), district-level disparities in Munich (Jager et al., 2016), and local imbalances in  

Shanghai (Liu et al., 2012). Geographically Weighted Regression (GWR) models (Chen et al., 

2021; Li et al., 2019) address spatial heterogeneity; however, spatial spillover effects, or 

interactions between neighboring areas, remain underexplored. While studies including Correa et 

al. (2017), Pan et al. (2019), and Lavieri et al. (2018) employed spatial error/lag models or 

multivariate count models, none fully address spatial autocorrelation in explanatory variables or 

quantify spillover effects. Temporally, demand fluctuates daily (Zhu and Mo, 2022; Liu et al., 

2015) and weekly (Zhao et al., 2016), with time series (Moreira-Matias et al., 2013) and machine 

learning (Zhou et al., 2019a) aiding prediction. This study bridges existing gaps by jointly 

estimating ride-hailing demand and corresponding fares while accounting for spatial and temporal 

spillover effects.  

This gap is important to address for dense urban areas like NYC, where competition among 

ridehailing operators is influenced not only by spatiotemporal variations but also by regulatory 

policies and consumer preferences. In January 2025, the New York State government started a 

$1.50 congestion charge to be added to Uber and Lyft fares for trips entering Manhattan south of 

East 60th Street, which is passed on to riders (Congestion Pricing Program 2024). This charge is 

in addition to the existing For-Hire Vehicle Congestion Surcharge of $2.75, which applies to all 

ridehailing trips that both begin and end in New York State and either begin, end, or pass-through 

Manhattan south of, but not including, 96th Street (Congestion Surcharge, 2024). These fare 

updates have influenced the demand for Manhattan ride-hailed trips, and probably also their fares, 

as consumers may shift among service options available to reduce costs or avoid premium services. 

This dynamic disequilibrium affects the competitiveness and pricing strategies of ride-hailing 

providers, and this study examines the interdependence between fare and demand across NYC 

operators.   

This study extends previous research (Zheng et al., 2022; Zhu et al., 2022) by modeling 

competitive fare interactions between two dominant ride-hailing operators while incorporating 

spatiotemporal spillover effects that influence pricing strategies across urban regions and 

endogeneity between fare and demand. It advances the understanding of fare and demand variation 

among ride-hailing operators using a three-stage least square (IV3SLS) estimation approach to 

analyze Uber and Lyft trips in NYC. It sheds light on how fare strategies diverge across operators, 

neighborhoods, and times of day by integrating trip data with demographic, weather, and built 

environment variables. The following section outlines the datasets used in this study, followed by 

a description of the methodology employed. The last two sections present model estimates, and a 

summary of findings.  

DATA DESCRIPTION  

This paper leverages detailed ride-hailing trip data from NYC (TLC Trip Record Data, 2023) 

across all five boroughs (Bronx, Brooklyn, Manhattan, Queens, and Staten Island) and Newark 

Airport. The full dataset includes trip records from medallion-regulated yellow and green taxis 
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alongside app-based for-hire services; however, our analysis is confined to the Uber and Lyft 

subsets, comprising approximately 9.8 million rides between September 15 and September 30, 

2024. These trips represent roughly 65–70% of the total for-hire vehicle market in New York City 

(NYC TLC, 2024). The variations of 2024 ride-hailing volumes over a year reveal a gradual 

upward trend in average daily trips for Uber and Lyft, rising from about 630,000 in January 2024 

to approximately 680,000 in December 2024. Seasonal demand intensifies during the October– 

December window, likely driven by holiday travel and year-end social activity. The highest daily 

average observed since January 2021 occurred in March 2024, peaking near 690,000 trips per day. 

September was selected as a reference period because it reflects normative urban mobility 

conditions—schools are fully in session, workplaces operate at normal capacity, COVID-19 

impacts have significantly diminished, and extreme weather conditions are generally absent.   

TLC Trip Record Data show pickup (trip start) and end times (to the second), origins and 

destinations (to the level of 260 taxi zones), network distance traveled per trip (in tenths of miles), 

whether the ride was requested as a shared ride, and whether a match was made. It includes details 

on the base fare and any additional fees, such as, tolls, surcharges, and airport fees. These zones 

collectively span over 306 square miles, covering the primary regions Uber and Lyft serve. Queens 

is the largest borough, covering approximately 112 square miles, followed by Brooklyn (68.1 sq 

mi), Staten Island (58.2 sq mi), and the Bronx (42.6 sq mi). Manhattan covers 22.7 square miles, 

reflecting its dense urban environment and high trip demand. The dataset also includes the EWR 

zone (Newark Airport) as a destination but not as an origin, just 2.84 square miles, capturing 

intercity trips and airport-related travel. Zone sizes vary considerably, with Queens having the 

largest average size (1.62 sq mi per zone) and Manhattan having the smallest (0.33 sq mi per zone).  

Manhattan dominates ride hailing demand (and supply), with 40.8% of all pickups and 37% of all 

drop-offs, reflecting its very high population and jobs densities  and major tourist attractions (e.g., 

Broadway Theater district, Central Park, Museum of Modern Art, Brooklyn Heights and  Prospect 

Park West ). Brooklyn follows with 25.6% of pickups and 25.5% of drop-offs and Queens accounts 

for 20.6% of pickups and 20.3% of drop-offs, which aligns with its residential nature and proximity 

to major airports (JFK and LaGuardia airport). The Bronx contributes 11.5% of pickups and 10.9% 

of drop-offs, and Staten Island has just 1.40% of pickups and 1.38% of drop-offs, thanks to much 

lower densities, high parking supply, and heavy reliance on personal vehicles. While the Newark 

Airport contributes nearly zero pickups (0.00001%), it accounts for 0.70% of drop-offs. The 

remaining 4% of drop-offs show as "unknown" zone, suggesting that those originated outside 

NYC’s mapped taxi zones (e.g., long-distance trips from New Jersey, Connecticut, and upstate 

New York).   

Table 1 provides summary statistics of all variables available in this dataset. Uber dominates 

NYC’s ride-hailing market, with approximately 72% of all trips analyzed (compared to Lyft's 

28%). The ride-sharing requests are relatively low, with only about 3.07% of all trips involving 

riders requesting this service and an even smaller fraction (0.99%) resulting in a matched ride. 

Approximately 41% of trips incurred a congestion surcharge ($2.75 per trip), indicating that these 

rides began and ended in New York State and either originated, concluded, or passed through 

Manhattan south of 96th Street, while 24% of trips either originated, concluded, or passed through 

new congestion zone, which extends from 60th Street down to Battery Park and will now pay 

additional $1.5 per trip as per NYC's congestion pricing program launched on January 5, 2025 
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(NYC TLC, 2024). In addition to these congestion fees, riders are subject to a $2.50 Airport Fee 

for airport-related trips, an 8.875% sales tax, and a 2.75% Black Car fund fee, which contributes 

to driver benefits and safety programs (Lyft Blog, 2025).   

TABLE 1 Summary Statistics of NYC’s Uber + Lyft Trips from September 15 to 30, 2025 

(n = 9,875,667 ride-hailed trips)  

Variable Name  Mean  
Std. 

Dev  
Min  

Median 

(50%)  
Max  

Trip Distance (miles)  2.87 mi  5.93  0.00  2.21  10.9  

Trip Duration (minutes)  18.4 min  10.98  0.00  15.8  52.1  

Passenger Wait Time per Trip (min)  4.66 min  2.24  0.00  4.25  11.3  

Fare Paid per Trip ($)  $16.19  7.32  0.00  14.5  43.6  

Fare per mile-Uber ($ per mile)  $6.35  2.60  0.03  6.10  15.6  

Fare per mile- Lyft ($ per mile)  $8.07  3.03  0.01  6.50  15.6  

Tolls Paid per Trip ($)  $0.72  2.65  0.00  0.00  66.6  

Black Car Fund per Trip ($)  $0.46  0.22  0.00  0.42  1.16  

Sales per Tax per Trip ($)  $1.43  0.65  0.00  1.28  3.43  

Congestion Surcharge per Trip ($)  $0.93  1.30  0.00  0.00  5.50  

Airport Fee per Trip ($)  $0.19  0.67  0.00  0.00  7.50  

Tips Paid per Trip ($)  $1.01  2.72  0.00  0.00  100  

Driver's Pay per Trip ($)  $13.7  6.18  0.00  11.3  30.9  

Monday Trips (Indicator)  0.12  0.32  0.00  00.0  1.00  

Tuesday Trips (Indicator)  0.12  0.32  0  0  1.00  

Wednesday Trips (Indicator)  0.12  0.33  0  0  1.00  

Thursday Trips (Indicator)  0.13  0.34  0  0  1.00  

Friday Trips (Indicator)  0.21  0.41  0  0  1.00  

Saturday Trips (Indicator)  0.17  0.37  0  0  1.00  

Sunday Trips (Indicator)  0.14  0.34  0  0  1.00  

The spatial distribution of ride pickups and drop-offs across various taxi zones (Figure 1) reveals 

distinct patterns of ride-hailing activity across NYC. Figure 1a shows a higher average number of 

daily pickups, with Central and Lower Manhattan experiencing the most activity. Areas in 

Brooklyn and Queens, particularly those near major transportation hubs or densely populated 

neighborhoods, also show higher pickup activity, although to a lesser extent than central 

Manhattan. The distribution of drop-off activity, as shown in Figure 1b, closely mirrors the pickup 

patterns, with central and lower Manhattan emerging as the primary hotspots, indicating Manhattan 

as a key destination for work, entertainment, and tourism. The major airports, such as, John F. 

Kennedy International Airport (JFK), experienced a high volume of pickups and drop-offs, while 

the Bronx and Staten Island showed significantly lower demand. Figure 2 shows distinct contrasts 

in the weekday and weekend pickup patterns in NYC. On weekdays (Monday to Thursday), there 
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are two pronounced peaks: one during the morning rush hour (7 am to 9 am) and another during 

the evening rush hour (4 pm to 8 pm).   

These peaks correspond to the commuting patterns of individuals traveling to and from work or 

school, indicating that ride-hailing services are heavily used for daily commuting during these 

times. On Fridays, evening pickup activity remains elevated well beyond traditional commuting 

hours, extending into the late-night period as people transition from work-related travel to social 

and entertainment-related trips. The sharp increase in pickups on Friday mornings suggests a 

potential spillover effect from late Thursday night activities, leading to sustained demand in the 

early hours of Friday. Saturdays experience the highest ride-hailing demand during the late evening 

and night, peaking between 9 pm and 2 am, a trend likely driven by nightlife and leisure activities. 

Unlike weekdays, weekend mornings typically see lower pickup counts, especially between 5 am 

and 9 am. This difference suggests that while weekdays are characterized by structured, commute-

based travel, weekends see more varied and socially driven ride-hailing usage. Newark Airport, 

located in New Jersey, is not part of NYC, so very few pickup rides are recorded from that zone, 

as shown in Figure 1a. However, many trips originating in NYC end at Newark Airport, with 

69,437 drop-offs recorded (i.e., 0.7% of NYC TNC drop-offs during the first half of September 

2023).    

Meanwhile, LaGuardia Airport and JFK Airport zones reported the highest share of pickups (3.8%) 

and drop-offs (4.5%), as shown in Figure 1. Figure 3 illustrates the temporal variation in the 

average fare per mile for ride-hailing trips across days of the week and hours of the day. Figures 

3a and 3b show a clear trend where average fares peak during commuting hours, particularly in 

the late afternoon and early evening on weekdays, corresponding to the typical evening rush hours. 

This is especially pronounced on Wednesdays and Thursdays, where average fares per mile exceed 

$7 during peak hours, highlighting increased demand and potentially limited supply during these 

timeframes. In contrast, fares are generally lower during early morning hours (midnight to 5 AM) 

and late at night, reflecting reduced demand during off-peak periods. Interestingly, the weekends 

display a different pattern compared to weekdays. While fares remain moderate during the 

daytime, there is a noticeable rise in the early evening, likely due to social and recreational 

activities that drive demand for ride-hailing services.   

  



9  

  

  
(a)  (b) Figure 1 Daily Average Number of Pickups (a) and Drop-offs (b) by Taxi Zone 

from September 15 to 30, 2025 (N=9,875,667 trips)  

  
Figure 2 Daily Average Number of Pickups by Hour and Day of Week from September 15 

to 30, 2025 (N=9,875,667 trips)  

 

(a)  (b) Figure 3 Temporal Variation in Average Fare per Mile Across Week and Time of 

the Day (N=9,875,667 trips)  

The demographic data for the OD zones were obtained from EPA's Smart Location Data (NYC 

Planning, 2024). In a competitive ride-hailing market, fare, destination, and trip distance all affect 
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demand (i.e., the number of ride requests), and demand can also influence fares. Daily weather 

conditions were included in the analysis by retrieving daily meteorological data from Meteostat 

(2023), at the weather station nearest Manhattan (40.7128° N, –74.0060° W). This data includes 

average temperature, total precipitation, and average wind speed for each calendar day. These 

variables were then merged with the ride-hailing records by date, ensuring that each 10-minute 

fare bin in a given zone was associated with the corresponding daily weather conditions. During 

peak periods, a surge in trip requests might lead to surge pricing, which raises fares. This surge in 

demand may also lead to congestion, resulting in longer trip durations. To analyze the 

interdependence between demand, supply, and fares, trips were grouped into 10-minute bins (over 

15 days and 24 hours) for each of the 260 zones, capturing short-term demand fluctuations. Of a 

potential 561,600 bins (260 zones × 15 days × 24 hours × 6 bins per hour), 495,128 bins exist in 

the dataset.  

TABLE 2 Summary Statistics of Trip, Demographic, Built-Environment, and Weather 

Variables Within Spatiotemporal Bins (N = 495,128)   

   Mean  Median  Std Dev  Min  Max  

Demand (Trips Served within bin)  308.4  239.5  253.8  2.0  2064  

Uber's Fare ($ per mile within bin)  6.24  6.19  1.09  2.70  11.84  

Lyft's Fare ($ per mile within bin in zone)  6.09  5.65  2.42  0.09  13.68  

Population density (people/acre in zone)  52.71  9.73  94.4  0.0  728.1  

Employment density (jobs/acre in zone)  106.9  3.53  475.1  0.0  4925  

Household workers per job in zone (workers/job in zone)   0.501  0.121  0.678  0.0  3.39  

Total road network density (facility miles of  road 

links per square mile in zone)  
35.87  26.07  49.07  0.0  355.5  

Street intersection density (intersections per 

square mile in zone)  
182.7  72.9  278.9  0.0  1804  

Gross population density (people/acre) at Pickup Zone  54.65  14.1  95.9  0.0  728.1  

Gross employment density (jobs/acre) at Pickup Zone  111.59  3.69  486.6  0.0  4925  

Count of workers earning $1250 per month or less at Pickup  
Zone  

185.8  115.8  288.2  0.0  2407  

Count of workers earning between $1250 to $3333 per month at 

Pickup Zone  
275.7  147  456.7  0.0  4052  

Count of workers earning $3333 per month or more at Pickup  
Zone  

416.6  196  668.6  0.0  5398  

Number of Jobs in Zone per Household in Pickup Zone  33.6  0.22  256.9  0.0  3034  

Number of Household Workers per Job at Pickup Zone  0.49  0.12  0.68  0.0  3.40  

College/Associate Degree Graduate people per Capita (Pickup  
Zone)  

0.13  0.14  0.05  0.0  0.24  

Bachelor’s Degree Graduate people per Capita (Pickup Zone)  0.16  0.15  0.09  0.0  0.48  

Professional Degree Graduate people per Capita (Pickup Zone)  0.13  0.09  0.1  0.0  0.40  

Married (Except Separated) people per Capita (Pickup Zone)  0.31  0.31  0.10  0.0  0.49  
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Divorced or Separated people per Capita (Pickup Zone)  0.08  0.08  0.03  0.0  0.15  

Widowed people per Capita (Pickup Zone)  0.04  0.04  0.02  0.0  0.13  

Daily Average Precipitation (mm)  0.307  0.00  3.41  0.0  78.9  

Daily Average Temperature (°C)   19.37  19.0  1.07  16.1  23.0  

Daily Average wind speed (mi/h)   9.204  9.20  0.94  6.7  28.5  

UN General Assembly Meeting (September 19–23, 2025)  0.009  0.00  0.09  0.0  1.00  

Climate Week (September 17–24, 2025)  0.032  0.00  0.18  0.0  1.00  

Global Citizen Festival (September 23, 2025)  0.001  0.00  0.031  0.0  1.00  

New York Film Festival (September 29 – October 15, 2025)  0.001  0.00  0.031  0.0  1.00  

METHODOLOGY   

In this competitive ride-hailing market, endogeneity arises because demand (in terms of total 

trips) and fares (for both Uber and Lyft) are determined simultaneously—i.e., demand depends 

on fares, while fares adjust in response to demand. Such simultaneity renders the ordinary least 

squares estimators inconsistent if the error terms are correlated with the endogenous regressors. 

Thus, each fare equation (Eq 2 and 3) contains demand as a right-hand-side variable, yet demand 

is itself a function of those fares. To resolve this feedback correlation, instrumental variables are 

employed within a 3SLS framework (Zha et al., 2017; Feng et al., 2023). Weather variables 

(precipitation, temperature, and wind speed) are expected to shift demand but not directly enter 

the fare-setting equations (apart from their effect on demand), so they are used here as 

instrumental variables. By instrumenting demand in each fare equation with exogenous weather 

shocks, the model specification seeks to ensure that the fare regressions capture the causal effect 

of demand on fares, free from the reverse causal feedback.   

The 3SLS estimator then jointly estimates three equations: for demand (Eq. 1), Uber’s per-mile 

fare (Eq. 2), and Lyft’s per-mile fare (Eq. 3), while allowing for correlation among the error terms. 

This approach mitigates bias from simultaneity and yields consistent parameter estimates. In 

practice, the error terms in these equations are correlated within a particular location over time 

(temporal autocorrelation) or across nearby locations on the same date (spatial autocorrelation). To 

address these dependencies (Tang et al., 2019; Oh et al., 2020; Wang et al., 2022), this study allows 

for clustered and heteroskedastic standard errors. across timestamps and zones (He at al., 2019; 

Kelleney and Ishak, 2021; Xing et al., 2022; Zhu et al., 2023; Zhang et al., 2023). The analysis 

uses trip counts summed and trip fares-per-mile averaged over 10-minute intervals by zone and 

operator.   

𝑄𝑄
𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 = 𝛽𝛽0 + 𝛽𝛽1𝑊𝑊𝑖𝑖𝑖𝑖 + 𝛽𝛽2

𝐹𝐹
𝑖𝑖𝑖𝑖𝑈𝑈 + 𝛽𝛽3

𝐹𝐹
𝑖𝑖𝑖𝑖𝐿𝐿,𝑟𝑟𝑟𝑟𝑟𝑟 +   𝛾𝛾𝑗𝑗 

𝑋𝑋
𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗

 +   𝛿𝛿𝑘𝑘 
𝑋𝑋

𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 ,𝑀𝑀𝑇𝑇𝑟𝑟𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇 𝑟𝑟𝑖𝑖𝑇𝑇𝑖𝑖𝐸𝐸𝑟𝑟 

 𝑗𝑗 𝑘𝑘 

 +  𝜃𝜃𝑚𝑚 𝑋𝑋𝑖𝑖Weather + 𝑢𝑢𝑖𝑖𝑖𝑖 … … … … … … … … (Eq. 1)  

𝑚𝑚 
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𝐹𝐹𝑖𝑖𝑖𝑖𝑈𝑈 = 𝛼𝛼0 + 𝛼𝛼1𝑄𝑄𝑖𝑖𝑖𝑖total + 𝛼𝛼2𝑊𝑊𝑖𝑖𝑖𝑖 +   𝜙𝜙𝑚𝑚 𝑋𝑋𝑖𝑖FareEPA 𝑚𝑚 +    𝜓𝜓𝑛𝑛 𝑋𝑋𝑖𝑖Edu, 

Marital𝑛𝑛  Status +   𝜌𝜌𝑝𝑝 𝐷𝐷𝑖𝑖Events  

 𝑚𝑚 𝑛𝑛 𝑝𝑝 

+ 𝑣𝑣𝑖𝑖𝑖𝑖 … … … … … … … … (Eq. 2)  

𝐹𝐹𝑖𝑖𝑖𝑖𝐿𝐿 = 𝛿𝛿0 + 𝛿𝛿1𝑄𝑄𝑖𝑖𝑖𝑖total + 𝛿𝛿2𝑊𝑊𝑖𝑖𝑖𝑖 +   𝜆𝜆𝑞𝑞 𝑋𝑋𝑖𝑖FareEPA𝑞𝑞+   𝜇𝜇𝑟𝑟 𝑋𝑋𝑖𝑖Edu,Marital𝑟𝑟  Status + 

  𝜂𝜂𝑟𝑟 𝐷𝐷𝑖𝑖Events  

 𝑞𝑞 𝑟𝑟 𝑟𝑟 

+ 𝑤𝑤𝑖𝑖𝑖𝑖 … … … … … … … … (Eq. 3)  

The demand equation models the total number of trips (𝑄𝑄𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇) in a pickup zone 𝑖𝑖 and 

during a10- 

minute time interval 𝑡𝑡. This demand is influenced by several factors, including passenger wait 

times, fares, socioeconomic characteristics, and weather conditions. 𝛽𝛽1𝑊𝑊𝑖𝑖𝑖𝑖 represents the 

effect of wait times ( 𝑊𝑊𝑖𝑖𝑖𝑖 ) on demand. The coefficients 𝛽𝛽2 and 𝛽𝛽3 correspond to the effects 

of Uber fares 𝐹𝐹𝑖𝑖𝑖𝑖𝑈𝑈  and Lyft fare residuals (𝐹𝐹
𝑖𝑖𝑖𝑖𝐿𝐿,res ), respectively. The equation also includes 

EPA demographic variables ∑𝑗𝑗  𝛾𝛾𝑗𝑗 𝑋𝑋𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗 , which represent pickup-zone attributes, like 

education levels, employment rates and household incomes. These variables help explain how 

socioeconomic factors in a pickup zone affect ride-sharing demand. Similarly, education and 

marital status variables  

(∑𝑘𝑘  𝛿𝛿𝑘𝑘 𝑋𝑋𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 ,𝑀𝑀𝑇𝑇𝑟𝑟𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇) capture demographic influences on demand. The weather 

variables ∑𝑚𝑚  𝜃𝜃𝑚𝑚 𝑋𝑋𝑖𝑖𝑊𝑊𝑟𝑟𝑇𝑇𝑖𝑖ℎ𝑟𝑟𝑟𝑟  such as, precipitation, average temperature, and wind speed, 

are included to account for temporal variations in demand caused by weather conditions. The error 

term (𝑢𝑢𝑖𝑖𝑖𝑖) captures unobserved factors that affect demand which may include sudden events or 

localized disruptions not explicitly specified in the model.  

The Uber fare equation (Eq 2) models the average Uber fare per mile 𝐹𝐹𝑖𝑖𝑖𝑖𝑈𝑈  in a pickup zone 𝑖𝑖 

during a 10-minute time interval 𝑡𝑡., as a function of demand, wait times, socioeconomic 

characteristics (of pickup zone residents), and event-specific shocks. The constant term (𝛼𝛼0) 

represents the baseline Uber fare when all other variables are zero. The term 𝛼𝛼1𝑄𝑄𝑖𝑖𝑖𝑖
total  captures 

the relationship between total trip demand (𝑄𝑄𝑖𝑖𝑖𝑖
total) and Uber fares. Higher demand typically 

leads to increased fares to balance demand and supply. The term 𝛼𝛼2𝑊𝑊𝑖𝑖𝑖𝑖 accounts for the effect 

of wait times (𝑊𝑊𝑖𝑖𝑖𝑖), with longer passenger wait times potentially indicating lower ride 

availability, which could drive up fares. The model aggregates neighborhood-specific 

socioeconomic factors  
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(∑𝑚𝑚  𝜙𝜙𝑚𝑚 
𝑋𝑋

𝑖𝑖
FareEPA

𝑚𝑚 )—capturing employment and income levels—along with normalized 

education and marital status variables ∑𝑛𝑛  𝜓𝜓𝑛𝑛 𝑋𝑋𝑖𝑖
Edu

𝑛𝑛 ,
 Marital). For example, areas with higher 

proportions of certain demographic groups might exhibit different ride-sharing pricing patterns.   

Lyft’s fare equation (Eq 3) similarly follows a similar structure, incorporating real-time supply 

constraints (via wait times 𝑊𝑊𝑖𝑖𝑖𝑖), local demand (𝑄𝑄𝑖𝑖𝑖𝑖
total), and economic, demographic factors  

(∑𝑞𝑞    𝜆𝜆𝑞𝑞 𝑋𝑋𝑖𝑖FareEPA𝑞𝑞 , ∑𝑟𝑟   𝜇𝜇𝑟𝑟 𝑋𝑋𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟

,𝑀𝑀𝑇𝑇𝑟𝑟𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇). Event indicator variables (∑𝑝𝑝  𝜌𝜌𝑝𝑝 𝐷𝐷𝑖𝑖Events, ∑𝑟𝑟   𝜂𝜂𝑟𝑟 𝐷𝐷𝑖𝑖Events)   

capture temporal shocks for both Uber and Lyft, respectively, events like conferences or festivals 

that can increase demand and lead to higher fares. The error term 𝑣𝑣𝑖𝑖𝑖𝑖 and 𝑤𝑤𝑖𝑖𝑖𝑖 account for 

unobserved local factors that influence each operator’s fares in pickup zone 𝑖𝑖 at time interval 𝑡𝑡. 

he variance-covariance of the errors, Var𝜀𝜀𝑖𝑖,𝑖𝑖 , not assumed to be independent and identically 

distributed. Instead, Var𝜀𝜀𝑖𝑖,𝑖𝑖  = Ω allows within-cluster correlation. For example, if errors are 

clustered by pickup zone 𝑖𝑖 means all observations in the location 𝑖𝑖 across different times 𝑡𝑡 may 

have correlated errors and observations in different locations 𝑖𝑖 ≠ 𝑗𝑗 are taken to be uncorrelated. 

In this analysis, errors are clustered by a combined identifier that merges the location and 

timestamp, so that all observations sharing the same cluster 𝐶𝐶 (𝑖𝑖, 𝑡𝑡) can show correlated errors. 

The clusterrobust estimator of the variance-covariance matrix for 𝛽𝛽ˆ is then defined as follows:  

𝐶𝐶 

Var (𝛽𝛽ˆ)cluster = (X′X)−1     X𝑐𝑐′ 𝜀𝜀ˆ𝑐𝑐 𝜀𝜀ˆ𝑐𝑐′X𝑐𝑐  (X′X)−1 … … … … … … … … (Eq. 4)  

𝑐𝑐=1 

Where, 𝑐𝑐 = 1, … , 𝐶𝐶 indexes the clusters, X𝑐𝑐 is the design matrix for observations in cluster 𝑐𝑐 

and  

𝜀𝜀ˆ𝑐𝑐 represents the vector of residuals for that cluster. In system of equations, let 𝑤𝑤𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑖𝑖𝑖𝑖 , 
𝑢𝑢𝑖𝑖𝑖𝑖 denote the unobserved error terms in the demand, Uber fare, and Lyft fare equations, 

respectively, for location 𝑖𝑖 at time 𝑡𝑡. These error components are then stacked into a single vector 

as follows;  

𝑤𝑤𝑖𝑖𝑖𝑖  

𝜀𝜀𝑖𝑖,𝑖𝑖 =  𝑣𝑣𝑖𝑖𝑖𝑖   

𝑢𝑢𝑖𝑖𝑖𝑖  

If 𝜀𝜀𝑖𝑖,𝑖𝑖 follows a multivariate distribution with a covariance matrix Σ, then cross-equation 

correlation arises whenever Σ is not diagonal. For instance, in a three-equation system, the 

covariance matrix (Σ, Eq. 5) allows for nonzero off-diagonal elements, indicating correlation across 

the demand (𝑄𝑄𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇), Uber fare (𝐹𝐹𝑖𝑖𝑖𝑖𝑈𝑈), and Lyft fare (𝐹𝐹𝑖𝑖𝑖𝑖𝐿𝐿) equations.  

𝜎𝜎𝐷𝐷𝐷𝐷 

Σ = 𝜎𝜎𝑈𝑈𝐷𝐷 

𝜎𝜎𝐿𝐿𝐷𝐷 

𝜎𝜎𝐷𝐷𝑈𝑈 

𝜎𝜎𝑈𝑈𝑈𝑈 

𝜎𝜎𝐿𝐿𝑈𝑈 

𝜎𝜎𝐷𝐷𝐿𝐿 

𝜎𝜎𝑈𝑈𝐿𝐿  … … … … … … … … (Eq. 

5)  

𝜎𝜎𝐿𝐿𝐿𝐿 

Where, 𝜎𝜎𝐷𝐷𝑈𝑈 = Cov(𝑤𝑤𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑖𝑖𝑖𝑖 ), 𝜎𝜎𝐷𝐷𝐿𝐿 = Cov(𝑤𝑤𝑖𝑖𝑖𝑖 , 𝑢𝑢𝑖𝑖𝑖𝑖 ), 𝜎𝜎𝑈𝑈𝐿𝐿 = Cov(𝑣𝑣𝑖𝑖𝑖𝑖 , 𝑢𝑢𝑖𝑖𝑖𝑖 ). 

The diagonal elements  
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𝜎𝜎𝐷𝐷𝐷𝐷, 𝜎𝜎𝐷𝐷𝐷𝐷, 𝜎𝜎𝐷𝐷𝐷𝐷 represent the variances of the errors in each equation, and the off-diagonal 

elements 𝜎𝜎𝐷𝐷𝑈𝑈, 𝜎𝜎𝐷𝐷𝐿𝐿, 𝜎𝜎𝑈𝑈𝐿𝐿 capture the covariance between pairs of error terms. For instance,  

𝜎𝜎𝐷𝐷𝑈𝑈 measures the correlation between the demand and Uber fare equation errors.   

While robust variance estimator addresses heteroskedasticity within each cluster, it does not 

account for cross-cluster correlations. Citywide events or regional weather patterns can induce 

dependencies across these clusters. For instance, shocks affecting one zone might also impact 

neighbouring zones or different time intervals, creating cross-cluster correlations. Hence, this 

study employed the multiway cluster bootstrap method, which produces a distribution of bootstrap 

estimates for each model parameter and captures the variability across clusters. The multiway 

cluster bootstrap identifies the unique clusters in both the temporal (𝒯𝒯) and spatial dimensions 

(𝒵𝒵 ) and estimate the initial 3SLS model (𝜃𝜃ˆ) using the full dataset—serving as a point of 

reference for the bootstrap replications. In each bootstrap iteration (𝑏𝑏), clusters are resampled 

with replacement separately in each dimension, randomly drawing sample of fare bins (𝑁𝑁𝑇𝑇) and 

zones (𝑁𝑁𝑍𝑍), each of the same size as their original sets.   

𝒯𝒯 , … , 𝑡𝑡𝑏𝑏∗,𝑁𝑁𝑇𝑇   

𝒵𝒵 , … , 𝑧𝑧𝑏𝑏∗,𝑁𝑁𝑍𝑍   

Where, 𝒯𝒯 = 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑁𝑁𝑇𝑇  denote the set of time clusters (i.e., fare bins) and  𝒵𝒵 = 𝑧𝑧1, 𝑧𝑧2, 

… , 𝑧𝑧𝑁𝑁𝑍𝑍  denote the set of spatial clusters (i.e., zones), where  𝑁𝑁𝑇𝑇 and 𝑁𝑁𝑍𝑍 are the number of 

fare bins and zones, respectively. Let, 𝜃𝜃ˆ = 𝜃𝜃ˆ1, 𝜃𝜃ˆ2, … , 𝜃𝜃ˆ𝑝𝑝  be the initial 3SLS parameter 

vector, with  𝑝𝑝 representing the number of estimated parameters, and let 𝑏𝑏 = 1,2, … , 𝐵𝐵 denote 

bootstrap iterations. The bootstrap sample (𝒮𝒮𝑏𝑏, 𝐸𝐸𝐸𝐸 . 6) is then constructed by retaining only 

those observations 𝑖𝑖 whose fare bin belongs to 𝒯𝒯𝑏𝑏∗ and whose zone belongs to 𝒵𝒵𝑏𝑏∗.  

 𝒮𝒮𝑏𝑏 = {𝑖𝑖∣ Fare bin  and pick-up zone … … … … … … … … (Eq. 6)  

The 3SLS model is re-estimated on bootstrap sample 𝒮𝒮𝑏𝑏, yielding a new set of parameter 

estimates 𝜃𝜃ˆ
𝑏𝑏 for that replication , producing a distribution of bootstrap estimates for each 

parameter. The bootstrap mean (𝜃𝜃‾𝑗𝑗∗) and standard deviation ( ) for each parameter 𝜃𝜃𝑗𝑗 is 

given by  

𝐵𝐵 

 𝜃𝜃‾ 𝐵𝐵    𝜃𝜃ˆ𝑏𝑏,𝑗𝑗  and  SD𝑗𝑗∗ 

= 𝐵𝐵 − 1 𝑏𝑏,𝑗𝑗 𝑗𝑗   

 𝑏𝑏=1 𝑏𝑏=1 

RESULTS  

Table 2 shows the estimated coefficients of the demand equation, all of which are statistically 

significant. This study further calculated practical significance, which yields a standardized 

1 
  

𝐵

𝐵 
 𝜃𝜃 ˆ − 𝜃

𝜃 

‾ ∗ 
2 
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measure that captures the impact of a one-standard-deviation change in a given variable on the 

outcome relative to the overall variability in demand. This was achieved by first generating 

baseline predictions using the original 3SLS model and then changing each regressor by one 

standard deviation while holding other variables constant. The difference between the new and 

baseline predicted values was computed and then standardized by dividing it by the standard 

deviation of the baseline predictions.  The results showed that higher fares substantially reduce 

demand. A one-standard-deviation rise in Uber’s fares is associated with a 27% reduction in 

demand, while the same rise in Lyft’s fares leads to an 89% drop in demand. The substantially 

larger effect of the Lyft fare residual suggests that net variations in Lyft’s pricing (beyond what is 

explained by Uber’s fare) have a pronounced impact on passenger demand. Moreover, 1 SD longer 

wait times tie to a 37% reduction in demand, highlighting the strong sensitivity of consumers to 

delays.   

Demographic factors further contribute: a one-standard-deviation increase in the number of 

household workers per available job in the pickup zone results in a 9% rise in demand, and denser 

residential areas drive a 3.6% increase in ride-hailing usage, although employment-dense zones 

may shift some trips to alternative modes. Several education categories showed distinct effects on 

ride-hailing demand. For instance, a one-standard-deviation increase in the proportion of residents 

with a college degree corresponds to a 31% increase in demand. In contrast, neighborhoods with 

a higher share of individuals holding bachelor’s degrees experience a 14% decline, while those 

with more professional degree holders see an 11% reduction in demand. These differences likely 

reflect underlying disparities in income, access to alternative transportation, and preferences for 

convenience. Marital status influences demand as well; compared to never-married individuals, 

married residents exhibit approximately a 10% lower demand, whereas divorced or separated 

individuals and widowed individuals show modest increases of 4.4% and 3.7%, respectively.   

Table 2 Demand Model Estimates (Y= 𝑸𝑸𝑻𝑻𝑻𝑻𝒊𝒊𝒊𝒊 𝒊𝒊𝑻𝑻𝑻𝑻, N = 2194, Adj R2 =0.613)    

Variable Name  Coefficient  

Passenger Wait Time (min)  -54.52  

Uber’s Fare ($ per mile)  -16.17  

Lyft’s Fare Residual (per mile)  -278.2  

Gross population density (people/acre) at Pickup Zone  0.115  

Gross employment density (jobs/acre) at Pickup Zone  -0.024  

Count of workers earning $1250 per month or less at Pickup Zone  -0.114  

Count of workers earning between $1250 to $3333 per month at Pickup Zone  0.036  

Count of workers earning $3333 per month or more at Pickup Zone  0.004  

Number of Jobs in Zone per Household in Pickup Zone  -0.027  

Number of Household Workers per Job at Pickup Zone  2.462  

College/Associate Degree Graduate people per Capita (Pickup Zone)  148.4  

Bachelor’s Degree Graduate people per Capita (Pickup Zone)  -363.3  

Professional Degree Graduate people per Capita (Pickup Zone)  -275.4  
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Married (Except Separated) people per Capita (Pickup Zone)  -38.90  

Divorced or Separated people per Capita (Pickup Zone)  217.2  

Widowed people per Capita (Pickup Zone)  314.2  

Daily Average Precipitation (mm)  -12.20  

Daily Average Temperature (°C)   12.70  

Daily Average wind speed (mi/h)   32.40  
(All variables are statistically significant at α = 0.05)  

The fare equations reveal distinct operator-specific pricing dynamics. Uber’s fare equation 

estimates (Table 3) indicate that real-time supply availability—approximated by wait times—has 

a positive and highly significant effect on per-mile charges. A one-standard-deviation rise in wait 

time was associated with a 9.8% rise in per-mile fares. Overall market demand, as measured by 

the total trip count, significantly drives fare levels: a one-standard-deviation increase in demand 

raises Uber's per-mile fares by 26% and Lyft's fares by 12% (Table 3 and 4), indicating that the 

operator’s pricing algorithm responds strongly to real‐time supply-demand imbalances. 

Demographic and economic variables also show a strong association with ride-hailing demand. 

zones with a higher share of top earners experience slightly lower surge levels, possibly because 

these areas are better serviced or see travel patterns that mitigate peak‐time shortages. Meanwhile, 

the job concentration shows small but significant fare increases in more employment‐dense 

areas—potentially because commuting hotspots face more frequent or pronounced surges during 

rush hours. Lyft’s fare estimates (Table 4) show that its pricing is less sensitive to broader 

marketwide demand surges than to local, real-time driver availability. The share of workers in the 

highest wage bracket is negatively associated with fares, and the effects differ considerably among 

education variables. Taxi zones with a higher concentration of high school graduates tend to have 

elevated fares, potentially due to peak-hour usage.   

In addition to the main market-level drivers, the model includes four event-based indicators that 

capture temporal shocks resulting from major gatherings and festivals in September 2023. The 

United Nations General Assembly is associated with a slight reduction in per-mile fares, whereas 

Climate Week and the Global Citizen Festival led to modest rises in per-mile charges. The 

bootstrap approach provides a comprehensive view of the variability in the 3SLS estimates across 

multiple resampled spatiotemporal clusters. For the demand equation, the results show moderate 

variability in its parameters. For instance, the initial coefficient for wait time is –54.5, with a 

bootstrap mean of –58.8 and a standard deviation of 44.2, indicating moderate uncertainty in its 

impact on demand. Lyft fare residual showed variability too, with its original coefficient at –278, 

a bootstrap mean of –247, and a standard deviation of 44.8. In the Uber fare equation, the impact 

of wait time remains relatively stable; the original coefficient of 1.14 is closely mirrored by a 

bootstrap mean of 1.21 and a low standard deviation of 0.12. This consistency suggests that the 

surge pricing effect driven by supply constraints is robust across resampled clusters. For the Lyft 

fare equation, similar patterns emerge. The wait time parameter is consistently estimated with an 

original value of 1.25 and a bootstrap mean of 1.33, with a standard deviation of 0.12, reinforcing 

the critical role of real-time supply in determining fare levels. Other coefficients in Lyft’s fare 

equation, including those for demographic factors, display narrower bootstrap variances compared 
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to some of the demand equation parameters, suggesting that Lyft’s pricing is less sensitive to 

broader market fluctuations and more stable in response to local conditions.  

Table 3 Uber’s Fare Model Estimates (Y= 𝑸𝑸𝑻𝑻𝑻𝑻𝒊𝒊𝒊𝒊 𝒊𝒊𝑻𝑻𝑻𝑻, N = 2,194, Adj R2 =0.609)    

Variable Name  Coefficient  

Demand (Total Trips Requests)  0.002  

Passenger Wait Time (min)  1.158  

Gross employment density (jobs/acre) at Pickup Zone  9.69E-05  

Count of workers earning $1250 per month or less at Pickup Zone  0.001  

Count of workers earning between $1250 to $3333 per month at Pickup Zone  -0.001  

Count of workers earning $3333 per month or more at Pickup Zone  -2.65E-04  

High School Graduate people per Capita (Pickup Zone)  1.683  

College/Associates Degree Graduate people per Capita (Pickup Zone)  -0.432  

Married (Except Separated) people per Capita (Pickup Zone)  0.698  

Divorced or Separated people per Capita (Pickup Zone)  2.445  

Widowed people per Capita (Pickup Zone)  -0.845  

UN General Assembly (September 19–23)  -1.583  

Climate Week (September 17–24)  0.410  

Global Citizen Festival (September 23)  0.242  

(Variables are statistically significant at α = 0.05)  

Table 3 Lyft’s Fare Model Estimates (Y= 𝑸𝑸𝑻𝑻𝑻𝑻𝒊𝒊𝒊𝒊 𝒊𝒊𝑻𝑻𝑻𝑻, N = 2194, Adj R2 =0.609)    

Variable Name  Coefficient  

Demand (Total Trips Requests)  0.0002  

Passenger Wait Time (min)  1.263  

Gross employment density (jobs/acre) at Pickup Zone  -3.16E-05  

Count of workers earning $1250 per month or less at Pickup Zone  0.001  

Count of workers earning between $1250 to $3333 per month at Pickup Zone  -0.001  

Count of workers earning $3333 per month or more at Pickup Zone  -2.87E-04  

High School Graduate people per Capita (Pickup Zone)  2.566  

College/Associates Degree Graduate people per Capita (Pickup Zone)  -0.409  

Married (Except Separated) people per Capita (Pickup Zone)  0.884  

Divorced or Separated people per Capita (Pickup Zone)  3.551  

Widowed people per Capita (Pickup Zone)  -2.881  

UN General Assembly Indicator (September 19–23)  -1.643  

Climate Week Indicator (September 17–24)  0.078  

Global Citizen Festival Indicator (September 23)  2.124  

(Variables are statistically significant at α = 0.05)  
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CONCLUSIONS  

Ride-hailing services like Uber and Lyft offer a dynamic alternative to traditional taxis and public 

transportation. Despite their growing significance, conventional models often overlook the 

feedback relationship between fare and demand across time, space, and competing providers. This 

study addressed this gap by jointly estimating the relationship between demand and per-mile fares 

for Uber and Lyft in New York City using a three-stage least squares (IV3SLS) system of 

simultaneous equations. On the demand side, the analysis showed that both fare levels and wait 

times are key drivers, with higher fares and longer wait times resulting in significantly fewer trip 

requests—especially for Lyft users, who showed higher sensitivity to fares compared to Uber 

users.  A one-standard-deviation rise in Uber’s fares reduces demand by 27%, whereas the same 

increase in Lyft’s fare residual leads to an 89% drop. Longer passenger wait times, too, were 

associated with a 37% reduction in demand, emphasizing that riders are highly sensitive to delays. 

These associations are additionally affected by underlying demographic and environmental 

conditions. The results showed that educational attainment and income levels have a differentiated 

impact on ride-hailing demand—areas with more college-educated residents show a 31% increase 

in demand, while regions with higher proportions of bachelor’s or professional degree holders 

experience declines.   

Marital status also plays a role, with married individuals showing lower demand relative to 

nevermarried individuals, while divorced or widowed populations exhibit modest increases. 

Weather conditions are equally influential; rainy conditions reduce demand by 17%, whereas hotter 

temperatures and higher wind speeds lead to modest increases, reflecting consumers’ preferences 

for comfort and convenience. On the fare side, both Uber and Lyft employ dynamic pricing models 

that respond to real-time supply constraints. The results showed that fares increased with longer 

wait times, reflecting the surge pricing effect triggered by limited driver availability. However, 

Uber’s fares were observed to be more responsive to overall market demand than those of Lyft. 

One standard deviation increase in total trip count leads to a 26% increase in Uber’s fares and a 

12% increase in Lyft’s fares. Moreover, wealthier neighborhoods tend to experience lower surge 

levels, likely due to higher driver availability or less pronounced peak-hour fluctuations. In 

contrast, middle- and lower-income areas tend to see slightly higher fares, suggesting greater 

supply-demand mismatches in these regions. External conditions, such as, weather, are equally 

influential; rainy conditions reduce demand by 17%, whereas hotter temperatures and higher wind 

speeds lead to modest increases, reflecting consumers’ preferences for comfort and convenience. 

The bootstrap results further illuminated the role of spatiotemporal dependencies in the ridehailing 

market.   

Although the demand estimates show only moderate variability across clusters, this moderate 

variability reflects meaningful local and temporal heterogeneity that significantly influences 

consumer behavior. For example, the effect of wait time on demand differs considerably across 

taxi zones and time intervals, suggesting that localized congestion and regional economic 

conditions have a substantial impact on ride-hailing usage. In contrast, the fare equations for both 

Uber and Lyft display remarkably stable wait time coefficients. This stability implies that surge 

pricing mechanisms are robust across diverse spatiotemporal clusters—regardless of the specific 

pickup zone or time of day, the response to supply constraints remains consistent.   
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These outcomes emphasize the diverse factors influencing ride-hailing dynamics, which are 

systematically examined by addressing several key challenges simultaneously. It resolves 

simultaneity by modeling the bidirectional feedback between operator-specific fares and demand 

using instruments within a three-stage least squares framework. It captures spatiotemporal 

dependencies by including both within-cluster and cross-cluster correlations across time and space, 

revealing distinct pricing strategies and demand sensitivities across competitors. Future research 

should extend the timeframe to capture longer-term and seasonal variations, particularly under 

evolving regulatory regimes like new tolling policies. Further exploration into different service 

tiers, namely, premium or luxury options, and a deeper examination of driver-side factors— 

including acceptance rates and fleet size—are warranted. Exploring unobserved rider factors, like 

brand loyalty and past wait-time experiences, may further refine the understanding of operator 

preferences and lead to more adaptive fare strategy models.  
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