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ABSTRACT 

This paper examines the demographic and land-use variables that influence walk-trip frequency 

and walking distances in the U.S. Using a hurdle regression model to predict walk-miles traveled 

(WMT) per person per day, the study finds that older males, individuals with higher educational 

attainment, smaller household sizes, and households without vehicles are more likely to walk and 

to walk longer distances within their home tracts. Households with one vehicle are 53.14% less 

likely to walk, and those with two or more vehicles are 62.66% less likely. Each standard deviation 

(SD) increase in age is associated with a 58.18% increase in walking distance. Land use factors – 

such as population and job density, roadway-network density are strong predictors of one’s 

walking (on the travel survey day) but have little effect on walking distances. These model results 

were applied to estimate the spatial distribution of WMT across all 60,000 U.S. census tracts to 

better understand pedestrian activities and their relationship to crash rates. Findings show that 

Americans average 0.236 WMT per capita per day. A one-week sample of traffic counts on nearly 

all Texas roadways (by INRIX) was also used to estimate vehicle-miles traveled (VMT) across 

tracts. Results indicate an average pedestrian crash rate of 0.491 per 1 million WMT and 0.027 per 

1 million VMT in Texas. These findings provide a spatial basis for linking walking activity, driving 

exposure, and pedestrian safety across diverse settings and improve pedestrian safety.  
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INTRODUCTION 

Roadway safety is a serious global challenge, with nearly 1.2 million deaths and 50 million injuries 

worldwide every year (WHO, 2023). And the U.S. appears to be falling behind its peer nations, 

with a stubbornly high fatality rate of 1.2 deaths per 100 million vehicle-miles traveled (VMT) 

(NHTSA, 2025). While this rate was typical 3 decades ago, in 1995, Americans now die at three 

times the rate per VMT as those in France (Freemark and Jenkins, 2022) and 1.74 times the rate 

mailto:keya_li@utexas.edu
mailto:kkockelm@mail.utexas.edu


      

   

 

as those in Canada (Transport Canada, 2025). In addition to the death toll, road crashes deliver 

other serious losses, with the NHTSA estimating economic-only and comprehensive (total) costs 

of $1,300 and $4,100 per American per year (Blincoe et al., 2019). Among all road users, 

pedestrians are especially vulnerable to fatalities and injuries in traffic crashes, but they are often 

ignored when motorists dominate the transportation landscape. In 2023, 7,318 pedestrians were 

killed and 68,244 were injured in U.S. traffic crashes (NHTSA, 2024). Over the past decade, U.S. 

pedestrian deaths have risen 54.6% and their share (among total crash deaths) has risen from 14.5% 

in 2013 to 17.9% in 2023 (NHTSA, 2024; NHTSA, 2014), underscoring the need to investigate 

pedestrian crash rates.  

Various studies (e.g., Lee and Abdel-Aty, 2005; Amoh-Gyimah et al., 2016; Hussain et al., 2019) 

have identified multiple factors that affect pedestrian crash rates. And instance, Zegeer and Bushell 

(2012) categorized the influencing factors into five categories: roadway/environmental, driver, 

vehicle, pedestrian, and demographic/social factors. By examining walking distances across the 

U.S. across times of day and days of the year, Vellimana and Kockelman (2023) found that 

southern US states, with longer daylight hours, demonstrate less walking and higher pedestrian 

death rates (per VMT and per walk-miles traveled (WMT)). But the decision to walk and distances 

walked vary significantly with demographic attributes, time of year, latitude, and state of 

residence. Hu and Cicchino (2018) used Poisson and ordinary least-squares (OLS) regression 

models to analyze U.S. pedestrian fatalities (from motor vehicle crashes) between 2009 to 2016 

and found that pedestrian deaths rose most in urban areas, on arterial roads, at midblock locations, 

and under dark (unlit, nighttime) conditions. Similarly, Zuniga-Garcia et al. (2022) pointed out 

that signalized intersections and arterial roads tend to have higher pedestrian crash rates. Midblock 

segments have a three times higher increase of crashes than intersections, with each standard 

deviation (SD) increase in daily VMT. Along with roadway and environment variables, a 

corridor’s or neighborhood’s walking and transit access levels, crime rates, and population 

demographics (including incomes and presence of children), population and jobs densities, traffic 

volumes, and land use attributes (like the presence of entertainment districts and food stores) have 

an important influence on pedestrian crash rates (Cottrill and Thakuriah, 2010; Rahman et al. 2022; 

Loukaitou-Sideris et al., 2007; Dumbaugh et al., 2024).  

Taking all these factors into account, several models (e.g., Turner et al. 2006; Caliendo et al., 2007; 

Zhao et al., 2024) have been developed to predict pedestrian crash rates based on built environment 

context (including roadway and land use characteristics) and demographic attributes. For example, 

Wier et al. (2009) used a multivariate, areal-level regression model to estimate vehicle-pedestrian 

injury crashes using data from San Francisco census tracts. The model incorporated street, land 

use, and population characteristics and accounted for nearly 72% of the systematic variation in 

crash occurrence. Results indicated that a 15% increase in census-tract traffic volume was 

associated with a 11% rise in vehicle-pedestrian injury collisions, while a 15% increase in area 

employees led to a 3% increase in vehicle-pedestrian injury collisions. Considering spatial 

correlation, Wang and Kockelman (2009) applied a Poisson-lognormal multivariate conditional 

autoregressive (CAR) model to analyze pedestrian crash counts in Travis County, Texas, from 

2007 to 2009, and they found that pedestrian crash risk across all severity levels occurred in areas 

with greater mixing of residents and commercial land uses. Working at a disaggregate level, 

Rahman et al. (2022) adopted a negative binomial model and a heteroskedastic ordered probit 

model to investigate pedestrian counts and injury severity over 0.7 million segments across Texas. 

They concluded that higher speed limits were associated with lower crash frequencies but more 



      

   

 

fatalities, and that the use of light-duty trucks also increased the risk of pedestrians being severely 

injured or killed.  

Based on these modeling approaches, incorporating exposure-based crash rates (e.g., per WMT, 

per VMT) is essential for accurately assessing crash risk and identifying high-risk locations. Many 

studies (e.g., Agrawal and Schimek, 2007; Iosa et al., 2012; Yang and Diez-Roux, 2012; Buehler 

et al., 2020) have investigated walk distances across the U.S. and/or other nations. For instance, 

Buehler and Pucher (2021) estimated Europeans’ walk distances to average 45% to 118% more 

than those of Americans. As a result of this, plus higher speeds, less driver training, and myriad 

other reasons, Americans end up experiencing 5 to 10 times more pedestrian deaths per million 

WMT than their EU counterparts. Understanding exposure-based pedestrian crash rates is crucial 

for identifying high-risk locations and implementing safety countermeasures or new technologies. 

As autonomous vehicles (AVs) continue to develop rapidly, they have demonstrated substantial 

safety benefits in decreasing crashes (Combs et al., 2019; Utriainen, 2020; Sohrabi et al., 2021; 

Alozi and Hussein, 2022). For example, Kusano et al. (2024) performed a safety assessment of 

Waymo’s Rider-Only (without a driver behind the steering wheel) crash rates compared to human 

benchmarks using over 7 million Rider-Only miles in Phoenix, San Francisco, and Los Angeles, 

and they found that there was a 55% reduction in police-reported crashes and a 80% in any-injury-

reported crashes. Susilawati et al. (2023) simulated various scenarios with different levels of AV 

and CAV deployment to test their safety effectiveness. Results indicated that, compared with non-

AV scenarios, assuming all vehicles are AVs or CAVs could reduce pedestrian crashes by 46% 

and 59%, respectively. When AVs and CAVs were restricted to arterial roads, pedestrian crashes 

decreased by 59% and 69%, respectively.  

However, most exposure-based pedestrian crash-rate estimates (e.g., Vellimana and Kockelman, 

2023; Bernhardt and Kockelman, 2021; NHTSA, 2024) are limited to national or state levels, 

making it difficult to effectively target and operate AV deployment. To address this limitation, this 

study estimates WMT and VMT at the tract level in three states (Arizona, California, and Texas) 

where Waymo is actively operating and derives pedestrian exposure-based crash rates. The 

analysis targets regions with high pedestrian exposure risk and provides insights to inform future 

AV deployment. The following sections describe predictive methods and all datasets used, 

followed by estimates of pedestrian crash rates (per WMT, per VMT, and per capita) across these 

three states, with conclusions.  

 

DATA DESCRIPTION 

This section describes the datasets used to derive tract-level WMT estimates, tract-level VMT 

estimates, and pedestrian crash rates, along with preliminary analyses. 

WMT Estimates 

This paper uses the 2016/17 NHTS dataset to develop a hurdle regression model that predicts 

WMT of each respondent per day. The 2016/17 NHTS dataset (FHWA, 2017) obtained travel and 

other data from nearly 130,000 U.S. households on an assigned survey day (one day per 

household). The resulting dataset includes 923,572 person-trips over 13 months (March 2016 

through March 2017). Personal vehicles (i.e., passenger cars, SUVs, vans, and pickup trucks) were 

the primary mode for 85.4% of all trips, while walking accounted for 8.8% of the total (or 81,288 

walk trips). Additionally, 16,073 trips include people walking to or from transit stops, and those 

are included in the analysis as well. To exclude hiking and unusually long walks, which tend to be 



      

   

 

away from public roadways (limiting actual pedestrian exposure to police-recorded crashes),  

longer walk-trip distances are set to a maximum of 3 miles (using shortest-path calculations 

between start and end addresses) and included a total of 95,062 walk trips, with a mean distance 

of 0.53 miles and a standard deviation of 0.56 miles.  

In the NHTS data, 19.8% of walk trips occurred between different census tracts, accounting for 

15.8% of the total 83,837 surveyed WMT. For simplification, inter-tract walk trips were evenly 

distributed between the origin and destination tracts. Additionally, 47.3% of all walk trips occurred 

outside the respondent’s home tract, representing 41.5% of total surveyed WMT. In addition to 

trip and demographic data, land use and pedestrian-related attributes, such as network density, 

intersection density, and the percentage of parks and lawns, which tend to attract many walk trips, 

were derived from the American Community Survey (ACS) (U.S. Census Bureau, 2020), the EPA 

Smart Location Database v3.0 (EPA, 2021), and the National Land Cover Database (NLCD) 

(Dewitz, 2020). Table 1 summarizes the statistics for all NHTS trips across all modes. 

Table 1: Summary Statistics of 2016/17 NHTS Person Records (n = 211,354 respondents) 
Variables Mean Median Std Dev Min Max 

Respondent WMT on sample day 0.35 0 1.30 0 36.78 

Age (in years) 47.6 51 21.3 5 92 

Household Size 2.71 2 1.39 1 13 

Male 0.48 0 0.50 0 1 

White 0.82 1 0.39 0 1 

African American 0.07 0 0.26 0 1 

Asia 0.04 0 0.21 0 1 

Other Race 0.06 0 0.24 0 1 

No Household Vehicle  0.03 0 0.16 0 1 

One Household vehicle 0.22 0 0.41 0 1 

Two or More Household Vehicles 0.76 1 0.43 0 1 

No High School or College Degree 0.32 0 0.47 0 1 

Some College or Associates Degree 0.26 0 0.44 0 1 

Bachelor's Degree 0.22 0 0.42 0 1 

Graduate Degree 0.20 0 0.40 0 1 

Worker 0.53 1 0.50 0 1 

Monday 0.15 0 0.36 0 1 

Tuesday 0.16 0 0.37 0 1 

Wednesday 0.16 0 0.37 0 1 

Thursday 0.16 0 0.37 0 1 

Friday 0.16 0 0.37 0 1 

Saturday 0.10 0 0.30 0 1 

Sunday 0.10 0 0.30 0 1 

Household Income less than $50k 0.33 0 0.47 0 1 

Household Income less than $100k 0.33 0 0.47 0 1 

Household Income less than $200k 0.26 0 0.44 0 1 

Household Income more than $200k 0.08 0 0.27 0 1 



      

   

 

Hispanic Origin 0.09 0 0.29 0 1 

Population Density of Home Tract (per acre) 5.45 2.53 13.03 0 389.95 

Job Density of Home Tract (per acre) 2.57 0.54 16.77 0 1306.41 

Intersection Density of Home Tract (per acre) 56.56 39.19 60.88 0 1266.15 

Road Density of Home Tract (miles per acre) 12.52 10.97 9.04 0.2 78.45 

Share of Parks of Home Tract (out of 1) 0.11 0.08 0.09 0 0.74 

Note: Population data are from the ACS (U.S. Census Bureau, 2020); job, intersection, and road data 

are from the EPA Smart Location Database v3.0 (EPA, 2021); and the share of parks is from the NLCD 

(Dewitz, 2020). 

Tract-level WMT per day estimates were derived using the synthetic population developed by 

Kockelman et al. (2022) via PopGen 2, based on the Public Use Microdata Sample (PUMS) 

dataset. The PUMS dataset, released by the U.S. Census Bureau (2023), contains detailed 

demographic and housing information from individual-level responses and is commonly used to 

produce estimates at the Public Use Microdata Area (PUMA) level. Kockelman et al. (2022) 

created a 10% sample of the U.S. household and person synthetic data at the census tract level, 

based on marginals from the 2019 ACS dataset, which can be used to reconstruct demographic 

information for each tract. It includes nearly 31 million individuals and 13 million households over 

73,056 U.S. tracts. The detailed methodology is described in the following section. 

VMT Estimates 

Traditionally, VMT data is publicly available at the national and state levels through the USDOT 

and state governments (e.g., USDOT, 2018; California DOT, 2023), based on the Highway 

Performance Monitoring System (HPMS) database. However, this database uses a stratified 

sampling method to collect traffic volume data for all public roads, excluding rural minor collector 

and local roads. Therefore, several studies (e.g., Klatko et al., 2016 and 2017; Williams et al., 

2016; Alexander et al., 2024) have been carried out to infer local road performance and improve 

the accuracy of VMT estimates at a finer level. For example, Klatko et al. (2017) clustered local 

roads, applied spatial interpolation (including Kriging, natural neighbor, inverse distance 

weighting, and trend methods), and used sparse traffic volume data for segments within each 

cluster. Similarly, Chen et al. (2024) used small grid cells to address the lack of granular HPMS 

data on local roads and produced crash rates at the grid-cell level. In addition to VMT, many 

researchers (Sharma et al., 2001; Castro-Neto et al., 2009; Sun and Das, 2015; Baffoe-Twum et 

al., 2023) have employed various models to estimate AADT, including regression analysis and 

neural networks. For instance, Zhao and Park (2004) applied geographically weighted regression 

(GWR) using data from 857,775 count stations and tested the modeled on 82 stations. Results 

showed that 63.41% of the testing points had errors of less than 20% in AADT values.  

This paper uses TxDOT Roadway Inventory dataset (TxDOT, 2025), which includes Texas road 

details such as road class, number of lanes, and other characteristics, along with Annual Average 

Daily Traffic (AADT) estimates for each road, to construct a Weighted Least Square (WLS) model 

for predicting AADT in other states. As California and Arizona do not maintain comparable 

roadway inventory datasets, OpenStreetMap data (OSM, 2025) were retrieved for these two states. 

Land use variables were mapped using QGIS with the EPA Smart Location Database. Table 2 

presents a summary of statistics for the roads in these three states. 

Table 2: Summary Statistics of AZ, CA, and TX Road Attributes 



      

   

 

Variable Description 
Mean 

Media

n 

Std. 

Dev. 
Min Max 

Texas Roads: n=908,695 

Interstate 1 if the segment is an interstate; 0 otherwise 0.04 0 0.20 0 1 

Freeway 1 if the segment is a freeway; 0 otherwise 0.02 0 0.15 0 1 

Pr_arterial 1 if the segment is a principal arterial; 0 

otherwise 
0.10 0 0.29 0 1 

Min_arterial 1 if the segment is a minor arterial; 0 

otherwise 
0.07 0 0.25 0 1 

Maj_collector 1 if the segment is a major collector; 0 

otherwise 
0.13 0 0.33 0 1 

Min_collector 1 if the segment is a minor collector; 0 

otherwise 
0.02 0 0.15 0 1 

Local 1 if the segment is a local road; 0 otherwise 0.62 0 0.48 0 1 

Oneway 1 if the segment is one-way; 0 two-way 0.03 0 0.17 0 1 

Median 1 if the segment has a median (a TWLTL) is 

not considered as a median); 0 otherwise 
0.12 0 0.33 0 1 

# Lanes Number of lanes per direction on the segment 2.26 2 0.83 1 17 

Lane_width Width of each lane (ft) 3.68 0 5.58 0 47.00 

Length Length of the segment (mi) 0.38 0.16 0.74 0 44.24 

Pop_density Population per acre (residents/acre) in the 

nearest block group 
2.50 0.74 3.64 0 90.34 

Job_density Jobs per acre in the nearest block group  1.29 0.13 5.96 0 270.62 

Road_density Total road network density per square miles 10.02 6.58 8.78 0.08 69.85 

Arizona Roads: n=341,093 

Interstate 1 if ‘highway’ tag is ‘motorway’ or 

‘motorway_link’; 0 otherwise 
0.03 0 0.18 0 1 

Freeway 1 if ‘highway’ tag is ‘trunk’ or ‘trunk_link’; 0 

otherwise 
0.02 0 0.14 0 1 

Pr_arterial 1 if ‘highway’ tag is ‘primary’ or 

‘primary_link’; 0 otherwise 
0.05 0 0.22 0 1 

Min_arterial 1 if ‘highway’ tag is ‘secondary’ or 

‘secondary_link’; 0 otherwise 
0.13 0 0.33 0 1 

Maj_collector 1 if ‘highway’ tag is ‘tertiary’ or 

‘tertiary_link’; 0 otherwise 
0.10 0 0.30 0 1 

Min_collector 1 if ‘highway’ tag is ‘unclassified’; 0 

otherwise 
0.05 0 0.22 0 1 

Local 1 if ‘highway’ tag is ‘residential’; 0 otherwise 0.62 1 0.49 0 1 

Oneway 1 if ‘oneway’ tag is ‘yes’; 0 otherwise 0.27 0 0.44 0 1 

Median 0 if ‘lane’ tag is 1 or ‘lane_markings’ tag is 

‘no median’; 1 otherwise 
0.38 0 0.49 0 1 

# Lanes Number of lanes per direction on the segment 

retrieved from ‘lane’ tag 
1.75 1 1.15 1 11 

Lane_width Width of each lane (ft) calculated based on 

‘width’ tag 
0.03 0 1.05 0 144.36 

Length Length of the segment calculated using QGIS 

(mi) 
0.25 0.09 0.75 0 51.05 

Pop_density 
Same as TX dataset 

3.81 2.32 4.40 0 53.57 

Job_density 1.82 0.24 6.49 0 151.17 



      

   

 

Road_density 13.32 13.52 9.43 0.04 57.26 

California Roads: n=1,100,034 

Interstate 

Same as AZ dataset 

0.06 0 0.24 0 1 

Freeway 0.01 0 0.11 0 1 

Pr_arterial 0.11 0 0.31 0 1 

Min_arterial 0.14 0 0.35 0 1 

Maj_collector 0.10 0 0.30 0 1 

Min_collector 0.03 0 0.17 0 1 

Local 0.55 1 0.50 0 1 

Oneway 0.29 0 0.46 0 1 

Median 0.45 0 0.50 0 1 

# Lanes 1.72 1 1.26 1 55 

Lane_width 0.05 0 1.68 0 209.97 

Length 0.27 0.09 0.77 0 66.46 

Pop_density 8.03 5.38 9.76 0 261.67 

Job_density 4.69 1.05 1.98 0 767.31 

Road_density 17.45 18.34 10.89 17.87 166.89 

Note: Texas data are from TxDOT Roadway Inventory dataset (2025). Arizona and California data are 

extracted from OSM (2025). Roads that cannot carry traffic (e.g., steps, footway, construction) were 

removed from the OSM data. Other road attributes in the Texas dataset (including school zones, median 

width, and curve) were not included in this analysis due to missing data in the OSM dataset.  

As detailed in the following section, the WLS model is primarily trained using Texas AADT data, 

along with a portion of Arizona and California AADT data, and tested on the remaining AADT 

data from these two states. Figure 1 presents the AADT data provided by Arizona DOT (2024) 

and California DOT (Caltrans) (2024). Both data were collected from 2023 HPMS database. In 

contrast to Arizona’s line segment AADT dataset (Figure 1 (a)), California’s AADT dataset is a 

point-based GIS dataset (yellow dots in Figure 1 (b)) that contains Ahead_AADT and Back_AADT 

attributes. To assign AADT values to the corresponding road segments, California’s State 

Highway Network Lines dataset (blue lines in Figure 1 (b)) was used to determine roadway 

direction (e.g., southbound). Using QGIS, each data point was connected with its ahead segment 

and back segment IDs, and the AADT values were then assigned to the associated road segments. 

In total, 111,057 and 72,524 AADT segment records were collected in Arizona and California, 

respectively. 

Pedestrian Crash Data in Texas 

Pedestrian crash data were collected from California’s Transportation Injury Mapping System 

(TIMS, 2025), Arizona DOT’s Crash Query System (2025), and TxDOT’s Crash Records 

Information System (CRIS) Query Tool (2025). These statewide databases include all reported 

motor vehicle traffic crashes, along with detailed information such as crash time, location, weather 

conditions, and person characteristics. However, at least half of all pedestrian and bicyclist crashes 

are underreported to the police (Stutts and Hunter, 1998). In this study, these missing data—which 

are difficult to obtain—are not included. Pedestrian-related crashes reported from 2020 to 2024 

(the most recent five available years) were queried for analysis, and crashes with missing or out-



      

   

 

of-boundary location information were also excluded. Figure 2 plots the distribution of pedestrian 

crash data over five years in the three states, and the summary of crash counts is provided in Table 

3.  



      

   

 

 

  
Figure 1: AADT Data for Arizona (left) and California (right) 

  
(a) Arizona (b) California 



      

   

 

 

 

(a) Texas  

Figure 2: Pedestrian Crashes across Census Tracts in Arizona, California, and Texas (Data: 

2020 through 2024) 

 

Table 3: Summary Statistics of Pedestrian Crashes 
 Arizona California Texas 

# Pedestrian crashes per yr 1,858 4,795 7,502 

# Pedestrian fatalities per yr 255 736 814 

# Pedestrian serious injuries per yr 378 1,055 1,607 

# Pedestrian minor injuries per yr 774 1,786 3,015 

# Pedestrian possible injuries per yr 451 1,218 2,066 

Source: Crash data (2020-2024) are from California’s Transportation Injury Mapping System 

(TIMS), Arizona Department of Transportation Crash Query, and Texas’s Crash Records 

Information Systems (CRIS). 

Using Texas as an example, Figure 3 plots the number of pedestrian crashes by time of day and 

day of week over five years across the state. Pedestrian crashes, especially fatalities, mostly occur 

during late nights, particularly on Fridays and Saturdays. The number of crashes peaks between 5 

and 7 a.m. and between 6 and 9 p.m. on weekdays, and between 6 and 9 p.m. on weekends. Two-

thirds of crashes occur at non-intersections, and more than 80% take place in urban areas. Male 

pedestrians involved in crashes are twice as common as female pedestrians, and those between 20 

and 40 years old are more likely to be injured. 



      

   

 

Figure 3: Texas’ Pedestrian Crashes by Time of Day and Day of Week over 5 Years 

(Source: CRIS data, 2020 through 2024) 

METHODS 

To derive pedestrian exposure-based crash rates, this study estimates tract-level WMT and VMT. 

Figure 4 presents the datasets and outlines the steps of the framework, coded in R and Python. In 

estimating WMT, given that nearly half of walk trips occur outside the respondent’s home tract, 

mainly for work, study, and grocery purposes, this study divides the WMT model into two parts: 

a production model and an attraction model. The production model estimates walk trips originating 

in the tract where residents live, using the synthetic dataset developed by Kockelman et al. (2022) 

to produce tract-level estimates of WMT per resident per day. The attraction model, by contrast, 

estimates walk trips drawn to each tract by non-residents. Since demographic information about 

workers, students, or customers within each tract is unavailable and difficult to collect, this model 

combines the average WMT for workers walking outside their home tract with tract job density 

data to provide a simplified estimate of walk trips attracted to each tract. 

Since only 8.8% of all NHTS 2016/2017 person-trips are walking trips, a hurdle regression model 

was used to reflect the high frequency of zero walk distances by respondents on their survey day. 

This two-part model uses a logistic model to predict zeros in the data, followed by a continuous 

log-linear model with normally distributed error terms for all non-zero distances (Cragg 1971; 

Gurmu, 1988; Gurmu and Trivedi, 1996; Lahiri and Xing, 2004). Covariates include the 

respondent’s age and age squared; gender, race and ethnicity; education level and employment 

status; household size and income; home ownership; population density, job density, (public) 

roadway network and intersection density, and the share of parks and lawns in the home tract. The 

practical significance of each covariate is inferred here by increasing that covariate by one SD, 

across the NHTS sample, and comparing the resulting (population-average) predicted 

WMT/person/day value to the (population-weighted) sample average before the modification. 

Those variables having the greatest effect on average predicted walking distance are considered 

the most practically significant, as discussed in the next section. After developing the production 

model (WMT per person per day produced by residents), the estimated parameters were applied 

to predict tract-level daily WMT using the synthetic dataset. On the other hand, WMT occurring 

outside home tracts (e.g., trips attracted to a tract for work, school, or other purposes) were 

estimated using the average walking distance outside home tracts of sampled workers in the NHTS 



      

   

 

dataset. By combining the production and attraction models, this study derives estimates of daily 

WMT for each tract across the United States. 

Figure 4: Steps for Deriving Pedestrian Exposure-based Crash Rates 

To estimate VMT at the road level and aggregate it into tract-level values, this study applies a 

WLS model to predict AADT across road segments, using TxDOT’s Roadway Inventory 

combined with HPMS data from California and Arizona. While the HPMS datasets in California 

and Arizona primarily represent higher functional classes such as interstates and principal arterials, 

the Texas dataset provides more comprehensive AADT values across all roadway types. To 

account for systematic differences between states, the model incorporates a state indicator variable 

and assigns greater weights to California and Arizona observations to enhance transferability, since 

predictions are ultimately required for these states. The weighting scheme is defined as the product 

of road length and functional class, with functional class weights set as follows: interstate and 

other freeways (=3), principal arterials (=2), minor arterials (=1.5), major collectors (=1), minor 

collectors (=0.75), and locals (=0.5), considering the fact that longer, higher-class roads generally 

carry more traffic and are measured with greater accuracy. Model training uses 70% of the HPMS 

data, with the remaining 30% of HPMS records are reserved for validation to evaluate model 

performance prior to statewide prediction. Finally, AADT estimates are integrated with OSM road 

network data and tract-level land use attributes to derive VMT estimates, which are subsequently 

used to calculate pedestrian exposure-based crash rates. 

 
  



      

   

 

RESULTS 

The following section presents key highlights from three parts: (1) the WMT/person/day hurdle 

model, (2) the AADT WLS model and its prediction performance, and (3) pedestrian exposure-

based crash rates in three states. 

Hurdle Model of WMT/Person/Day in Home Tract 

Table 4 presents parameter estimates and practical significance for the logistic and exponential 

portion of the production model. In the logistic model, results indicate that older individuals, 

males, those with higher education levels, and individuals in smaller households without vehicles 

were more likely to walk within their home tract – everything else constant. Among demographic 

and household characteristics, Hispanic individuals were less likely to walk, while education levels 

above high school were positively associated with walking behavior. Land use attributes, including 

higher population and job density in the home tract, were also significantly associated with an 

increased likelihood of walking, suggesting that denser neighborhoods with more parks encourage 

pedestrian activity. In the exponential part, similar to logistic results, older individuals, males, and 

those with higher education levels tended to walk longer distances, whereas workers generally 

walked shorter distances. Household vehicle ownership strongly decreased walking distance as 

well. Unlike the logistic portion, land use variables had limited influence on walking distance, 

indicating that while neighborhood density affects whether individuals walk at all, it has less effect 

on how far they walk once they decide to walk. 

Among all factors, education levels, vehicle ownership, and work status emerged as the strongest 

predictors of walking behavior, as shown in Figure 5. Each SD increase in education levels were 

associated with a 67.9% to 117.6% increase in walking distance. Conversely, a SD increase in 

household vehicle ownership was linked to up to a 91.3% reduction in walking distance, 

highlighting the substitutive effect of vehicles on walking.  

Table 4: Model Estimates for WMT/day/person (Source: NHTS 2016/17 Data) 

Variable 

Logistic Model for 

Pr(WMT>0) 

Exponential Model for 

Pr(WMT = d)  Pract. 

Sign 
Estimate t-stat P-value Estimate t-stat P-value 

Intercept -0.003 -0.1 0.957 -0.108 -2.3 0.019  

Age 0.005 3.0 0.003 0.022 13.7 0.000 78.3% 

Age Squared -8.6e-05 -4.9 0.000 -2.5e-04 -14.3 0.000  

Household Size -0.016 -2.6 0.010 0.002 0.3 0.738 -2.0% 

Male 0.020 1.5 0.129 0.078 6.7 0.000 5.0% 

African American -0.269 -10.1 0.000 -0.057 -2.4 0.016 -8.1% 

Asian -0.080 -2.6 0.009 -0.019 -0.7 0.455 -2.0% 

Other Race 0.014 0.5 0.622 0.015 0.6 0.540 0.7% 

One Car in HH -1.734 -54.2 0.000 -0.121 -6.0 0.000 -53.4% 

Two or More Cars in HH -2.166 -65.8 0.000 -0.167 -7.5 0.000 -63.3% 

Some College or Associates 

Degree 
0.027 1.3 0.190 0.078 4.1 0.000 4.7% 

Bachelor’s Degree 0.320 15.0 0.000 0.105 5.3 0.000 19.3% 

Graduate Degree 0.503 22.7 0.000 0.158 7.9 0.000 30.0% 



      

   

 

Worker -0.515 -31.4 0.000 -0.123 -8.8 0.000 -27.2% 

Tuesday -0.026 -1.1 0.255 -0.006 -0.3 0.785 -1.2% 

Wednesday -0.039 -1.7 0.096 -0.003 -0.2 0.868 -1.5% 

Thursday -0.064 -2.7 0.006 0.010 0.5 0.640 -2.0% 

Friday -0.108 -4.6 0.000 -0.007 -0.3 0.754 -4.1% 

Saturday -0.113 -4.2 0.000 0.006 0.2 0.808 -3.2% 

Sunday -0.088 -3.3 0.001 0.055 2.5 0.014 -1.0% 

Household Income <= $100k -0.102 -5.7 0.000 -0.004 -0.3 0.798 -4.9% 

Household Income <= $200k -0.039 -2.0 0.050 0.047 2.6 0.009 0.4% 

Household Income > $100k -0.015 -0.5 0.603 0.110 4.7 0.000 2.6% 

Hispanic Origin -0.200 -7.9 0.000 2.5e-04 0.0 0.991 -5.6% 

Population Density of Home 

Tract (per acre) 
0.014 21.8 0.000 -6.9e-04 -2.7 0.008 18.9% 

Job Density of Home Tract 

(per acre) 
0.003 6.0 0.000 9.2e-05 0.7 0.492 5.0% 

Intersection Density of Home 

Tract (per acre) 
0.002 9.5 0.000 1.2e-04 0.9 0.344 14.2% 

Road Density of Home Tract 

(miles per acre) 
0.012 7.1 0.000 0.004 3.2 0.001 15.2% 

Share of Parks of Home Tract 

(out of 1) 
-0.160 -2.1 0.034 0.158 2.5 0.014 -0.01% 

Notes: N=211,354, Log-likelihood=-5.129e+04. Base case is White respondent, no car, high school 

degree or lower, monday, and household income less than $50k. Population and job data are from the 

ACS (U.S. Census Bureau, 2020) and the EPA Smart Location Database v3.0 (EPA, 2021), and and the 

percentage of parks is from the NLCD (Dewitz, 2020). 

 
Figure 5: Sensitivity Analysis for WMT/person/day Model 



      

   

 

WLS Model for AADT Prediction 

Parameter estimates and practical significance for the WLS model predicting log-transformed 

AADT are shown in Table 5. Results indicated that functional classification strongly influenced 

AADT, with a one-SD increase in interstate associated with a 53.3% higher traffic volume, while 

minor collectors and local roads were negatively associated with AADT. Roadway design and 

land-use attributes also had notable effects. The number of lanes was associated with a 12.8% 

increase in AADT per SD, while wider lanes showed an exceptionally high 170% increase, mainly 

due to the large standard deviation of lane width in the trainning dataset. Median presence and 

two-way design also increased AADT. Additionally, both job density and road density were 

positively related to AADT, with the latter showing the strongest impact: a one-SD increase in 

road density corresponded to an 86% rise in AADT. 

The model’s predictive performance was evaluated on 51,969 HPMS records, yielding a MAE of 

1.08, RMSE of 1.37, and an R² of 0.476. These results indicate that the model explained nearly 

half of the variation in log(AADT), with predictions deviating from observed log(AADT) values 

by an average of 1.08. Since the errors remain within a reasonable range, the model was applied 

to predict AADT values for the remaining road segments. 

Table 5: WLS Model Estimates 

Variable 

Summary Statistics Model Estimates for log(AADT) 

Mean Std. Dev Estimate t-stat P-value 
% Change in 

AADT per 1 SD 

Intercept - - 4.746 1160 0.000 - 

Interstate 0.060 0.237 1.793 393.4 0.000 53.0% 

Freeway 0.026 0.158 1.326 301.7 0.000 23.3% 

Pr_arterial 0.097 0.297 0.984 266.4 0.000 33.9% 

Min_arterial 0.077 0.267 0.954 263.0 0.000 29.0% 

Maj_collector 0.127 0.333 0.191 56.2 0.000 6.6% 

Min_collector 0.024 0.152 -0.235 -36.6 0.000 -3.5% 

Local 0.589 0.492 -0.268 -49.8 0.000 -12.4% 

Oneway 0.077 0.266 -0.139 -30.3 0.000 -3.6% 

Median 0.187 0.390 0.279 44.9 0.000 11.5% 

# Lanes 2.230 0.906 0.133 106.5 0.000 12.8% 

Lane_width 3.247 5.389 0.184 373.8 0.000 169.5% 

Length 0.378 0.771 -0.063 -220.9 0.000 -4.7% 

Pop_density 2.750 4.011 -0.004 -9.5 0.000 -1.6% 

Job_density 1.523 7.101 0.003 23.1 0.000 2.2% 

Road_density 10.598 9.159 0.068 317.8 0.000 86.4% 

AZ indicator - - 1.603 581.4 0.000 51.8% 

CA indicator - - 3.142 963.4 0.000 91.1% 

TX indicator - - 0.001 0.3 0.000 0.03% 

Notes: N=1,029,955, R2=0.708, Log-likelihood=-2.777e+06. Training AADT data are from TxDOT 

Roadway Inventory dataset (2025), Arizona DOT (2024), and California DOT (2024). Road 
attributes are from TxDOT Roadway Inventory dataset (2025) and OSM (2025). Land use attributes 

are from EPA Smart Location Database v3.0 (EPA, 2021). 



      

   

 

Prediction Performance of the WLS Model (N=51,969) 

Mean Absolute Error 

(log(AADT)) 

Root Mean Square Error 

(log(AADT)) 
R2 

1.08 1.37 0.476 

 

Pedestrian Exposure-based Crash Rates 

 

 State-level Crash Rates U.S. Crash Rates 

 California Arizona Texas Nation 

VMT/capita/year 7974 10529 10345 9641 

WMT/capita/year 88.5 69.4 45.9 63.3 

# Ped Crashes 4795 1858 7502 65317 

per 1 million WMT 1.37 3.74 5.61 3.03 

per 1 billion VMT 15.21 24.68 24.88 23.84 

per 10,000 Capita 1.21 2.60 2.57 1.92 

# Ped Fatalities 736 255 814 7043 

per 1 million WMT 0.21 0.51 0.61 0.33 

per 1 billion VMT 2.33 3.39 2.70 2.57 

per 10,000 Capita 0.19 0.36 0.28 0.21 

# Ped Serious Injury 1055 378 1607  

per 1 million WMT 0.30 0.76 1.20 

per 1 billion VMT 3.35 5.03 5.33 

per 10,000 Capita 0.27 0.53 0.55 

# Ped Minor Injury 1786 774 3015 

per 1 million WMT 0.51 1.56 2.25 

per 1 billion VMT 5.67 10.28 10.00 

per 10,000 Capita 0.45 1.08 1.04 

# Ped Possible Injury 1218 451 2066 

per 1 million WMT 0.35 0.91 1.54 

per 1 billion VMT 3.86 5.99 6.85 

per 10,000 Capita 0.31 0.63 0.71 

# Total Crashes per 1 billion VMT 1272 1764 2183 2203 

# Fatalities per 1 billion VMT 12.2 15.6 14.2 14.3 

# Serious Injuries per 1 billion VMT 32.9 48.0 61.1  

# Minor Injuries per 1 billion VMT 123.0 277.8 298.9 

# Possible Injuries per 1 billion VMT 234.7 350.3 451.5 

# PDO Crashes per 1 billion VMT 869 1073 1357 1246 

Source: 

1. State-level crash data for the most recent five available years (2020-2024) are from California’s 

Transportation Injury Mapping System (TIMS), Arizona Department of Transportation Crash Query, and 

Texas’s Crash Records Information Systems (CRIS); national crash data for the most recent five available years 

(2019-2023) is from NHTS. 



      

   

 

2. WMT is calculated via WMT hurdle regression model based on 2016/17 NHTS sampled data (Li and 

Kockelman, 2025).  
3. VMT is from California DOT, Arizona DOT, Texas DOT, and Department of Energy (2024).  
State population is from U.S. Census Bureau (2024). 

 

This study covers nearly 60,000 census tracts across the United States, excluding those with 

missing data on area, job density, population density, or other land use attributes. Table 3 presents 

summary statistics for all tracts included in the analysis. By applying the WMT/person/day 

production model to the synthetic dataset, estimates of WMT occurring within home tracts were 

generated for each census tract. A total of 41 million walk-miles occur daily within the home tracts 

where walkers reside across the U.S. 

Table 3: Summary Statistics of U.S. Census Tracts (n = 59,920 tracts) 
Variables Mean Median Std Dev Min Max 

Area (per sq. miles) 39.48 1.57 211.48 0.01 9489.81 

Population Density (per sq. miles) 5706.18 2499.26 12331.01 0 257270.06 

Job Density (per sq. miles) 2405.09 522.70 16604.99 0 1165419.68 

Intersection Density (per sq. miles) 73.15 59.01 73.73 0 1558.38 

Network Density (per sq. miles) 15 14.82 10.31 0 96.41 

% Parks 0.1 0.07 0.1 0 0.78 

Among nearly 950,000 total trips in the 2016/17 NHTS data, 12% (about 113,000 trips) were 

work-related. The average WMT per worker per day outside their home tract on the survey day 

was 0.054 miles. Due to data limitations, this study combines the average with the number of jobs 

in each tract to estimate the WMT generated by people working in that tract. As WMT is highly 

correlated with population, the final results of WMT per day per capita across tracts in Texas and 

Houston are presented in Figure 6. On average, WMT per capita per day is 0.245 miles in the U.S., 

compared to 0.7 miles in the UK (UK Department for Transport, 2024). 



      

   

 

 

 

Figure 6: Tract-Level WMT/Day/Capita Estimates in Texas (upper) and Houston (bottom) 

Tract-level VMT per Day across U.S. 

A one-week sample of INRIX data, covering 5.4 million road segments, was used in this analysis. 

The total VMT in the INRIX sample was 17 million miles. According to TxDOT (2024), the 



      

   

 

average daily VMT on all roadways in Texas is 825.4 million miles. Therefore, a modification 

factor of 48.542 was applied, and Figure 7 presents the total VMT in 5,265 tracts across Texas. 

 

 

Figure 7: Tract-Level VMT/Day/Capita Estimates in Texas (upper) and Houston (bottom) 

Pedestrian Crash Rates by Tract in Texas 

Across Texas, the average pedestrian crash rate is 0.491 per 1 million WMT per day across all 

severity levels, and 0.027 per 1 million VMT per day. Table 4 summarizes the total annual number 

of crashes, as well as crash rates per 1 million WMT and per 1 million VMT per day in the state. 

Table 4: Summary Statistics of Pedestrian Crash Rates 



      

   

 

Severity Level 
Total Number per 

Year 

Crash Rate per 1 million 

WMT per day 

Crash Rate per 1 million 

VMT per day 

Fatal 814 0.270 0.048 

Serious Injury 1607 0.533 0.096 

Minor Injury 3015 1.000 0.179 

Possible Injury 2066 0.686 0.123 

Not Injured 595 0.197 0.035 

  



      

   

 

 

 

SUMMARY AND CONCLUSION 

This paper explores the demographic and land use-related factors affecting Americans' walk trips 

and walking distances. The results suggest that younger individuals, those with smaller household 

sizes, no vehicles, and females with higher education and income are more likely to walk, while 

older males without a vehicle and individuals with higher education levels and household incomes 

tend to walk longer distances. Demographic and land use variables influence the decision to walk, 

with demographic factors having a greater impact on walking distance. Pedestrian-related 

facilities, including green land coverage and network density, play a more significant role in the 

probability of taking a walk trip. Based on the WMT/person/day model, a U.S.-wide map for 

WMT/day/capita is generated, with the average WMT for the U.S. being 0.38 miles per person per 

day. This study also identifies areas where Americans walk more, showing that regions with dense 

populations and job opportunities tend to attract more walking. Another question addressed in this 

paper is the identification of the riskiest regions for pedestrians considering their walking 

frequency, with southern states exhibiting a significantly higher pedestrian death risk compared to 

northern states. Among all states, Texas is estimated to have the highest pedestrian death rate (ped 

deaths/WMT). 

This study serves as a preliminary analysis of pedestrian safety. Future work will extend the current 

analysis by incorporating pedestrian crash severity and estimating Bike-Miles Traveled (BMT) to 

assess cyclist safety. Since cyclists may travel across multiple counties, weighted factors will be 

included to reflect cross-boundary movement. These additions will enable a more comprehensive 

understanding of safety concerns for vulnerable road users and support more effective policy 

implementation. 
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