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ABSTRACT 

Smartphone cameras and computer vision (CV) hold significant promise in assisting public 

agencies with enforcing traffic laws and enhancing road safety. This work designs and tests a 

smartphone-based method for automated speed estimation and vehicle identification (license plate, 

make/model, and color recognition) via an automated pipeline to assist enforcement agencies in 

reliably identifying speeders. The CV code accurately recognizes nearly half (46%) the license 

plates’ text on 1,800 images from a Brazil open-source dataset, called UFPR-ALPR. Code tests on 

daytime recordings from hand-held smartphone videos (n=73) and roadside cameras (n = 42) in 

Austin, Texas yield 60.8% accuracy for color detection (among all possible RGB color categories), 
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48.6% on vehicle make/manufacturer identification, and 16.89% on vehicle make and model 

identification. Prediction accuracy for speed estimation (within a 40% range), vehicle make 

(within the top 3 predictions), and license plate recognition (within the top 10 predictions) are 

16.3%, 16.9%, and 29.7%, respectively. This paper also illuminates the legal, technological, and 

practical aspects of using smartphones for enforcement, including the potential use of private 

recordings for enforcement purposes, emphasizing the need to transform the potential of 

smartphone-based CV technologies into practical tools for vital information on traffic violations. 

Keywords: smartphone cameras, computer vision, traffic safety, speed estimation, automated 

enforcement, vehicle identification 

 

1. INTRODUCTION 

Nearly 1.2 million people die each year globally in road traffic crashes (WHO, 2023), and almost 

40,900 were killed on U.S. roadways in 2023 (NCSA, 2023). Speeding is a major contributor to 

U.S. crash counts and severities, with 28.7% of fatalities speeding-related (in 2021, and 29.3% in 

2020) (Stewart, 2023). Active and automated enforcement of speed limits, road design strategies 

(like speed humps and purposeful use of red lights), speed governors on vehicles, and built-in 

tracking devices (like electronic logging devices) can significantly lower speeds, crash counts, and 

injuries (Sadeghi et al. 2016; Distefano and Leonardi, 2019; Rakesh, 2024). It is difficult and costly 

to enforce driving laws using police officers in real-time, and speeders may out-race police cars, 

sometimes delivering serious crashes (Rivara and Mack, 2004). Enforcement agencies have 

limited resources to allocate staff to identify violators and issue tickets on site. More and more 

communities are turning to automated enforcement techniques to prosecute traffic violations, but 

such applications remain very rare in the U.S.  

Automation of fee collection is widely used in various transportation settings, including automated 

collection of road tolls (in the U.S., Singapore, London, Italy, and elsewhere), identification of 

illegally parked vehicles (in almost any developed-nation city setting) (Kashid and Pardeshi, 

2014), identification of reported-as-stolen vehicles (in the U.K., U.S., China, and elsewhere) (Farr 

et al., 2020; Chang and Su, 2010), and enforcement of speed limits and red-light compliance (in 

nearly half of U.S. states, EU, China, and elsewhere) (Heiny et al., 2023; Gössel, 2015). Automated 

noise-limits enforcement was recently implemented in locations around Paris and New York, 

relying on radar detection (the radar device, composed of four microphones, measured noise levels 

every tenth of a second and triangulated the source of the sound) plus cameras for license plate 

reading (Moynihan and Esteban, 2019; NYC.gov, 2022). Presently, Russia may lead the world in 

speed enforcement deployments, with 18,413 speed cameras installed (Statista Research 

Department, 2023). As shown in Figure 1, 19 U.S. states and the District of Columbia permit the 

use of speed cameras (Governors Highway Safety Associate, 2024). These rely on radar waves 

and automatic number plate recognition (ANPR) programs for speed inference and license plate 

reading, either at single-camera stations (most common) or between cameras set miles apart (UK 

Department for Transport, 2007), and can be effective in reducing injuries and alleviating 

regulatory burdens. As of December 2021, thanks to NYC Automated Speed Enforcement 

Program, speeding at fixed camera locations had dropped, on average, 73 percent in 750 school 

zones on all weekdays between 6 AM and 10 PM (NYC, 2023). Seattle’s Speed Safety Camera 

Program reports 18% fewer pedestrian and bicyclist injury crashes at 17 camera sites/segments 

and 5% fewer along 100 adjacent segments (Heiny et al., 2023). 



 

Figure 1: Speed Cameras Use across the U.S. (as of May, 2024) 

Despite their road-safety and law-enforcement effectiveness, stationary cameras for reliable, 

automated traffic surveillance are expensive to purchase and maintain. According to New York 

City’s Independent Budget Office (2016), speed camera costs averaged roughly $120,000 for 

hardware plus installation, and over $150,000 for 5 years of operation and maintenance. Given 

these costs, cities and states cannot afford to install stationary cameras along all road segments. 

Moreover, point cameras can cause drivers to slow down when being watched and then speed up 

downstream, a so-called ‘kangaroo effect’ (Chen et al., 2020) - which reduces effectiveness. 

Instead, allowing private citizens to share video of violations can assist in ensuring better driving 

at all times and in all settings. Citizens have been helping New York City officials enforce 

diesel-truck idling laws for several years; those submitting 3 minutes of video also receive 25 

percent of any fine obtained from heavy-truck owners, which is close to $87.50 (Wilson, 2022). 

This paper designs a smartphone-based method for speed enforcement, which includes 

automated/online speed inference and vehicle identification for automated reporting. This 

comprehensive framework allows for automatic detection of speeding vehicles, and can output 

speeds and other information (such as license plate, color, make, and model) for delivery of 

information to public enforcement agencies. Such practical and low-cost programs can bridge the 

widening violation-enforcement gap, by helping authorities identify regular offenders and take 

action (which may be warnings or directed conversations, ticketing and fees).  

The following paper sections describe (1) prior work and existing speed inference, vehicle license 

plate, color, make, and model recognition techniques; (2) our methods for estimating speeds and 

identifying vehicles; (3) application results in Austin, Texas; (4) summary of survey findings on 

automated enforcement techniques in the U.S.; and (5) conclusions plus opportunities for future 

work.  

2. SYNTHESIS OF RELATED WORK 

Automated speed enforcement consists of two components: speed inference and vehicle 

identification. Speed inference serves as the basis for identifying potential speeders and provides 

estimates of speeds to determine if action needs to be taken. Once a vehicle is identified as 



speeding, vehicle identification is crucial for accurately and automatically identifying vehicles and 

extracting useful information for further use. 

2.1 Speed Inference 

Computer vision (CV) techniques to estimate vehicle speeds typically start by taking video 

recordings plus parameters (like image/size scaling factors) as inputs and then using detection and 

tracking algorithms to estimate distances traveled in a 2D (two-dimension/x-y) domain. Speeds 

are calculated with an estimated distance in the real world (calculated with a scale factor) and the 

time intervals between frames. Methods for distance calculation include ography-based (Kim et 

al., 2018), augmented intrusion line-based (Dahl and Javadi, 2019), pattern- or region-based, and 

image-based (Moazzam et al., 2019) techniques. Calibration plays a crucial role by helping 

calculate both intrinsic camera parameters (like sensor size, resolution, and focal length) and 

extrinsic parameters (such as location relative to the road surface). Vanishing points (VPs) (as 

shown in Figure 2, two VPs are accumulated separately by red and green edges) are commonly 

used for camera calibration and can be estimated using various algorithms, categorized into two 

main groups: The geometry-based methods leverage the fact that VPs occur at the intersection of 

straight lines. These methods estimate VPs by associating lines to VPs (Feng et al., 2010), 

clustering lines (Barinova et al., 2010), or searching within a Gaussian sphere (Collins and Weiss, 

1990). The second methods group focuses on learning to infer VPs from large-scale datasets 

containing VP annotations. For example, Zhai et al. (2016) extracted global image context with a 

deep convolutional network to constrain the location of possible VPs while Chang et al. (2018) 

trained models on one million Google street-view images to detect VPs. Based on estimated VPs 

and assumptions that the camera is free of skew and the principal point is at the center of the frame, 

the camera’s intrinsic and extrinsic parameters can be calculated. These parameters enable a 

transformation between the camera's coordinate system and the world coordinate system. 

However, these methods are developed for fixed traffic cameras, which need further analysis in 

the case of mobile cameras.  

 
Figure 2: Vanishing Points (Source: Dubská et al., 2014) 

2.2 Vehicle Identification 

Vehicle detection algorithms are a type of object detection, and classified as one-stage detectors 

(such as You Only Look Once (YOLO) or Single Shot Detector (SSD)) or two-stage detectors 

(like Region with Convolutional Neural Network (R-CNN) and faster R-CNN). The latter use two 

neural networks to find regions of interest and classify regions, delivering better accuracy but 

longer processing times (Kim et al., 2020). YOLO is a popular method for efficiently detecting 

vehicles and traffic violations - like jumping red-light signals (Ravish et al., 2021). Wang et al. 



(2023) analyzed the performance of YOLOv7 in detecting objects at different frame rates and 

found that it outperformed two-stage detectors in terms of both time and accuracy. Meanwhile, 

DeepSort (Wojke et al., 2017) is often used to track vehicles by adopting two association matrices 

(for object velocity and appearance) to create downstream-frame boxes via Kalman filters and then 

predicting vehicle positions across video frames.  

License plates are essential to vehicle identification. After detecting and tracking vehicles, precise 

license plates can guarantee delivering police tickets to specific vehicles. For instance, license 

plate recognition systems have been used for parking enforcement; they are installed on officer 

cars or at parking lot entrances and exits to scan and identify vehicles violating parking regulations. 

Automatic License Plate Recognition (ALPR) algorithms are the most common way to identify 

unique vehicles. It is a three-step process: first, the license plate is localized by either feature-based 

(Du et al., 2012) or deep learning-based (Laroca et al., 2019) methods, then character segmentation 

is done, and recognition techniques are applied to extract the text. Current techniques use separate 

YOLO models to extract vehicles and license plates. Text recognition on these license plates is 

accomplished through segmentation (a two-step process involving segmentation and a recognition 

model) or segmentation-free methods (a one-step process). There are several optical character 

recognition (OCR) techniques available (EasyOCR, 2021; Kuang et al., 2021; Pytesseract, 2022), 

which also pre-process images (de-skewing, smoothing edges, and converting images to black and 

white) to boost the chances of recognition (Karandish, 2019). ALPR algorithms are mainly 

hindered by poor image quality and low-resolution cameras. Much research has gone into 

improving image quality (Dong et al. 2015, Hamdi et al. 2021), and general adversarial networks 

(GANs) have proven successful in super-resolution reconstruction (Hamdi et al. 2021). While the 

entire pipeline used for ALPR on fixed camera videos (Silva and Jung, 2020; Zhang et al., 2021), 

including drone-recorded videos (Kaimkhani et al., 2022) is included in many publications, the 

accuracy and applicability of ALPR algorithms haven’t been validated for use with mobile phone 

video recordings. 

License plate recognition may fail due to dark (nighttime or shade) conditions, occlusion by heavy 

rain or other vehicles, fake or missing plates, camera lens quality, and zoom level. In cases where 

a license plate is illegible, vehicle color, make, and model information can serve as alternative 

means to narrow the possibilities of the vehicles involved in unlawful driving situations (Lee et 

al., 2019). Changing a vehicle’s plate to commit crimes or avoid enforcement is relatively easy, 

but that is not the case for color, and especially not for make and model features. Proprietary tools 

are available for recognizing vehicle makes and models using traffic cameras installed, but no such 

system exists for general phone cameras. Conversely, open-source approaches, especially 

application programming interfaces (APIs), are accessible and low-priced to help institutions and 

communities worldwide reduce incidents of dangerous driving, death, and other losses. For 

example, PlateRecognizer (2024) advertises vehicle classification (including sedans, sports cars, 

pickup trucks, SUVS, etc.) across over 9,000 makes and models and is used in over 50 countries. 

RapidAPI (2024) detects vehicle color, make model, generation, and orientation for more than 

3,000 models common in the U.S. In terms of color detection, Baek et al. (2007) proposed a SVM 

(Support Vector Machines) method for color classification, and the implementation achieved a 

success rate of 94.92% for 500 outdoor vehicles with five colors (black, white, red, yellow, and 

blue). Tilakaratna et al. (2017) employed a SVM-based method with six features and provided a 

wide range of 13 colors for classification. Their method performs with an accuracy of 87.52% over 

2,500 images. 



3. VEHICLE SPEED DETECTION AND IDENTIFICATION 

This paper assumes that mobile phones are held stationary while recording videos. Since videos 

are analyzed frame by frame, inclination angles and phone movements can be neglected in short 

time intervals.  

3.1 Obtaining VPs and Estimating Speeds 

In this work, VPs are obtained automatically in the first frame using Lu et al.’s (2017) detection 

algorithm. This algorithm iteratively and randomly selects two straight-line segments. It uses their 

intersection point as the first vanishing point (V1) and then uniformly samples a second vanishing 

point V2 on the great circle or equivalent sphere of V1, as shown in Figure 3. Starting from each 

VP, tangent lines of vehicle “blobs” (a group of pixels in a frame of a video that represents a 

vehicle) are found, enabling construction of 3D bounding boxes (Dubská et al., 2014). Using these 

two VPs, two lines are extended to intersect with the points inside the frame. Four intersection 

points from these extended lines provide a rectangle (with lines selected to avoid including at least 

one VP in the rectangle). Assuming the vehicles are moving toward one of the VPs, the perspective 

transformation could be constructed to rectify this rectangle so only the vertical (or horizontal) 

movement of vehicles is preserved. 

  

Figure 3: Procedures of generating two VPs (Source: Lu et al., 2017) 

Denote two points at both ends of the 3D bounding box as A=[ax,ay]T and B=[bx,by]T in the former 

frame, and A' =[ax',ay']T and B' =[bx',by']T in the next frame. Taking vehicle length (L) as a 

reference (assumed here as the median length of U.S. passenger vehicles: 4.5 meters  (Ibiknle, 

2024)), the actual moving distance x would be ||A-A'||·L / ||A-B||. Vehicle speed estimate is then 

that distance (x) multiplied by frame rate, which is 30 frames/second (fps) for most smartphones.  

3.2 Training Data for Vehicle Make and Model 

Several datasets have been used to train models for automated make and model detection. For 

example, Yang et al.’s (2015) CompCar dataset consists of 136,727 internet vehicle images plus 

44,481 surveillance-camera vehicle images across 153 car makes and 1,716 car models. Tafazzoli 

et al.’s (2017) Vehicle Make, Model Recognition Dataset (VMMRDb) was compiled across 

websites and contains 291,752 images for 9,170 distinct vehicle classes, but ended with the 2016 

model year. The average life span of U.S. passenger vehicles is roughly 16 years (Parekh and 

Campau, 2022), and this paper first identified the nation’s 100 most popular vehicles from the 

2017 National Household Travel Survey’s (NHTS’s) 220,430 million trip records (based on total 

vehicle-miles traveled by make/model). We scraped the Internet for 15,639 make/model images 

to use as a training dataset (alongside 300 images of those 100 most-used passenger-vehicle fronts, 

sides, and backs), as shown in Table 1. 



Table 1: Vehicle Make and Model Training Data 

Dataset Training Data  

# Images in total 15,639 web-scraped images + 300 manually-collected images 

# Images for each 

vehicle 

make/model 

100-200 images per make/model (including front, back, and side views 

in different colors and settings) 

Method 
Collected automatically via web scraping & combed manually to remove 

irrelevant images. 

Example images 

 

7 of 174 images for Ford F-Series 

3.3 Overall System Implementation 

This paper relies on a series of deep-learning programs (as shown in Figure 4) for speed estimation 

and vehicle identification, incorporating object detection, object tracking, license plate 

recognition, make, model, and color detection to infer information from videos recorded via a 

mobile device. Vehicle bodies are first detected in each video frame using YOLOv8 code and then 

tracked/connected (across frames) using DeepSort and StrongSort (Du et al., 2023). Speeds are 

estimated via vehicle bounding boxes and VPs (as described above, in Section 3.1). Each cropped 

image of the tracked vehicles is sent to a fine-tuned YOLO v7 model for license plate detection 

(Anpr-Org, 2023). The detected and extracted license plate images are passed to a Super-

Resolution Model (by Wang et al., 2018) and an Easy-OCR (optical character recognition 

(EasyOCR, 2021)) model to infer and output license plate characters. The ColorDetect (2024) 

package and histogram and Özlü’s (2018) histogram and K-nearest neighbors (KNN) techniques 

are then used for color inference. The KNN method compares the bounding box image to 8 base 

colors (white, black, red, green, blue, orange, yellow and violet) and outputs the closest color 

match. Meanwhile, ColorDetect compares it to all possible RGB colors and provides the fraction 

of color present in the vehicle bounding box. 

Meanwhile, the cropped image is sent to a Resnet-50 architecture model for make/model inference 

(He et al., 2016). This Convolutional Neural Network (CNN) model computes the dot product 

between two matrices (this is accomplished by multiplying the corresponding values and adding 

the results to get a single scalar value in parallel (Taye, 2023)) - one representing features of images 

and another representing the convolutional ‘kernel,’ which helps preserve the spatial structures of 

images. It is large enough to capture variations in vehicle makes and models while also lowering 

computing time. In this work, the model is initially pre-trained on the VMMRDb dataset (Tafazzoli 

et al., 2017). Following pre-training, the last layer of the model is replaced with a fully connected 

layer with 100 nodes, as to detect 100 top U.S. vehicle makes and models. The training dataset 

collected in Section 3.2 is then used to fine-tune and re-train the last layer. Freezing the earlier 

layers helps the model retain its learning from the VMMRDb dataset and the amount of data used 

for fine-tuning is relatively small compared to the amount CNNs usually need, so only the last 



layer is re-trained. In addition to using the VMMRDb dataset to pre-train the model, data 

augmentation is employed during fine-tuning to help increase the amount of data the model detects. 

Four transformations are used in this process, see Table 2. These transformations also deal with 

real-world issues like tilted videos, blurry recordings, dark environments, bad weather conditions, 

etc. 

 

Figure 4: Flowchart of Vehicle Speed Estimation and Identification System 

 Table 2: Four Transformations used for Data Augmentation 

Transformation Purpose 

#1: Horizontal Flip Remove the bias towards the vehicle direction. 

#2: Random Rotation Enable the model to see vehicles from different angles. 

#3: Gaussian Blur Provide the model with different levels of blurred images. 

#4: Color Jitter 
Reduce the color bias by changing different aspects of the color (brightness, 

hue, saturation, etc.). 

The crude results for each frame in the video include multiple features such as frame ID, vehicle 

ID, vehicle class, bounding box, color, make, model, license plate bounding box, license plate text, 

and their respective probabilities. To streamline the analysis, a Python script is developed to 

process these results and generate a consolidated output for the entire video. The processed output 

includes a timestamp indicating when predictions are generated, vehicle ID for tracking all 

vehicles in the video, the most frequent vehicle class for each vehicle ID along with the mean 



probability, the mean speed, the most frequent color, the top 3 prevalent color with their portion 

in the image, the top 3 frequent makes and models with their mean probabilities, and the top 10 

frequent license plates. A sample output is displayed in Table 3. 

Table 3. Sample Output of Vehicle Speed Estimation and Identification System  

Output Image Feature Output 

 

Timestamp 2024-03-25 12:15:38 

Vehicle ID 1 

Vehicle Class Car 

Vehicle Class 

Probability (%) 
91% 

Speed (mi/hr) 88.36 

Most Frequent 

Color1 
Black 

Top 3 Prevalent 

Colors + Shares2 

DarkSlateGray: 30.3% 

Black: 25.6% 

Gray: 16.5% 

Top 3 Makes & 

Models 

Honda Accord: 20% 

Ford Edge: 17% 

Toyota Corolla: 13%  

Top 10 Plate 

Estimates3 

SLL4, TOA, SLL##355, 

SII##35, TCAW 

Note:1Most frequent color is among 8 base colors in the KNN model. 2Top 3 prevalent colors is among all possible 

RGB colors. 3When the number of predicted plates is fewer than 10, the model will output all estimates. 4Incomplete 

license plate estimates (like “SLL”) are original predictions. 5Hashtags (#) are to obscure actual values for photo 

anonymity. And SLL##35 is the correct prediction.  

4. RESULTS 

4.1 Performance of License Plate Recognition Model 

The ANPR model was first tested on 1,800 images from the UFPR-ALPR dataset: a publicly 

available and commonly-used set of over 30,000 license plate characters from 150 vehicles (each 

with 30 images, 4500 images in total) captured in real-world scenarios with a 30 FPS frame rate 

in Brazil, where both camera (the cameras used are: GoPro Hero4 Silver, Huawei P9 Lite and 

iPhone 7 Plus) and vehicle are moving. The cameras are installed in another vehicle. Table 4 

presents performance metrics for the YOLOv7 detection model in combination with either the 

Easy-OCR, Super Resolution (Real-ESRGAN) + Easy-OCR, or Super Resolution (Real-

ESRGAN) + Fine-tuned Easy-OCR text recognition model. Figure 5 illustrates improvement of 

the Super Resolution technique. The Easy-OCR model’s output is simply ‘EE’ - with no characters 

identified correctly, while Super Resolution predicts ‘IU B6t5O62’ - with 4 out of 7 characters 

identified correctly. Key reasons for low accuracy of the license plate text recognition model are 

the lack of clarity of extracted images and the fact that the Easy-OCR model is not specifically 

trained to recognize license plate characters. To further increase accuracy, the Easy-OCR model 

is fine-tuned on a small subset of UFPR license plates and synthetic data, reaching up to a 47.06% 

accuracy rate. 

Table 4: Performance of License Plate Recognition Model 



Model 
Model 

Output 
Criteria 

# Correct 

Images 
Accuracy 

License 

Plate 

Detection 

YOLOv7 

License plate 

bounding 

box. 

The predicted 

bounding box covers 

more than 70% area 

of the true one. 

1413/1800 78.50% 

License 

Plate Text 

Recognition 

Easy-OCR 

License plate 

characters. 

The predicted 

license plate is the 

same as the true one. 

252/1800 14.00% 

Super Resolution 

(Real-ESRGAN) + 

Easy-OCR 

407/1800 22.61% 

Super Resolution 

(Real-ESRGAN) + 

Fine-tuned Easy-

OCR 

847/1800 47.06% 

 

  
(a) Output of Easy-OCR (b) Output of Super Resolution + Easy-OCR 

Figure 5: ANPR Improvement using Super Resolution 

4.2 Performance of Overall System 

To access the overall system’s performance in estimating speeds and identifying plate, make, 

model, and color, this work collected 73 smartphone-recorded videos (4 to 5 second durations 

each, within 1.5 miles of the University of Texas at Austin campus) and 42 traffic-camera 

recordings (2 to 3 seconds each, at Austin intersections). These 115 videos contained reasonable 

imagery of 148 separate vehicles during the daytime, and accurate make, model, color, and plate 

information could be obtained by eye (human/manual review of the videos) or from images of 

slowed vehicles downstream at a red signal light. “True” speeds for these 148 vehicles were 

determined using speed radar guns or image-frame-by-frame review. Manual frame review was 

also used to provide make, model, color, and plate numbers. Table 6 displays accuracies for each 

feature, with color identification around 60.8% accuracy. The combined color codes from the KNN 

model and the Detect model excelled in distinguishing gray and black vehicles. However, they 

tended to confuse other paint/body colors because the codes detect the colors of the entire bounding 

box, which includes tires, rims, and other parts of the car body. Vehicle manufacturer (model) 

identification was 48.6% accurate, and model was just 16.9% accurate - when using the Top 3 

model estimates. Speed (within 20% of “true” speed) and license plate (excluding the state 

character) were 16.3% and 29.7% accurate, respectively, due to factors like parked cars and 

handheld/moving or blurry phone-camera images.  

Table 6. Performance Results of Overall System 



Features Criteria 
#Correct/ 

Sample Size 
% Correct 

Color 
Predicted color(s) is correct. (Out of all possible 

RGB colors) 
90/148 60.81% 

Make Actual make is in Top 3 predictions. 72/148 48.65% 

Make & Model 
Actual make + model occur among Top 3 

predictions. 
25/148 16.89% 

Speed Predicted speed within 20% of actual. 24/147 16.33% 

License Plate 
Actual license plate is among top 10 

predictions. 
30/1011 29.70% 

Note: 1License plates are unreadable in 47 testing vehicles. 

5. SURVEY FINDINGS 

To supplement these numeric results, an online survey was distributed to US law enforcement 

agency officers across US states. The survey asked for participants’ thoughts regarding 1) major 

challenges for automated enforcement application inside the US, 2) best applications they have 

seen for automated enforcement (anywhere in the world), 3) use of individuals’ smartphones to 

assist US law enforcement practices, and 4) automated enforcement accompanied by automated 

ticketing of other/non-speeding behaviors (like illegal parking).  

Their responses highlight the effectiveness of automated enforcement systems (in the U.S. and 

elsewhere), with Europe’s time-over-distance (average speed) camera systems and the U.S.’s 

speed + red-light cameras proving effective and defensible. Table 7 shows responses relating to 

top challenges, with public perception, privacy, safety, and practicality listed as top concerns. 

Table 7. Concerns + Challenges in U.S.-based Automated Enforcement 

Area Challenges 

Public 

Perception 

• Public may be unaware of automated enforcement’s benefits. 

• Automated enforcement got off on the wrong foot in the US and looked too much 

like a money grab by local governments and the automated industry. It needs to be 

revenue neutral, focused on safety, with industry kept on a short leash. 

Privacy and 

Related 

Topics 

• Privacy concerns. The vehicle information may be revealed for some commercial 

use. 

• Emergence of public vigilantes. There may be possible abuse in submitting videos, 

like swapping fake plates via AI methods. 

Practicality in 

Application 

• Location of cameras is challenged; law enforcement agencies need to involve 

communities in site selection and support the locations by being transparent with 

data. 

• Officers conducting speed enforcement will eventually have to testify to their 

training and calibration of equipment used.   

• Emergency vehicles should be exempt. 

• In most driving situations, speed naturally increases downhill and decreases uphill; 

decreases in congested traffic, increases in the absence of traffic, and so on. If the 

driver is paying too much attention to the speedometer, he may be failing to pay 

attention to the road ahead, causing more accidents than are prevented with speed 

enforcement technology. 

• Possible vulnerability that the system may be filled with unnecessary submissions. 



Using computer vision with smartphone images to assist in making roadways safer, via follow-up 

enforcement, appears very promising and natural. (Much like anyone calling 911 or other 

emergency hotlines to report what they see with their own eyes, but much better – since safety 

officers can now review the footage themselves.) Several participants recommended working to 

obtain public buy-in, and making such video submissions part of a larger safety campaign, where 

the objective is not revenue but safety. For example, privately-provided images may simply be 

used to increase police patrol of certain locations at certain times of the week or year, as should be 

done when individuals leave messages with 911 and 311 operators in the US, every day. 

Compared to installing cameras for automated enforcement, built-in speed governors appear to be 

the easiest way to limit vehicle speeds. As of now, most U.S. fleet owners install speed governors 

on heavy-duty trucks to ensure safety. Although the cost of built-in speed governors is not well-

calculated, a standard Automated Emergency Braking with Forward Collision Warnings, Lane 

Departure Warnings, and Adaptive Cruise Control is estimated to cost a fleet over $4,000 

(FMCSA, 2024). Estimating the costs for medium-duty trucks is more complex due to necessary 

vehicle modifications and older chassis that may lack the wiring in place for some sensors or driver 

interfaces. Speed governors on trucks are implemented through the electronic control units (ECU), 

which can be set at factory, or changed by OEM-specific software. Nevertheless, one hidden 

challenge arises when the vehicle needs to deal with significant segment-based speed limit 

changes. In such scenarios, imperfect functioning of segment-based speed limiters could place 

drivers in difficult situations. 

While large fleets are more likely to use speed governors, most fleets in the U.S. are small or 

independent. Some drivers and car manufacturers may be unhappy with any system that might 

reduce vehicle performance. In this context, a monitoring-only application would be more suitable. 

For instance, Life360 app offers paid location-based services that can generate reports for 

monitoring driving behaviors. Smartphones, equipped with necessary sensors (such as GPS and 

accelerometers), can measure vehicle speeds and accelerations. Therefore, it is technically feasible 

to develop an app that tracks and reports speed versus set speed limits. However, this issue is more 

about market interests and politics. Additionally, maintaining such a system would require a 

comprehensive database of road segments and speed limits.  

6. CONCLUSIONS AND FUTURE WORK 

This study demonstrates the potential and practicality of a smartphone-based method in the context 

of automated speed enforcement to improve road safety. The license plate number recognition 

model detected 78.5% of license plates and then accurately recognized 47.1% of license plates’ 

text when tested on 1,800 images from Brazil’s UFPR-ALPR dataset. The entire system achieves 

16.33% accuracy in estimating speeds, with errors staying with 20% range, and 29.70% in 

recognizing license plates. As a supplement to identifying vehicles, it can reach up to 60.81% and 

48.65% correctness in detecting vehicle colors and makes. This research aims to envision further 

individual engagement in regulating traffic laws and the autonomous technologies involvement in 

this process. It is evident that these technologies can play a pivotal role in enhancing road safety 

and traffic management, and additional research will be key to realizing these goals. This work 

also investigates the common challenges of automated enforcement and future huddles and 

recommendations of the practical use of private recordings for enforcement purposes. 

To improve speed estimation accuracy, using the specific length of each vehicle (by make/model) 

should be used, instead of a single average or median assumption as currently used (especially for 



very long or unusually short vehicles). The model for color detection can be modified to focus on 

specific parts of the vehicle, such as the hood and trunk, rather than considering the entire image 

within the bounding box. And the entire system can be more accurate by training the model with 

moving camera data, collecting and labeling more data, and working to eliminate noise from 

nearby vehicles. Identification of a vehicle's make, model, year, and color will prove useful when 

license plates are obstructed or missing (or falsified), increasing the likelihood of successful law 

enforcement for safer roadways. Mobile camera properties, like aperture size and shutter speed, 

can be experimented with to improve video recordings without motion blur.  

Directions for future research include extending the analysis to more complex scenarios such as 

nighttime videos (in lighted and unlighted settings) when speed and plate inference will probably 

prove more difficult and with moving cameras (as is common with hand-held devices and/or when 

inside nearby vehicles). Another extension is developing a mobile smartphone application for 

regular or automated submission of flagged video segments with precise position/location details 

(during actual recording rather than user-estimated values). The scalability of the presented idea 

has to be explored to see how it will perform for a dense observation environment, such as, 

expressways and city center.  

Another endeavor is building comprehensive maps for relevant enforcement agency response. 

Encouraging enforcement agencies to adopt private-phone video for enforcement support may be 

challenging due to data privacy concerns - and the potential for fake video submissions. But 

automakers like GM are already surveiling and sharing such driving behavior with insurance 

companies. Currently, many US states do not allow the use of traffic cameras or speed cameras for 

law enforcement purposes, but other nations rely heavily on and benefit greatly (in safety, effort 

and cost) from automated enforcement. From a system implementation standpoint, an end-to-end 

system that can optimize the current system is preferred. Automating the entire system decreases 

human involvement and manual costs. 
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