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1 The momentum equations for viscous flows in 2-D

We consider a fluid particle in two dimensions (x, z) as shown in Figure 1, along with the normal stresses
σxx and σzz and shear stresses τ acting on all its sides. The fluid is assumed to be incompressible with
density ρ. The flow-field has velocities u and w, and the particle is subjected to accelerations ax and az and
a gravitational acceleration g as shown in Figure 1. In this section we will derive the momentum equations
that govern the flow.

Figure 1: Fluid particle in 2-D and the stresses acting on it.

First we apply Newton’s Law along x:

ΣFx = (Dm)ax (1)

or
σExxDz − σWxxDz + τNDx− τSDx = (Dm)ax (2)

or
(σExx − σWxx)Dz + (τN − τS)Dx = (Dm)ax (3)

or
∂σxx
∂x

DxDz +
∂τ

∂z
DzDx = (Dm)ax (4)

but
Dm = ρDxDz (5)

and
ax =

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
(6)



CE358 (Introductory Ocean Engineering) - Fall 2024 - c©Prof. Spyros A. Kinnas 2

Finally equation (4) leads to the momentum equation along x:

ρ

[
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

]
=
∂σxx
∂x

+
∂τ

∂z
(7)

Similarly, by applying Newton’s Law along z:

ΣFz = (Dm)az (8)

or
σNzzDx− σSzzDx+ τEDz − τWDz −DW = (Dm)az (9)

or
(σNzz − σSzz)Dx+ (τE − τW )Dz −DW = (Dm)az (10)

or
∂σzz
∂z

DzDx+
∂τ

∂x
DxDz −DW = (Dm)az (11)

but
Dm = ρDxDz and DW = g(Dm) = gρDxDz (12)

and
az =

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
(13)

Finally equation (11) leads to the momentum equation along z:

ρ

[
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

]
=
∂σzz
∂z

+
∂τ

∂x
− ρg (14)

In addition, the continuity equation for incompressible fluids holds:

∂u

∂x
+
∂w

∂z
= 0 (15)

2 Newtonian fluids and the Navier-Stokes equations
For Newtonian fluids (fluids for most applications) the following constitutive equations apply:

σxx = −p+ 2µ
∂u

∂x
(16)

σzz = −p+ 2µ
∂w

∂z
(17)

τ = µ

(
∂u

∂z
+
∂w

∂x

)
(18)

where µ is the dynamic viscosity of the fluid, and p is the pressure.
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By plugging equations (16), (17), and (18) for the stresses into the momentum equations (7) and (14),
and by using the continuity equation (15) we get the Navier-Stokes equations:

ρ

[
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

]
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂z2

)
(19)

and

ρ

[
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

]
= −∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂z2

)
− ρg (20)

The Navier-Stokes equations apply to both laminar and turbulent flows. However, in the case of
turbulent flows their numerical solution requires very fine resolution in both time and space, and that
requires significant computational resources and takes very long computing time. These methods are
called DNS (Direct Numerical Simulations). However, a less laborious way of dealing with turbulent
flows is provided from averaging the flow-field in time, as presented in the next section. Figure 2 shows
a comparison flow visualizations of the instantaneous versus the average of a flow-filed around a sphere.

3 Reynolds averaging of the momentum equations, and the turbu-
lent Reynolds stresses

In the case of turbulent flows we decompose the velocities u and w into their average (in time) values ū
and w̄ and the turbulent velocities u′ and w′:

u = ū+ u′ (21)
w = w̄ + w′ (22)

By taking the average in time of the momentum equations (7) and (14), as shown in Appendix A, the
averaged momentum equations become:

ρ

[
∂ū

∂t
+ ū

∂ū

∂x
+ w̄

∂ū

∂z

]
=
∂(σ̄xx − ρu′u′)

∂x
+
∂(τ̄ − ρu′w′)

∂z
(23)

ρ

[
∂w̄

∂t
+ ū

∂w̄

∂x
+ w̄

∂w̄

∂z

]
=
∂(σ̄zz − ρw′w′)

∂z
+
∂(τ̄ − ρu′w′)

∂x
− ρg (24)

The three Reynolds turbulent stresses are then defined as follows:

−ρu′u′ = −ρu′2;−ρw′w′ = −ρw′2;−ρu′w′ (25)

In addition, the continuity equation also applies in the case of the mean velocities ū and w̄:

∂ū

∂x
+
∂w̄

∂z
= 0 (26)
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Figure 2: Views of instantaneous and average flow over a sphere. From Album of Fluid Motion.

4 Modeling of the Reynolds turbulent stresses
The Reynolds turbulent stresses can be modeled by using the Boussinesq approximation:

−ρu′u′ = −ρu′2 = 2µτ
∂ū

∂x
− ρk (27)

−ρw′w′ = −ρw′2 = 2µτ
∂w̄

∂z
− ρk (28)

−ρu′w′ = µτ

(
∂ū

∂z
+
∂w̄

∂x

)
(29)

where k is the turbulence kinetic energy (TKE), which is associated with the kinetic energy of the
turbulent velocities per unit mass, and is defined as follows:

k =
1

2

[
u′2 + w′2

]
(30)

https://courses.washington.edu/me431/handouts/Album-Fluid-Motion-Van-Dyke.pdf
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µτ is the turbulent (dynamic) viscosity or eddy viscosity, and can be determined from the following
equation:

µτ = ρCµ
k2

ε
(31)

where Cµ = 0.09 is a constant, and ε is the turbulence dissipation rate defined as follows:

ε = ν

[
∂u′

∂x

∂u′

∂x
+
∂w′

∂x

∂w′

∂x
+
∂u′

∂z

∂u′

∂z
+
∂w′

∂z

∂w′

∂z

]
(32)

where ν = µ
ρ

is the kinematic viscosity of the fluid.
Note the similarity of equations (27), (28), and (29) with those of the viscous terms in the constitutive

equations (16), (17), and (18).
k and ε are satisfying each their transport equations, which in the case of the very popular k − ε

model can be found in Turbulence Modeling for CFD by D.C. Wilcox (3rd ed., 2006), where many other
turbulence models are also described. We do not include these equations here.

A Details of the Reynolds averaging of the momentum equations
In the case of turbulent flows the momentum equations, also provided again below, are averaged in time.

ρ

[
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

]
=
∂σxx
∂x

+
∂τ

∂z
(33)

ρ

[
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

]
=
∂σzz
∂z

+
∂τ

∂x
− ρg (34)

We define the average Ā of a quantity A(x, z, t) over a time interval from t to t+ ∆t as follows:

Ā =
1

∆t

∫ t+∆t

t

Adt (35)

Note that the following expressions hold:

∂A

∂x
=

1

∆t

∫ t+∆t

t

∂A

∂x
dt =

∂

∂x

(
1

∆t

∫ t+∆t

t

Adt

)
=
∂Ā

∂x
(36)

A+B = Ā+ B̄ (37)

AB 6= ĀB̄ (38)

ĀB = ĀB̄ (39)

From the averaging of the continuity equation (15) we get:
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∂u

∂x
+
∂w

∂z
=
∂u

∂x
+
∂w

∂z
= 0 (40)

which finally leads to:

∂ū

∂x
+
∂w̄

∂z
= 0 (41)

We also decompose the velocities u andw into their average value ū and w̄ and the turbulent velocities
u′ and w′:

u = ū+ u′ (42)
w = w̄ + w′ (43)

Note that, by their definition, the average values of the turbulent velocities are zero:

u′ = 0 (44)
w′ = 0 (45)

Then starting from equation (15) we get:

∂(ū+ u′)

∂x
+
∂(w̄ + w′)

∂z
=
∂ū

∂x
+
∂w̄

∂z
+
∂u′

∂x
+
∂w′

∂z
= 0 (46)

and by using equation (26) we get:

∂u′

∂x
+
∂w′

∂z
= 0 (47)

So, from the equations above we see that both, the average velocities and the turbulent velocities,
satisfy the continuity equation.

We will now take the average of the momentum equation (33) along x,

ρ

[
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

]
=
∂σxx
∂x

+
∂τ

∂z
(48)

ρ

[
∂ū

∂t
+ u

∂u

∂x
+ w

∂u

∂z

]
=
∂σ̄xx
∂x

+
∂τ̄

∂z
(49)

We then take the averages of the following terms which appear on the left hand side of equation (49)

u
∂u

∂x
= (ū+ u′)

∂(ū+ u′)

∂x
= ū

∂ū

∂x
+ ū

∂u′

∂x
+ u′

∂ū

∂x
+ u′

∂u′

∂x
=

= ū
∂ū

∂x
+ ū

∂u′

∂x
+ u′

∂ū

∂x
+ u′

∂u′

∂x
(50)
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w
∂u

∂z
= (w̄ + w′)

∂(ū+ u′)

∂z
= w̄

∂ū

∂z
+ w̄

∂u′

∂z
+ w′∂ū

∂z
+ w′∂u

′

∂z
=

= w̄
∂ū

∂z
+ w̄

∂u′

∂z
+ w′∂ū

∂z
+ w′∂w

′

∂z
(51)

and by using the fact that u′ = 0 and w′ = 0 the two equations above simplify to:

u
∂u

∂x
= ū

∂ū

∂x
+ u′

∂u′

∂x
(52)

w
∂u

∂z
= w̄

∂ū

∂z
+ w′∂u

′

∂z
(53)

We then use the following identities for the derivatives of a product to get:

u′
∂u′

∂x
=
∂u′u′

∂x
− ∂u′

∂x
u′ =

∂u′u′

∂x
− ∂u′

∂x
u′ (54)

w′∂u
′

∂z
=
∂w′u′

∂z
− ∂w′

∂z
u′ =

∂w′u′

∂z
− ∂w′

∂z
u′ (55)

Plugging the expressions above into equations (52) and (53) we get:

u
∂u

∂x
= ū

∂ū

∂x
+
∂u′u′

∂x
− ∂u′

∂x
u′ (56)

w
∂u

∂z
= w̄

∂ū

∂z
+
∂w′u′

∂z
− ∂w′

∂z
u′ (57)

Adding the two equations above we get:

u
∂u

∂x
+ w

∂u

∂z
= ū

∂ū

∂x
+ w̄

∂ū

∂z
+
∂u′u′

∂x
+
∂w′u′

∂z
− ∂u′

∂x
u′ − ∂w′

∂z
u′ (58)

Then by using equation (47) we get for the last two terms of the equation above:

− ∂u′

∂x
u′ − ∂w′

∂z
u′ = −u′

[
∂u′

∂x
+
∂w′

∂z

]
= 0 (59)

which renders

u
∂u

∂x
+ w

∂u

∂z
= ū

∂ū

∂x
+ w̄

∂ū

∂z
+
∂u′u′

∂x
+
∂w′u′

∂z
(60)

And by plugging equation (60) into equation (49) we get:

ρ

[
∂ū

∂t
+ ū

∂ū

∂x
+ w̄

∂ū

∂z
+
∂u′u′

∂x
+
∂w′u′

∂z

]
=
∂σ̄xx
∂x

+
∂τ̄

∂z
(61)
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which, with some rearrangement, leads to the averaged momentum equation along x

ρ

[
∂ū

∂t
+ ū

∂ū

∂x
+ w̄

∂ū

∂z

]
=
∂(σ̄xx − ρu′u′)

∂x
+
∂(τ̄ − ρu′w′)

∂z
(62)

Similarly, it can be shown that the average of equation (34) leads to:

ρ

[
∂w̄

∂t
+ ū

∂w̄

∂x
+ w̄

∂w̄

∂z

]
=
∂(σ̄zz − ρw′w′)

∂z
+
∂(τ̄ − ρu′w′)

∂x
− ρg (63)

The three Reynolds turbulent stresses are then defined as follows:

−ρu′u′ = −ρu′2;−ρw′w′ = −ρw′2;−ρu′w′ (64)
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