
PLEASE RETURN TABLES AFTER THE TEST/FINAL EXAM

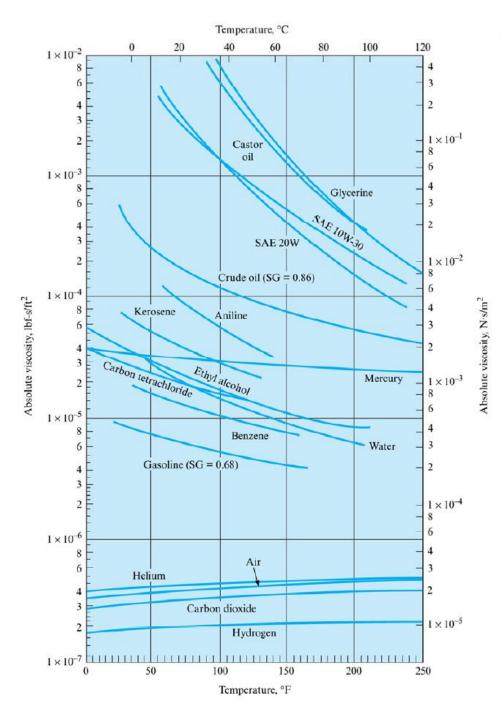
$$A = \frac{bh}{2}$$
$$\overline{I}_{XX} = \frac{bh^3}{36}$$

$$\begin{array}{c|c}
 & h \\
 & x \\
 & \downarrow \\
 & h \\
 & \downarrow \\
 & \downarrow \\
 & x \\
 & \downarrow \\
 & x \\
 & I_{xx} = \frac{bh^2}{12}
\end{array}$$

$$x - \frac{A = 2.5981L^2}{I_x = 0.5127L^4}$$

$$x - \underbrace{ \left(\begin{array}{c} \overline{A} \\ a \\ \hline \end{array} \right)}_{X} X = \frac{\pi ab}{4}$$

$$\overline{I}_{XX} = \frac{\pi a^3 b}{4}$$


Volume and area formulas:

$$A_{circle} = \pi r^2 = \pi D^2/4$$

$$A_{sphere surface} = \pi D^2$$

$$V_{sphere} = \frac{1}{6}\pi D^3 = \frac{4}{3}\pi r^3$$

$$V_{cone} = \frac{1}{12}\pi D^2 h = \frac{1}{3}\pi r^3 h$$

FIGURE A.2

Absolute viscosities of certain gases and liquids (*Data* source: Fluid Mechanics, 5th ed., V. L. Streeter, 1971, McGraw-Hill, New York.)

FIGURE A.3

Kinematic viscosities of certain gases and liquids. The gases are at standard pressure. (Data source: Fluid Mechanics, 5th ed., V. L. Streeter, McGraw-Hill, New York.)

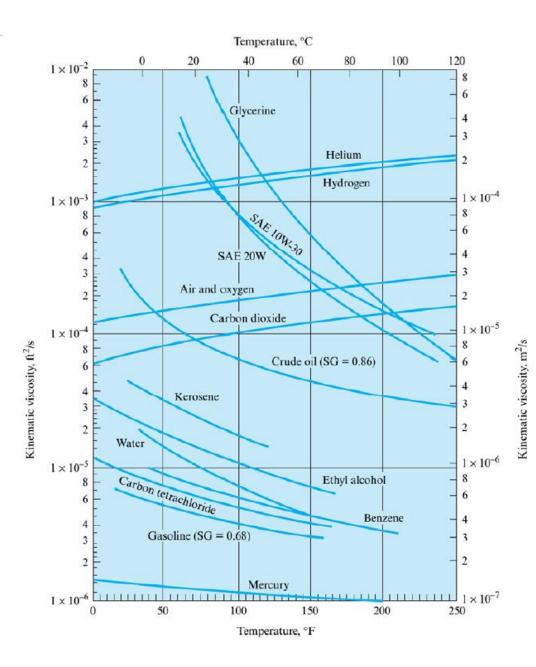


TABLE A.2 Physical Properties of Gases [$T = 15^{\circ}\text{C} (59^{\circ}\text{F}), p = 1 \text{ atm}$]

Gas	Density kg/m³ (slugs/ft³)	Kinematic Viscosity m²/s (ft²/s)	R Gas Constant J/kg K (ft-lbf/slug-°R)	$ \frac{c_p}{J} $ $ \frac{J}{kg K} $ $ \left(\frac{Btu}{Ibm^{\circ}R}\right) $	$k = \frac{c_p}{c_v}$	S Sutherland's Constant K(°R)
Air	1.22 (0.00237)	1.46×10^{-5} (1.58×10^{-4})	287 (1716)	1004 (0.240)	1.40	111 (199)
Carbon dioxide	1.85 (0.0036)	7.84×10^{-6} (8.48 × 10 ⁻⁵)	189 (1130)	841 (0.201)	1.30	222 (400)
Helium	0.169 (0.00033)	1.14×10^{-4} (1.22×10^{-3})	2077 (12,419)	5187 (1.24)	1.66	79.4 (143)
Hydrogen	0.0851 (0.00017)	1.01×10^{-4} (1.09×10^{-3})	4127 (24,677)	14,223 (3.40)	1.41	96.7 (174)
Methane (natural gas)	0.678 (0.0013)	1.59×10^{-5} (1.72×10^{-4})	518 (3098)	2208 (0.528)	1.31	198 (356)
Nitrogen	1.18 (0.0023)	1.45×10^{-5} (1.56×10^{-4})	297 (1776)	1041 (0.249)	1.40	107 (192)
Oxygen	1.35 (0.0026)	1.50×10^{-5} (1.61×10^{-4})	260 (1555)	916 (0.219)	1.40	

Data source: V. L. Streeter (ed.), Handbook of Fluid Dynamics, McGraw-Hill Book Company, New York, 1961; also R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Science, CRC Press, Inc. Cleveland, 1973; and Handbook of Chemistry and Physics, Chemical Rubber Company, 1951.

TABLE A.3 Mechanical Properties of Air at Standard Atmospheric Pressure

Temperature	Density	Specific Weight	Dynamic Viscosity	Kinematic Viscosity	
	kg/m³	N/m³	N·s/m²	m ² /s	
−20°C	1.40	13.70	1.61×10^{-5}	1.16×10^{-5}	
−10°C	1.34	13.20	1.67×10^{-5}	1.24×10^{-5}	
0°C	1.29	12.70	1.72×10^{-5}	1.33×10^{-5}	
10°C	1.25	12.20	1.76×10^{-5}	1.41×10^{-5}	
20°C	1.20	11.80	1.81×10^{-5}	1.51×10^{-5}	
30°C	1.17	11.40	1.86×10^{-5}	1.60×10^{-5}	
40°C	1.13	11.10	1.91 × 10 ⁻⁵	1.69×10^{-5}	
50°C	1.09	10.70	1.95×10^{-5}	1.79×10^{-5}	
60°C	1.06	10.40	2.00×10^{-5}	1.89×10^{-5}	
70°C	1.03	10.10	2.04×10^{-5}	1.99×10^{-5}	
80°C	1.00	9.81	2.09×10^{-5}	2.09×10^{-5}	
90°C	0.97	9.54	2.13 × 10 ⁻⁵	2.19×10^{-5}	
100°C	0.95	9.28	2.17×10^{-5}	2.29×10^{-5}	
120°C	0.90	8.82	2.26×10^{-5}	2.51×10^{-5}	
140°C	0.85	8.38	2.34×10^{-5}	2.74×10^{-5}	
160°C	0.81	7.99	2.42×10^{-5}	2.97×10^{-5}	
180°C	0.78	7.65	2.50×10^{-5}	3.20×10^{-5}	
200°C	0.75	7.32	2.57×10^{-5}	3.44×10^{-5}	
	slugs/ft ³	lbf/ft³	lbf-s/ft ²	ft²/s	
0°F	0.00269	0.0866	3.39×10^{-7}	1.26×10^{-4}	
20°F	0.00257	0.0828	3.51 × 10 ⁻⁷	1.37×10^{-4}	
40°F	0.00247	0.0794	3.63×10^{-7}	1.47×10^{-4}	
60°F	0.00237	0.0764	3.74×10^{-7}	1.58×10^{-4}	
80°F	0.00228	0.0735	3.85×10^{-7}	1.69×10^{-4}	
100°F	0.00220	0.0709	3.96×10^{-7}	1.80×10^{-4}	
120°F	0.00213	0.0685	4.07×10^{-7}	1.91×10^{-4}	
150°F	0.00202	0.0651	4.23×10^{-7}	2.09×10^{-4}	
200°F	0.00187	0.0601	4.48×10^{-7}	2.40×10^{-4}	
300°F	0.00162	0.0522	4.96×10^{-7}	3.05×10^{-4}	
400°F	0.00143	0.0462	5.40×10^{-7}	3.77×10^{-4}	

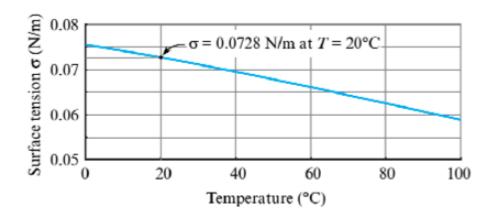

Data source: R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Science, CRC Press, Inc., Cleveland, 1973. Copyright © 1973 by The Chemical Rubber Co., CRC Press, Inc.

TABLE A.4 Approximate Physical Properties of Common Liquids at Atmospheric Pressure

Liquid and Temperature	Density kg/m ³ (slugs/ft ³)	Specific Gravity	Specific Weight N/m³ (lbf/ft³)	Dynamic Viscosity N·s/m² (lbf-s/ft²)	Kinematic Viscosity m²/s (ft²/s)	Surface Tension N/m* (lbf/ft)
Ethyl alcohol ⁽¹⁾⁽³⁾ 20°C (68°F)	799 (1.55)	0.79	7,850 (50.0)	1.2×10^{-3} (2.5×10^{-5})	1.5×10^{-6} (1.6×10^{-5})	2.2×10^{-2} (1.5×10^{-3})
Carbon tetrachloride ⁽³⁾ 20°C (68°F)	1,590 (3.09)	1.59	15,600 (99.5)	9.6×10^{-4} (2.0×10^{-5})	6.0×10^{-7} (6.5×10^{-6})	2.6×10^{-2} (1.8×10^{-3})
Glycerine ⁽³⁾ 20°C (68°F)	1,260 (2.45)	1.26	12,300 (78.5)	$1.41 \\ (2.95 \times 10^{-2})$	$1.12 \times 10^{-3} $ (1.22×10^{-2})	6.3×10^{-2} (4.3×10^{-3})
Kerosene ⁽¹⁾⁽²⁾ 20°C (68°F)	814 (1.58)	0.81	8,010 (51)	1.9×10^{-3} (4.0×10^{-5})	2.37×10^{-6} (2.55×10^{-5})	2.9×10^{-2} (2.0×10^{-3})
Mercury ⁽¹⁾⁽³⁾ 20°C (68°F)	13,550 (26.3)	13.55	133,000 (847)	1.5×10^{-3} (3.1 × 10 ⁻⁵)	1.2×10^{-7} (1.3×10^{-6})	4.8×10^{-1} (3.3 × 10 ⁻²)
Sea water 10°C at 3.3% salinity	1,026 (1.99)	1.03	10,070 (64.1)	1.4×10^{-3} (2.9 × 10 ⁻⁵)	1.4×10^{-6} (1.5×10^{-5})	
Oils—38°C (100°F) SAE 10W ⁽⁴⁾	870 (1.69)	0.87	8,530 (54.4)	3.6×10^{-2} (7.5×10^{-4})	4.1×10^{-5} (4.4×10^{-4})	
SAE 10W-30 ⁽⁴⁾	880 (1.71)	0.88	8,630 (55.1)	6.7×10^{-2} (1.4 × 10 ⁻³)	7.6×10^{-5} (8.2×10^{-4})	
SAE 30 ⁽⁴⁾	880 (1.71)	0.88	8,630 (55.1)	1.0×10^{-1} (2.1×10^{-3})	$1.1 \times 10^{-4} $ (1.2×10^{-3})	

^{*}Liquid-air surface tension values.

Data source: (1) V. L. Streeter, Handbook of Fluid Dynamics, McGraw-Hill, New York, 1961; (2) V. L. Streeter, Fluid Mechanics, 4th ed., McGraw-Hill, New York, 1966; (3) A. A. Newman, Glycerol, CRC Press, Cleveland, 1968; (4) R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Sciences, CRC Press, Cleveland, 1973.

Surface tension of water

572 APPENDIX

TABLE A.5 Approximate Physical Properties of Water* at Atmospheric Pressure

Temperature	Density	Specific Weight	Dynamic Viscosity	Kinematic Viscosity	Vapor Pressure
	kg/m ³	N/m³	N·s/m ²	m²/s	N/m² abs
0°C	1000	9810	1.79×10^{-3}	1.79×10^{-6}	611
5°C	1000	9810	1.51×10^{-3}	1.51×10^{-6}	872
10°C	1000	9810	1.31×10^{-3}	1.31 × 10 ⁻⁶	1,230
15°C	999	9800	1.14×10^{-3}	1.14×10^{-6}	1,700
20°C	998	9790	1.00×10^{-3}	1.00×10^{-6}	2,340
25°C	997	9781	8.91×10^{-4}	8.94×10^{-7}	3,170
30°C	996	9771	7.97×10^{-4}	8.00 × 10 ⁻⁷	4,250
35°C	994	9751	$7.20 imes 10^{-4}$	7.24×10^{-7}	5,630
40°C	992	9732	6.53×10^{-4}	6.58×10^{-7}	7,380
50°C	988	9693	5.47×10^{-4}	5.53 × 10 ⁻⁷	12,300
60°C	983	9643	4.66×10^{-4}	4.74×10^{-7}	20,000
70°C	978	9594	4.04×10^{-4}	4.13×10^{-7}	31,200
80°C	972	9535	3.54×10^{-4}	3.64×10^{-7}	47,400
90°C	965	9467	3.15×10^{-4}	3.26×10^{-7}	70,100
100°C	958	9398	2.82×10^{-4}	2.94×10^{-7}	101,300
	slugs/ft ³	lbf/ft ³	lbf-s/ft ²	ft²/s	psia
40°F	1.94	62.43	3.23×10^{-5}	1.66×10^{-5}	0.122
50°F	1.94	62.40	2.73×10^{-5}	1.41 × 10 ⁻⁵	0.178
60°F	1.94	62.37	2.36×10^{-5}	1.22×10^{-5}	0.256
70°F	1.94	62.30	2.05×10^{-5}	1.06×10^{-5}	0.363
80°F	1.93	62.22	1.80×10^{-5}	0.930×10^{-5}	0.506
100°F	1.93	62.00	1.42×10^{-5}	0.739×10^{-5}	0.949
120°F	1.92	61.72	1.17×10^{-5}	0.609×10^{-5}	1.69
140°F	1.91	61.38	0.981×10^{-5}	0.514×10^{-5}	2.89
160°F	1.90	61.00	0.838×10^{-5}	0.442×10^{-5}	4.74
180°F	1.88	60.58	0.726×10^{-5}	0.385×10^{-5}	7.51
200°F	1.87	60.12	0.637×10^{-5}	0.341 × 10 ⁻⁵	11.53
212°F	1.86	59.83	0.593×10^{-5}	0.319×10^{-5}	14.70

^{*}Notes: Bulk modulus E_{ν} of water is approximately 2.2 GPa (3.2 \times 10⁵ psi).

Data source: R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Science, CRC Press, Inc., Cleveland, 1973. Copyright © 1973 by The Chemical Rubber Co., CRC Press, Inc.