
River bathymetry analysis

in the presence of submerged large woody debris

by

Laurent White, B.S.

Thesis

Presented to the Faculty of the Graduate School

of The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science of Engineering

The University of Texas at Austin

December 2003

Copyright

by

Laurent White

2003

River bathymetry analysis

in the presence of submerged large woody debris

APPROVED BY SUPERVISING

COMMITTEE:

brh
Ben R. Hodges

brh
David R. Maidment

Acknowledgments

In preparing this thesis, I have been fortunate to receive valuable assistance,

suggestions, and support from my supervisor Dr. Ben R. Hodges. I would like

to thank him for the invaluable experience gained during my Master’s program

at the University of Texas at Austin. I would also like to thank Dr. David R.

Maidment for reading this thesis. My gratitude also goes to Tim Osting for his

precious help and advice on this work, and to the Texas Water Developement

Board for funding this project and allowing me to participate in field work.

Finally, I would like to thank Alicia for proofreading the ackowledgments.

iv

River bathymetry analysis

in the presence of submerged large woody debris

by

Laurent White

The University of Texas at Austin, 2003

SUPERVISOR: Ben R. Hodges

The frequent use of two-dimensional hydrodynamic river models requires

more detailed bathymetry surveys. For smooth bathymetries, there is little

difficulty in developing accurate translations from survey data to model; how-

ever, in rivers with significant bottom structure (e.g., large woody debris –

LWD), simple data averaging and interpolation methods may lead to mis-

representation of the bottom bathymetry. It is necessary to distinguish in

the data set what is true bathymetry from what is caused by large woody

debris. Two groups of methods are investigated to serve this objective: statis-

tical techniques and filtering techniques. In the first group, two approaches are

considered: 1) a σ- discriminator method is developed and shown to effectively

separate LWD from the background bathymetry, and 2) a scale-space analysis

technique is applied to the same problem, but is shown to be ineffective for

clearly discriminating LWD from the background bathymetry. In the second

group, linear and nonlinear filters are tested. A synthesized bathymetry is

used to compare relative errors associated with each method. Median filtering

proves to be the best technique for removing LWD impulse spikes while leav-

ing the background bathymetry relatively unchanged. A method of selecting

v

the minimum filter order based upon the physical scales of the LWD and the

statistics of the data separation in the survey is proposed.

vi

Contents

1 Introduction 1
1.1 Cause-effect relationships of LWD 3

1.1.1 Effects of LWD on stream ecology 4
1.1.2 Effects of LWD on stream fluid mechanics 5
1.1.3 Effects of LWD on stream morphology 23
1.1.4 Indirect effects of LWD 25

1.2 Thesis objectives . 25

2 Bathymetric field surveys 28

3 Statistical techniques 36
3.1 σ-discrimination of LWD . 36
3.2 Scale-space analysis . 44
3.3 Conclusions . 52

4 Filtering techniques 55
4.1 Methodology . 55

4.1.1 Linear filtering . 56
4.1.2 Nonlinear filtering . 64

4.2 Discussion . 67
4.3 Conclusions . 79

5 General conclusion 82

A Acronyms 84

B Pictures of LWD in Sulphur River 85

C Bathymetry Process 1.1: User’s guide 88
C.1 Introduction . 88
C.2 Installation . 88

vii

C.2.1 Requirements . 88
C.2.2 Compilation of the source 89
C.2.3 Completion . 89

C.3 Utilization . 89
C.3.1 Processing raw data 89
C.3.2 Identifying Large Woody Debris 90
C.3.3 Exporting processed data 91
C.3.4 Plotting . 91

C.4 Median filtering . 91

D Bathymetry process: code listing 92

E Scale-space filtering: code listing 135

Bibliography 153

Vita 157

viii

List of Figures

1.1 Emergent LWD in the Sulphur River 2
1.2 Cause-effect relationships of large woody debris 4
1.3 Types of flow in presence of roughness elements 18
1.4 Pool formation in the presence of woody debris 24

2.1 Bathymetry interpolation on finite element mesh 29
2.2 Bathymetry distortion due to the presence of LWD 29
2.3 Sulphur River data set showing the effect of averaging 31
2.4 Boat track used for bathymetric analysis 31
2.5 Sulphur River bathymetry section containing spikes 32
2.6 Submerged piece of woody debris in Guadalupe River 33
2.7 Surveyed cross-section of guadalupe River over piece of LWD . 34
2.8 All boat tracks on Sulphur River 35

3.1 Selected sections of Sulphur River bathymetry data 37
3.2 Influence of the number of spikes soundings in bin on mean depth 38
3.3 Standard deviation of binned bathymetry data 39
3.4 LWD identification based upon σ-discrimination 41
3.5 Bathymetry smoothing based upon σ-discrimination 43
3.6 Scale-space image of Sulphur River data 45
3.7 Fingerprint of Sulphur River data 46
3.8 LWD identification based upon fingerprint (fixed arch width) . 51
3.9 LWD identification based upon fingerprint (fixed arch height) 53

4.1 Section of Sulphur River bathymetry featuring severe spikes. . 57
4.2 Synthesized bathymetry providing a benchmark for filters . . . 58
4.3 FIR filtering of benchmark . 60
4.4 Effect of cutoff wave-number on FIR-filtered benchmark 62
4.5 IIR filtering of benchmark . 64
4.6 Illustration of median filtering application 66
4.7 Erosion filtering of benchmark 68
4.8 Median filtering of benchmark 69

ix

4.9 Graph showing relative errors for all filtering methods 70
4.10 Median filtering of real data set 74
4.11 Erosion filtering of real data set 75
4.12 Efficacy comparison of median and erosion filtering 77
4.13 Effect of median filter order on spike removal 78
4.14 LWD locations for entire bathymetric data set 81

B.1 Emergent LWD in the Sulphur River 85
B.2 Emergent LWD in the Sulphur River 86
B.3 Emergent LWD in the Sulphur River 86
B.4 Emergent LWD in the Sulphur River 87
B.5 Emergent LWD in the Sulphur River 87

x

Chapter 1

Introduction

As the trees growing alongside a stream or river age, die and decay, large

branches and sometimes even the whole trunk can fall or topple onto the

streambank or into the channel itself. We commonly refer to this amount of

woody material as large woody debris (LWD). The dimensions of LWD are

usually taken to be greater than 0.1 m in diameter and 1.0 m in length.

To the early settlers, LWD was often a nuisance and these fallen trees and

branches were usually termed snags. They made access to streams by stock

difficult, and large snags within rivers were a major hazard to transport and

navigation at a time when waterways were a major route for moving goods

and people. This use of rivers involved periodic or regular removal of obstruc-

tions as a part of so-called river improvement, river clearing or channelization

schemes (Gippel, 1995). In addition to enhancing river navigability, the re-

moval of snags has often been justified on the grounds that it improves water

conveyance, reduces bank erosion, rejuvenates channels, lessens the risk of

damage to bridges, improves recreational amenity and removes barriers to fish

1

Figure 1.1: Emergent LWD in the Sulphur River (Northeast Texas) at a low flow
rate, when a boat-conducted bathymetric survey would be impractical. Debris is
submerged at high flow, when bathymetry surveys are typically performed. (photo-
graph courtesy of Texas Water Development Board).

migration (Harmon et al., 1986).

Snag management has generally been regarded as an engineering or eco-

nomic issue, and because of this narrow focus, most snag removal has been

undertaken with little concern for the environmental role of snags and, in par-

ticular, their direct or indirect effects on aquatic fauna and flora. It is now well

recognized and established that fallen wood in streams has a multifunctional

and positive role on an environmental point of view. Several reviews of the

literature provide grounds for this assertion (e.g., Shields and Nunnally (1984)

and Harmon et al. (1986)). Research over the past 20 years has shown that

woody debris is a vital component for the healthy functioning of rivers. For

this reason, it has become far more appropriate to use the term large woody

debris instead of snag when referring to fallen wood in streams.

2

In the past two decades, the large majority of hydraulic studies regard-

ing large woody debris have focused on their stream-scale management. Re-

search in stream restoration (Shields and Nunnally (1984), Shields and Gippel

(1995), Gerhard and Reich (2000), Gippel et al. (1996a)) has generally grav-

itated around the common issue of achieving desirable hydraulic effects (e.g.,

decrease flow resistance) while minimizing undesirable environmental effects

(e.g., the loss of aquatic habitat diversity). The focus has also been directed

toward the ecological and morphological effects of large woody debris but very

little has been done regarding the local flow pattern around debris such as

velocity distribution, turbulence intensities and secondary currents. As noted

by Mutz (2000), the local flow pattern is controlled by the woody debris and

the former has been well established to be highly significant to fauna and flora,

as summarized by Gippel (1995) and determined by Kemp et al. (2000).

1.1 Cause-effect relationships of LWD

LWD is known to influence the fluid mechanics, ecology and morphology of

streams in many ways. Let us first clarify what these three aspects of a stream

mean to us. The fluid mechanics encompasses the properties, distribution

and circulation of water. The study of secondary currents, standing water

or turbulence within a stream belongs to the field of fluid mechanics. The

ecology is concerned with the pattern of relations between organisms and their

environments. Why some invertebrates are more likely to live in regions of

standing water is an ecological matter. Finally, the morphology deals with

the structure and form of the stream. These properties of a stream such as

3

its sinuosity, its order or its pools distribution fall within the scope of the

morphological study of the stream.

Fluid

Morphology

II

IV

V

VI

III

I
LWD

mechanics

Ecology

Figure 1.2: Cause-effect relationships of large woody debris within stream envi-
ronments. An arrow reads effects

The diagram in Figure 1.2 shows the a priori direct and indirect effects

of LWD that one should expect. Despite the previous definitions and the

seemingly well-defined relationships in the diagram, we will see that the latter

are unfortunately not as clear-cut as one would anticipate.

1.1.1 Effects of LWD on stream ecology

In addition to the many indirect effects of LWD on ecology – e.g., LWD

creates hydraulic diversity that enhances fish species diversity –, the presence

of LWD has a direct impact on ecology. Macroinvertabrates benefit from

the structural complexity provided by debris (Minshall, 1984). Furthermore,

large items of debris provide a secure, hard surface upon which microscopic

4

plants (algae) can grow, and provide habitat for aquatic invertebrates such as

insect larvae and snails. LWD helps to trap leaf litter and other organic matter

moving downstream to form debris dams, which become hot-spots of biological

activity and a major source of food for animals (Land and Water Australia,

2002). Animals feeding on algae or involved in shredding and consuming leaves

and fine litter are key components of aquatic systems because they, in turn,

become food for larger river animals such as crustaceans, fish and platypus. In

this way, LWD plays an important role in providing a base for the processing

of energy and nutrients to support the aquatic food web.

Large debris is also vital for the survival and growth of many important fish

species. It provides habitat and shelter from predators, while hollow logs are

an essential spawning habitat for native fish species; for example the Mary

River Cod of south-east Queensland (Australia), and the River Blackfish of

Victoria and Tasmania (Australia) require submerged hollow logs in which to

lay and nurse their eggs.

These are a few examples of the direct influence of LWD on aquatic life

diversity and illustrate the ecological importance of woody debris in rivers.

However, this specific role of LWD is not central to our study and will not be

investigated further, but it was worth including it for the sake of completeness.

1.1.2 Effects of LWD on stream fluid mechanics

Understanding how LWD affects the flow in streams, locally or at the chan-

nel scale, is the key topic of our study. Hydraulic diversity created by LWD

5

is beneficial to the stream ecosystem. This same local flow diversity posi-

tively affects the stream morphology, which, in turn, is ecologically beneficial.

These complex interactions serve as a justification to the central position of

the hydrological aspect in the study of LWD in streams.

Flow resistance

Vegetation and debris increase flow resistance (or roughness) that has a di-

rect effect on the discharge capacity and the level of stream flooding hazard

(Dudley et al., 1998). It has been established that debris act as large roughness

elements that provide a varied flow environment, reduce average velocity and

locally produce an increase in water level (afflux) (Gippel, 1995). The latter is

caused by the so-called blockage effect of debris and means that for a given dis-

charge, the water level is higher than without the debris, thereby theoretically

increasing flooding frequency at locations upstream of the blockage. Depend-

ing on how the river and floodplain are managed, this effect may be perceived

as positive (e.g., beneficial for wetlands) or negative (e.g., inconvenient for

landholders) (Gippel et al., 1996b).

Two widely-used approaches to quantify the resistance that debris offers

to flow make use of a flow resistance equation, in which a roughness coef-

ficient (Manning’s n) or a friction factor (Darcy-Weisbach friction factor) is

employed. Both methods may be regarded as zero-dimensional because they

do not attempt to locally model the flow but consider the reach as a whole.

Furthermore, as pointed out by Gippel (1995), the Manning equation (i.e. the

6

roughness coefficient approach) is not strictly applicable in the case of LWD,

for it was developed to describe open-channel situations where friction is con-

trolled by surface drag from the bed sediments, rather than form drag from

large obstacles such as debris. Also, the hydraulic radius, as conventionally

defined in Manning’s equation, is probably meaningless in channels heavily

obstructed with debris.

Both approaches require the evaluation of an hydraulically meaningful debris

drag coefficient. In practice, LWD are geometrically approximated as circular

cylinders for which drag coefficients in flow of infinite extent (no boundary

interference) are well defined. However, for real woody debris, two deviations

from this idealistic situation are generally encountered:

• Debris irregularities. Woody debris are rarely perfectly circular cylin-

ders. Branches and leaves may significantly increase the drag force and

underestimation of the latter may occur if these irregularities exist and

are neglected. Gippel et al. (1996a) measured the drag coefficient of tree-

shaped models compared with that of a cylinder. Four stages of assembly

were considered: trunk only (with three short, projecting elbow joiners);

trunk and butt; trunk and branches; and complete with trunk, branches

and butt. A lower overall drag coefficient for the complete tree-shaped

debris model compared with that of a cylinder was obtained and can

be explained by the fact that the drag coefficient was expressed relative

to the projected surface area. Unlike the simple cylinder model, some

flow could pass through the branching section thereby increasing the to-

7

tal drag force but the drag coefficient was lowered because the increase

in projected surface area was proportionally greater than the increased

drag force. The results of these measurements permitted Gippel et al.

(1996a) to establish best-fit empirical expressions for the drag coefficient

of different debris models as functions of debris orientation.

• Effect of confined flow. The blockage effect of confined flow does not

alter the inherent drag coefficient Cd of a cylinder. Rather, Cd measured

in confined flow is an apparent drag coefficient. In (Ranga Raju et al.,

1983), the drag coefficient for a vertical cylinder of diameter d in a flume

of width w is given by an equation of the form

Cd =
C ′d

a
[
1− d

w

]b , (1.1)

where C ′d is the drag coefficient in a flow of infinite extent (no boundary

effects) and a and b are determined experimentally. Although debris

formations are not vertical cylinders, a series of flume tests on model

debris by Shields and Gippel (1995) verified the form of this equation

for debris formations, and provided values for coefficients a and b. The

ratio d
w

was substituted by the blockage ratio B:

B =
Ld

A
, (1.2)

8

where L is the projected length of debris in flow, d is the diameter of

debris in flow and A is the cross-sectional area of flow.

The Manning’s equation The Manning equation for mean flow velocity,

V , reads

V =
1

n
R2/3

√
Se, (1.3)

where R is the hydraulic radius, Se is the slope of the energy grade line and

n is Manning roughness coefficient. The utilization of this equation implies

that all resistive effects – such as vegetation, debris and other obstructions,

bed roughness, channel meandering and streambank irregularity – are lumped

together and accounted for by a single coefficient.

Dudley et al. (1998) studied the effect of woody debris on Manning rough-

ness coefficient by using the relation for Manning’s n presented by Petryk

and Bosmajian (1975) in Dudley et al. (1998). A balance between drag and

gravitational forces leads to

n = R2/3

[
CdV egd

2g

]1/2

(1.4)

where Cd is the drag coefficient of vegetation, V egd is the vegetation density

and g is the gravitational acceleration. The vegetation density is defined by

V egd =

∑
Av

aR
, (1.5)

9

where
∑
Av is the frontal area of the vegetation projected onto a plane perpen-

dicular to the direction of flow and a is a unit surface area of the channel bed.

The development of Eq. (1.4) is reproduced in details in Dudley et al. (1998).

Measurements prior to and following the removal of woody debris indicated

that the average Manning’s n value was 39 percent greater when woody debris

was present. It was also observed that the impact of debris on the value of

Manning’s n decreased with an increase in unit discharge, suggesting a con-

vergence of channel roughness of cleared and uncleared reaches at high flows.

We may therefore expect Manning’s n value to be constant at high flow rates

and woody debris to have little impact on total resistance.

The Darcy-Weisbach friction factor A technique for partitioning the to-

tal resistance into various components – the resistance due to woody debris

being one component – was developed by Shields and Gippel (1995). A differ-

ent Darcy-Weisbach friction factor is associated with each resistive component,

thereby allowing for a more accurate analysis of the effect of the sole woody

debris on flow resistance. The method is based on the assumption that the

flow around woody debris can be evaluated on reach level and assumed to be

uniform. The authors admit that this approach consists in a gross simplifi-

cation of the complex nonuniform flow that often occurs around and through

debris formations.

The following balance is assumed to hold in a uniform flow on a control

volume of length L:

10

Fg = Fbed + Fbends + FLWD (1.6)

where Fg is the force of gravity, Fbed is the resistance force due to bed (grain

and bar resistance), Fbends is the resistance force due to bends and FLWD is the

drag force on debris.

It can be shown that the above formula may be rewritten as

S0 =
τb

γRav

+

∑
[Bi/rci]αV

2
av

gL
+

∑
Di

γAavL
, (1.7)

where S0 is the average bed slope, τb is the shear stress on boundaries, γ is the

specific weight of water, Rav is the mean hydraulic radius, Bi is the ith bend

water surface width, rci is the ith bend radius of curvature, α is the kinetic

energy correction factor (assumed to be 1.15 in Henderson (1966)), Vav is the

mean flow speed,
∑
Di is the resistance due to debris and Aav is the fluid

control volume divided by the reach length L.

The Darcy-Weisbach equation for uniform flow in an open channel is

S0 =
fαV 2

av

8gRav

, (1.8)

where f is the Darcy-Weisbach friction factor representing total flow resistance.

11

Now, the idea is to partition the friction factor into four components:

f = fgrain + fbedform and bar + fbends + fdebris (1.9)

so that the last term of (1.7) may be expressed as

∑
Di

γAavL
=
fdebrisαV

2
av

8gRav

. (1.10)

Finally, the form drag of a piece of solid wood in flow is

Di =
CdiγV

2
i Ai

2g
(1.11)

where Vi is the upstream (approach) velocity of ith debris formation and Ai is

the projected area of ith debris formation. By combining (1.10) and (1.11), we

can solve for the Darcy-Weisbach friction factor due to debris, provided that

the drag coefficient Cdi be properly assessed.

Field experiments in cleared and uncleared reaches of the Obion and Tumut

rivers (Australia) were carried out by Shields and Gippel (1995) in order to

1. evaluate how close the computed value of the Darcy-Weisbach friction

factor was relative to the measured value in the field;

2. evaluate the impact of the presence or removal of woody debris on the

12

total friction factor under different flow conditions.

The study site of the Obion River was straight and the bed was mainly made

of sand. The Tumut River channel in the study area was a sinuous, fast-flowing

river with a bed mainly composed of gravel (75 %). In both rivers, computed

values of the Darcy-Weisbach friction factor were slightly more accurate for

reaches with debris (errors ranged from -28 to +19 %) than for reaches without

debris (errors ranged from -38 to +30 %). The mean of the absolute values of

errors was lower for the straight sand-bed Obion (13 %) than for the sinuous,

gravel-bed Tumut (19 %).

As regards debris removal, modest effects were observed. Increases of 6 %

and 22 % in flow conveyance were reported in the Tumut River and Obion

River, respectively.

Another study by Manga and Kirchner (2000) centered on the estimation

of the partitioning of flow shear stress between woody debris and streambeds.

Their measurements showed that, even though LWD covered less than 2 % of

the streambed, they provided roughly half of the total flow resistance. This

result was obtained by using different methods of measurement. One of these

consisted in inferring the drag from water surface steps, using conventional

energy balance arguments. It is now well established that woody debris causes

a perceptible afflux, or local increase in the elevation of the water surface

(Gippel (1995), Gippel et al. (1996a), Gippel et al. (1996b)). Therefore, LWD

are associated with abrupt steps, indicating localized energy dissipation by

13

LWD drag. Manga and Kirchner (2000) showed that, when the Froude number

is small, the shear stress due to woody debris is directly proportional to the

local afflux. Moreover, they reported that half the drop in the water surface

elevation through the surveyed reach occurred in steps associated with LWD.

In other words, half the total dissipated energy – or half the total shear stress

– was caused by LWD, a result that was also furnished by direct measurements

of drag on woody debris.

In their experiments, Gippel et al. (1996b) measured that 15 % of the total

afflux was caused by the largest item (out of a total of 95 items of debris) and

the ten largest items accounted for 57 % of the total afflux. Now, relating

these results with those of Manga and Kirchner (2000) might suggest that

more than half the total resistance due to woody debris be caused by the ten

largest items. This might further suggest that more effort should be directed

toward an accurate modeling of local flow around the largest items and that

the latter should be geometrically well represented and maybe included into

the stream morphology. In this respect, Shields and Nunnally (1984) suggested

that logjams large enough to have a damming effect be incorporated in back-

water profile computations as geometric elements in the channel boundaries

rather than being treated as roughness components.

This last recommendation is important for it consists of a deviation from the

global approach associated with the flow resistance equations described earlier.

The latter may be adequate for the hydraulic management of the stream – such

as LWD removal or introduction and its global effect on resistance – but do

14

not represent any local effect – which is believed to be the most significant on

an ecological point of view.

Velocity distribution

A closer look at the flow patterns in the neighborhood of LWD would not

only help obtain a more accurate description of the flow on the stream-scale,

but it would also assist the prediction of aquatic development of fauna and

flora. Indeed, hydraulic diversity created and maintained by debris enhances

fish species diversity by providing habitat, through a range of flow conditions,

for a variety of species and age groups. Dead-water zones provide areas for

resting and for refuge during high flow conditions and low-velocity zones fur-

nish a concentrated source of food (Sullivan (1987) in Gippel (1995)).

Moreover, the knowledge of precise values of depth and velocity at numer-

ous points within the study reach is required for Instream Flow Needs (IFN)

assessment techniques. One of the most widely used IFN assessment mod-

els in North America, the Physical Habitat Simulation System (PHABSIM),

utilizes these hydraulic parameters as input variables to produce relationships

between streamflow and usable habitat area for different life stages of varying

fish species (Ghanem et al., 1996). It is expensive to perform measurements

in the field in order to obtain those parameters so that a hydrodynamic model

that would provide these input variables is desirable.

As it was mentioned earlier in this paper, very few studies have focused on

the local flow pattern around woody debris and most hydraulic research has

15

been directed toward determining the global effect of LWD – traditionally on

flow resistance – given the density of debris. However, using field measure-

ments on a sand-bed stream reach in East Germany, Mutz (2000) assessed

the local flow patterns and turbulence in the neighborhood of woody debris.

His study showed that the flow pattern was clearly controlled by the wood.

Mutz turned his attention on two types of woody debris, depending upon its

height relative to the stream bed. Woody elements elevated above the stream

bed deflected the flow and locally caused strong secondary currents and high

turbulence. Woody debris resting directly on the stream bed determined the

roughness of the latter. More will be said in the next section about wood as

roughness elements.

The localized effect of elevated wood can also be seen for the vertical velocity

distribution. In a section intersecting a big log, the flow was directed towards

the stream bed and the vertical velocity gradient in the free flowing water

could become reversed. These results suggest that:

1. the local flow around elevated woody debris is inherently three-dimensional.

As a consequence, any depth-averaged two-dimensional modeling will

fail to represent the local hydraulic diversity associated with elements of

wood;

2. elevated woody debris generates high turbulence intensities. We may

therefore legitimately expect this type of debris to be the cause of energy

dissipation through turbulence in the first place.

16

LWD as roughness elements

The hydraulic effects of LWD have been reviewed on the global scale given

a certain density of woody debris (i.e., effects on flow resistance) as well as

on the local scale, generally around single elements of debris. However, LWD

also influences the flow on an intermediate scale, depending upon the pattern

of woody elements lying on the stream bed. In his review of woody debris hy-

draulics, Gippel (1995) refers to this situation as multiple roughness elements.

According to the nomenclature introduced by Morris (1955) and subse-

quently used by Davis and Barmuta (1989) and Young (1992), we may define

three types of flow over roughness elements based on the roughness index,

which is the ratio of horizontal roughness spacing λ to roughness height h.

The three types of flow are depicted in Figure 1.3.

When the roughness elements are far apart, they act as isolated bodies on

which are exerted drag forces by the flowing fluid. The wake zone and vortex-

generating zone at each element are completely developed and dissipated be-

fore the next element is reached. The apparent friction factor would therefore

result from the form drag on the roughness elements in addition to the bottom

friction between elements. This type of flow is termed isolated-roughness flow.

The so-called skimming flow (or quasi-smooth flow) occurs when the el-

ements are so close together that the flow skims over their crests. In the

groove between the elements, there will be regions of dead water containing

stable vortices. According to Morris (1955), much of the energy loss can be

17

h

λ

D

(a)

(b)

(c)

j

Figure 1.3: The three types of flow based upon roughness element geometry. Re-
drawn from Young (1992). (a) Isolated roughness flow. (b) Wake interference flow.
(c) Skimming flow.

18

attributed to the maintenance of the groove vortices.

An intermediate situation develops when the distance between each element

is approximately equal to the length of the wake generated by each element,

in which case wake-interference flow occurs and considerable turbulent mixing

is generated.

To define threshold criteria between those types of flow, three parameters

are of importance: the roughness height (h), the roughness spacing (λ) and the

groove width (j). When the roughness index λ/h is large, isolated-roughness

flow will occur whereas when λ/h is very small, skimming flow will be present,

provided that the roughness height be of reasonable value relative to the depth

D. In this respect, Davis and Barmuta (1989) and Young (1992) noted that

chaotic flow occurred for roughness height such that D ≤ 3h. Under such con-

ditions, flow structure is very complex and near-bed velocities are determined

by the shape of the local flow boundary. In chaotic flow, the entire flow is

affected by the geometry of the bed and energy losses are high.

The distinction between isolated-roughness flow and wake-interference flow

can be made when the wake behind the roughness element just reaches the

next roughness element. This transition is primarily affected by the roughness

spacing λ. By equating the expressions for the frictional resistance in the two

types of flow, Morris (1955) derived an equation (his Eq. (27)) for determining

the critical value of transition λc:

19

λc/h

Cd
(
1− ns

P

) =
67.2/100

(2 log y/λc + 1.75)2 − 1, (1.12)

where Cd is the roughness element drag coefficient, P is the cross-stream wetted

perimeter, n is the number of elements across a section, s is the cross-stream

groove width and y is the depth of water above the roughness element.

As noted by Morris (1955), a criterion to differentiate between wake-interference

flow and skimming flow cannot be set up in a similar manner – that is by equat-

ing two expressions of frictional resistance – because the latter move away from

each other rather than converge as λ approaches the critical value. Thus, there

is likely to be a sudden change, occurring when the stable vortex in the groove

gives way to the typical flow-separation phenomenon. Wake-interference flow

is likely to appear when the groove width j is much larger than the depth D,

in which case the vortex will adhere to the upstream face of the groove and

the stream will flow over and down the vortex against the downstream groove

face.

It should be pointed out that, from a biological perspective, it is the thresh-

old between skimming and wake-interference flow that is of far greater im-

portance, inasmuch as it indicates a change from stable, relatively sheltered

conditions within a groove to an unstable, more turbulent flow regime Young

(1992).

20

The above discussion shows that effects of roughness elements on the flow

field may be reasonably well predicted if we assume that

1. the spatial distribution of woody debris on the bed may be retrieved;

2. the geometry of single elements of wood is fairly well known;

3. the spatial distribution is uniform, without which the previous results

might become irrelevant. (We may relax the last statement by assuming

that a patchwise uniformity may be sufficient for the applicability of the

results).

In the realm of stream restoration, the work by Morris (1955) is useful and of

direct applicability because it provides information as to how arrange woody

debris in rivers to minimize resistance for a given desirable debris volume

(for ecological purpose). In this very situation, people have control on the

distribution as well as on the geometry of single elements. However, in a

reversed situation in which the stream under study presents LWD randomly

distributed by nature, this does not hold true. It then becomes indispensable to

devise a technique to assess the distribution and geometry of LWD. As we will

see later, it seems that a systematic approach to evaluate the distribution of

LWD is yet to be found and most people have employed rather archaic methods

to do so (e.g., close-up photographs, a method that could be invalidated in

case of high turbidity).

To finish this section, we ought to mention a study by Nowell and Church

(1979). They extended Morris (1955)’s approach by classifying flow types

21

according to the planform density of roughness elements (that is, the ratio of

total plan area of roughness elements to total plan area of channel). Skimming

flow occurred at densities of 0.125-0.083, wake-interference flow occurred at

densities of 0.063-0.045 and isolated-roughness flow required a density as low

as 0.02.

LWD and dimensionless numbers

A somewhat different perspective on LWD is described in Kemp et al. (2000).

They established a link between so-called functional habitats (biologically de-

fined habitat units) and flow biotopes (hydraulically defined habitat units) us-

ing Froude number. Functional habitats are objectively defined habitat units,

made up of substrate or vegetation types, which have been identified as distinct

by their invertebrate assemblages. Fifteen of the 16 functional habitats were

found to be distributed with Froude number in a non-random fashion, woody

debris being the exception. This information may prove useful for stream reha-

bilitation projects insofar as hydraulic dimensionless numbers, such as Froude

number, can be manipulated through changes to channel morphology in order

to obtain desired habitat heterogeneity (Kemp et al., 2000).

The lack of correlation between woody debris and Froude number may mis-

leadingly suggest that flow characteristics not influence the pattern (distri-

bution and whether woody debris is present or not) of LWD. However, this

conclusion might conceal other potential causes to this lack of correlation, as

mentioned in Hodges (2002):

22

1. Other hydraulic variables, such as the Reynolds number or turbulent

intensities, may be significantly correlated to functional habitats made

up of LWD.

2. Froude number is important but its measurement in the presence of

LWD was faulty (because strongly affected by secondary currents and/or

fluctuating velocities associated with turbulence).

3. There are some scales of LWD for which no correlation exists between

flow type and habitat. (For some scales – in particular very large pieces

of wood –, it might be more successful to consider woody debris as being

part of stream morphology rather than functional habitat).

1.1.3 Effects of LWD on stream morphology

Although this review is intended to mainly center on the hydraulics of LWD,

for the sake of completeness and because modifications of stream morphology

eventually affect the flow pattern – whether there is woody debris or not –,

we should briefly review the effects of LWD on stream morphology. Following

the suggestion of Harmon et al. (1986), the geomorphic roles of LWD can be

grouped into effects on landforms and on transport and storage of sediment. A

priori, modifications of landforms are more significant to affecting, in turn, the

flow field whereas sediment transport is more likely to matter on an ecological

point of view even if changes in local bed roughness – and thus flow resistance

– are expected as well.

23

Many studies showed that pools were associated with the presence of large

woody debris lying on the bed or partially spanning the channel with one end

supported on the bank and the other on the streambed (Keller and Swanson

(1979), Cherry and Beschta (1989), Mutz (2000)). A generic situation is de-

lineated in Figure 1.4. LWD can increase pool frequency and variability in

pool depths (Harmon et al., 1986). In addition to locally scouring the stream

bottom, erosion may also increase channel width as water is diverted around

the obstruction (Keller and Swanson, 1979).

log
free surface

stored sediment pool

Figure 1.4: Idealized diagram showing concept of pool formation. Redrawn from
Keller and Swanson (1979).

Even if stream morphology is affected, time scales of acting processes are

much larger than that associated with streamflow features. As an example,

the presence of LWD may deflect the flow toward the bank, thereby accelerat-

ing stream erosion. But, whereas changes in the flow field occur on short time

scales, bank erosion happens on much larger time scales. Moreover, the accel-

eration of the latter is exclusively caused by diverted flow, hence advocating

the need to study streamflow patterns in the first place.

24

1.1.4 Indirect effects of LWD

As suggested by the cause-effect relationships diagram in Figure 1.2, LWD

indirectly affects stream ecology through changes in flow patterns (link v in

the diagram) and stream morphology (link vi). Indeed, as we have seen, the

presence of LWD creates regions of low-speed flow, which are preferred habitats

or refuges for many fish species. Also, the diversity in pool distribution and

depth has been proved to enhance fauna variety. Furthermore, sediment that

is retained by LWD may contain organic matters that are beneficial to stream

ecosystem. Now, as it was already mentioned earlier, there exists a close

relationship between flow patterns and stream morphology (represented by

link iv in the diagram). Although we do not intend to review these indirect

relationships between LWD and ecology (namely links iv to vi) – they were

the topic of many studies in the past –, the aim of the above considerations

was to support the proposition that stream hydrology is found at the center of

those interactions and that a closer and detailed look at the direct relationship

between LWD and flow patterns, without being the panacea, is likely to furnish

many answers.

1.2 Thesis objectives

Evaluation of flow resistance on a global scale (a zero-dimensional method)

does not generally require any assessment of LWD distribution more accurate

than that given by its planform density. The knowledge of flow resistance is

of high significance when it comes to managing flow capacity. In particular,

25

for regulated rivers, in which flow capacity is to be maximized, the optimum

debris loading will be the minimum required to maintain ecological integrity.

On the other hand, flow resistance is very likely to be poorly correlated to

local stream ecosystems. The so-called field of ecohydrology, linking channel

hydraulics and morphology (Kemp et al., 2000), is chiefly concerned with lo-

cal in-stream physical effects. Ecohydrology therefore becomes relevant when

local in-stream measurements – of flow types and morphological features –

are available, or provided by a hydrodynamic model. Not surprisingly, in this

respect, the two-dimensional finite element model of physical fish habitats de-

veloped by Ghanem et al. (1996) appeared to be significantly better than a

one-dimensional approach, such as the application of HEC-2. Their results

strongly encourage the utilization of such model dimensionality – with ade-

quate subgrid scale parameterization to account for the presence of LWD – to

predict physical habitat distribution in streams with woody debris.

Nonetheless, 2D models require detailed bathymetry surveys as well as meth-

ods allowing for the identification of LWD in the data set. The latter require-

ment is crucial in the modeling process because it allows for discerning what

would be true bathymetry behind that polluted by LWD. Furthermore, know-

ing the locations of LWD is useful for aquatic habitat analysis.

The objective of this research is to develop a systematic approach to identify

LWD within a bathymetry survey data set in order to produce two outputs:

1. Bathymetric data set devoid of LWD, ready to use in 2D modeling (e.g.,

for interpolation).

26

2. A set of LWD locations, ready to use in aquatic habitat analysis.

This thesis describes the steps taken to achieve this objective.

27

Chapter 2

Bathymetric field surveys

Over the past decade, two-dimensional (2D) hydraulic models of rivers and

streams have been supplanting one-dimensional (1D) models for use in aquatic

habitat analysis (Ghanem et al., 1996). The increase of model dimensionality

allows better representation of the spatial structure of the flow depth and ve-

locity that affects habitat availability, while simultaneously reducing the need

for extensive field data over multiple river discharge rates for model calibration

(Ghanem et al., 1996). However, there does appear to be a conservation of

difficulty. While requiring less flow data from the field, the 2D models require

more detailed bathymetric surveys. Furthermore, the survey results must be

interpolated to the 2D model grid (see Figure 2.1), so the complex relationship

between the survey resolution, model resolution and method of interpolation

affects the final accuracy of the model bathymetry (Osting, 2003). For smooth

bathymetries, there is little difficulty in developing accurate translations from

survey data to model; however, in rivers with significant bottom structure

(e.g., LWD, Figure 1.1), simple data averaging and interpolation methods

28

may lead to misrepresentation of the bottom bathymetry (see Figure 2.2) that

can distort the depth and velocity results of a model. In this thesis, we ex-

amine systematic methods for identifying LWD in single-beam echo sounder

data so that the river bathymetry (rather than the LWD) can be appropriately

interpolated to the model grid.

Figure 2.1: Surveyed bathymetry data points (dots) must be interpolated onto the
finite element mesh.

���
���
���
���
���
���

���
���
���
���
���
���

Mean depth

Average distance

Figure 2.2: Distortion of bathymetry data due to the presence of LWD.

29

As a part of an aquatic habitat analysis for the Sulphur River, Texas (Osting

et al , 2003), the Texas Water Development Board (TWDB) conducted a fine-

scale bathymetric survey of a 1.36 km river reach on the mainstem Sulphur

River. Streamflow in the Sulphur River is generally from west to east and

drains approximately 9300 square kilometers. Data of a hydraulic site located

just north of IH-30 and just west of the US-259 bridge that crosses the river is

under examination in this paper. The river bathymetry was surveyed using an

echosounder (Knudsen Engineering’s 320BP High Frequency 200 kHz Portable

Echosounder) recording an average of nine depth measurements per second,

while the boat position was recorded only once per second using a differential

Global Positioning System (GPS). The TWDB used a single-frequency (L1)

Trimble ProXRS GPS receiver with real-time satellite differential correction

(DGPS) service provided by Omnistar. The boat speed (based on GPS data)

averaged 1.4 m s−1 with a standard deviation of 0.5 m s−1. Previously, TWDB

bathymetric surveys used the average of the nine depth measurements taken

around each GPS data point, giving an effective survey resolution along the

boat track of 1.5 m. However, as LWD may have width scales on the order of

10 cm, it follows that averaging the sounding data over a GPS position will dis-

tort the computed bottom boundary as illustrated in Figure 2.2. Using a linear

estimate of the boat velocity from GPS data and distributing the depth mea-

surements uniformly along this track, the survey resolution is approximately

16 cm. As shown in Figure 2.3, this higher-resolution bathymetry shows spikes

that are significantly moderated in the averaged bathymetry, and appear to

distort the smoothness of what might be expected to be true bathymetry.

30

1245 1250 1255 1260 1265

1

2

3

4

5

6

7

Distance [m]

De
pt

h
[m

]

Figure 2.3: Short section of Sulphur River data set. Distributed depth measure-
ments are represented by points while the solid line is the averaged bathymetry.
Distance is measured from start of boat track in the data set.

Figure 2.4: The boat track used for bathymetric analysis. This is one of several
boat tracks for the Sulphur River bathymetric survey conducted in May 2001 by
TWDB between (33◦ 18’ 31.23” N, 94◦ 43’ 37.57” W) and (33◦ 18’ 24.18” N, 94◦

43’ 09.70” W).

31

280 285 290 295 300 305 310

0

1

2

3

4

5

6

Distance [m]

D
ep

th
 [m

]

Figure 2.5: Selected section of Sulphur River bathymetry containing spikes. The
average distance between depth measurements is 16 cm.

It was impractical to provide direct physical confirmation of the correlation

between the data spikes (e.g., Figure 2.5) and LWD at the high flow rates

under which the Sulphur River bathymetric surveys were conducted. While

it is reasonable to infer such correlation based on the photographic evidence

of emergent LWD at low flow rates (e.g., Figure 1.1 and Appendix B), to

improve our confidence in this inference, a separate field test was conducted

to examine the performance of the depth sounder over a known piece of LWD.

On April 2, 2003, we located a piece of emergent LWD in the Guadalupe River

of Central Texas (see Figure 2.6) that had a submerged section approximately

60 centimeters below the water surface. To provide controlled and repeatable

data collection over the LWD and across the river during the relatively high

flow rate period, a rope was stretched across the river and the boat was hand

towed at speeds of 0.4 m s−1 and 0.6 m s−1, which is somewhat slower than

32

the 1.4 m s−1 speed used in the Sulphur River survey. The results of higher

speed surveys can be estimated by sub-sampling the data sets. It is clear from

Figure 2.7 that the signature of the LWD in the Guadalupe River data set is

similar to the spikes seen in the Sulphur River (Figure 2.5).

Figure 2.6: Submerged piece of woody debris in Guadalupe River.

33

0 5 10 15 20 25 30 35

0

1

2

3

4

5

6

7

Distance [m]

D
ep

th
 [m

]

Figure 2.7: Surveyed cross-section of Guadalupe River over submerged piece of
LWD (represented by the spike on the left side). Top and middle graphs show
profiles obtained at different boat speeds (0.4 m s−1 and 0.6 m s−1, respectively).
Bottom graph is a decimated version of the top graph, sub-sampled at every 4th

data point.

34

 33.306

 33.3065

 33.307

 33.3075

 33.308

 33.3085

 33.309

 33.3095

-94.728 -94.727 -94.726 -94.725 -94.724 -94.723 -94.722 -94.721 -94.72 -94.719

L
a
tit

u
d
e
 [

d
e
g
.]

Longitude [deg.]

F
ig

u
re

2
.8

:
C

overage
of

S
u

lp
h
u

r
R

iver
b
y

all
b

oat
track

s.

35

Chapter 3

Statistical techniques

In this chapter, statistical techniques are investigated as a way for identifying

LWD in data sets obtained from bathymetry field surveys.

3.1 σ-discrimination of LWD

Prior surveys by TWDB used a standard approach of computing the mean

depth for each distinct GPS position, providing profiles such as Figure 3.1.

The bin size for each GPS position varies from six to ten depth soundings,

with 86% of mean depths calculated from bins with nine data points. Binning

the data leads to the disappearance of spikes that consist of only one or two

depth soundings. However, broader spikes (occurring when lower survey speeds

coincide with LWD) will still remain after binning. In Figure 3.1d, only spikes

around distances of 1250 m and 1260 m remain after binning, while spikes at

1180 m and 1225 m disappear. When the effective survey resolution (16 cm

for Sulphur River data) is of the same order as the scale of LWD, and the

averaging bin (1.5 m for Sulphur River data) is larger than LWD scale, then

36

typical LWD will be represented by a fraction of the data in a bin. Thus, the

standard deviation for a data bin provides a means of identifying the presence

or absence of LWD, an approach we will call σ-discrimination.

(a) (b)

(c) (d)

100 120 140 160 180 200

3.5

4

4.5

5

5.5

6

6.5

7

Distance [m]

D
ep

th
 [m

]

280 300 320 340 360 380

0

1

2

3

4

5

6

Distance [m]
D

ep
th

 [m
]

900 950 1000

0

1

2

3

4

5

6

Distance [m]

D
ep

th
 [m

]

1180 1200 1220 1240 1260

0

1

2

3

4

5

6

7

Distance [m]

D
ep

th
 [m

]

Figure 3.1: Selected sections of Sulphur River bathymetry data: diamonds repre-
sent mean depths for each distinct GPS position while the dashed line is the raw
bathymetry including all depth measurements.

The bottom graph of Figure 3.3 shows that large standard deviations (σ)

are associated with spikes in the raw data, which (based on the discussion

above) are believed to indicate LWD.

37

(a)

(b)

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

0

1

2

3

4

5

Distance [m]

D
ep

th
 [m

]

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

0

0.5

1

1.5

2

2.5

3

Distance [m]

D
ep

th
 [m

]

Figure 3.2: Influence of the number of depth soundings (represented by ◦) forming
the spike on the calculation of the mean depth (represented by ♦ and the dashed
line). (a) A spike caught by seven depth soundings leads to a high mean depth,
close to the spike depth itself. (b) Spikes made of one or two depth soundings do
not result in an observable disruption of the smooth profile.

38

(a)

(b)

0 200 400 600 800 1000 1200 1400 1600 1800

0

2

4

6

8

Distance [m]

D
ep

th
 [m

]

0 200 400 600 800 1000 1200 1400 1600 1800
−4

−2

0

2

4

Distance [m]

D
ep

th
 [m

]

Figure 3.3: a. Mean bathymetry profile. b. The bottom line is the raw data minus
the mean data. The top line is the standard deviation (relative to an arbitrary
datum). Spikes in standard deviation coincide with spikes in the raw data.

39

As long as the majority of bins do not contain LWD, the background stan-

dard deviation (σB) associated with variability of the underlying bathymetry

can be approximated from the RMS (root mean square) of the individual bin

standard deviations (σi)

σB =

√√√√ 1

N

N∑

i=1

σ2
i (3.1)

where N is the number of data bins. A bin is presumed to contain LWD if

the bin standard deviation is larger than some multiple F of the background

standard deviation.

LWD discriminator

LWD σi > FσB

No LWD σi ≤ FσB

Selection of F is somewhat arbitrary, as the relationship between the natu-

ral roughness scales of the true bathymetry and the survey resolution will play

a role in differentiating LWD from the background. However, experiments

with three different values of F , shown in Figure 3.4, indicate that, at least

for the present work, an appropriate F can be reasonably selected by analysis

of the data set.

Increasing F leads to fewer spikes being identified as LWD. As shown in

Figure 3.4b, spikes near 1220 m and 1680 m are missed when a discriminator

of 3σB is applied. In contrast, use of a smaller F can lead to steep bathymetry

slopes being misidentified as spikes. As shown in Figure 3.4f, the sloping

region around 1470 m is identified as being an LWD location without any

40

(a)

(c)

(e)

(b)

(d)

(f)

1200 1300 1400 1500 1600 1700 1800

0

2

4

6

D
ep

th
 [m

]

La
tit

ud
e

[d
eg

.]

1200 1300 1400 1500 1600 1700 1800

0

2

4

6

D
ep

th
 [m

]

Longitude [deg.] 1200 1300 1400 1500 1600 1700 1800

0

2

4

6

Distance [m]

D
ep

th
 [m

]

Figure 3.4: LWD identification based upon σ-discrimination. The scatter plots on
the left show the suspected locations of LWD along the river. The plots on the right
feature these same locations (circles) as distances along the boat track. Frames (a)
and (b) use a discriminator of 3σB. Frames (c) and (d) use 2σB. Frames (e) and
(f) use 1.5σB. Note that the abscissa of each circle matches the GPS position of the
bin while its ordinate is the bin mean bathymetry.

41

significant data spike when the discriminator is 1.5σB. For the present work,

a discriminator of 2σB appears to identify significant spikes without selecting

any slope regions.

The principle drawback of the σ-discrimination approach is that a survey

conducted with very slow boat speeds could produce a data set with LWD

(especially large pieces or accumulations) covering multiple adjacent bins. The

natural disorder of LWD accumulations may increase the standard deviation

within such bins; however, a significant number of these bins could distort

the calculated background standard deviation, thereby making it difficult to

discriminate LWD from the natural bottom variability. Furthermore, a wide

variation in the survey boat speed will lead to different areas being binned at

different spatial scales. An extension of this method that might address such

effects would be to bin all data within a fixed distance of each GPS position.

This would ensure that all bins are averaging over the identical spatial scale.

Such a technique would also be ideal for bathymetric surveys with multiple

overlapping boat paths.

The σ-discrimination approach for identifying LWD locations is used to

provide a “background bathymetry” that excludes the data points associated

with LWD. This should be done for any bathymetry data set prior to inter-

polation to a coarser spatial scale for hydraulic modeling or GIS. Indeed, for

GIS purposes, the LWD locations can provide an additional data layer for su-

perposition over the background bathymetry for a more complete picture of

the river characteristics. To develop a background bathymetry, we first com-

42

pute the mean depth in each bin based on the raw data. This raw data mean

bathymetry is inherently contaminated by the presence of LWD. For bins with

LWD (identified using the σ-discriminator), data points shallower than the

raw data mean can be considered points where the echo sounder contacted

LWD. These points are removed from the background data set. The back-

ground data set is binned to provide the estimated background bathymetry.

Results for the 2σB discriminator are shown for three segments of the Sulphur

river in Figure 3.5.

(a)

(b)

(c)

280 300 320 340 360 380 400

0

2

4

6

8

D
ep

th
 [m

]

600 620 640 660 680 700 720 740 760 780

0

2

4

6

8

D
ep

th
 [m

]

1200 1220 1240 1260 1280 1300 1320 1340

0

2

4

6

8

D
ep

th
 [m

]

Distance [m]

Figure 3.5: Bathymetry smoothing based upon σ-discrimination using 2σB. The
dotted line is the raw data, the dashed line is the binned raw data mean bathymetry,
and the solid line is the background bathymetry.

43

3.2 Scale-space analysis

The scale-space filtering technique was introduced by Witkin (1983) for the

analysis of digital signals. An adaptation by Bergeron (1996) provided mul-

tiscale analysis of streambed profiles, which was used to identify roughness

elements at all observation scales. Scale-space filtering uses multiple succes-

sive application of a Gaussian filter (of standard deviation σ) to a data set,

which can be graphed as a scale-space image (see Figure 3.6) showing succes-

sive levels of smoothing along the y-axis. Peaks and troughs of the original

signal are moderated with successive applications of the smoothing filter. Plot-

ting the physical locations of signal peaks and troughs against the smoothing

level constitutes a scale-space “fingerprint” of a signal (Figure 3.7), which

constitutes the multiscale description of a signal.

Each unclosed line in the fingerprint is associated with either a large-scale

trough or a peak that persists despite successive smoothing. For example,

the line near 310 m in Figure 3.7 shows a persistent trough, i.e. it represents

the large-scale bathymetry depression between 300 and 320 m. A closed arch

corresponds to the disappearance of adjacent peak-trough combinations at

the associated smoothing scale. According to Bergeron (1996), smaller arches

are associated with small-scale features that disappear rapidly. Bigger arches

correspond to larger scale features persisting over a wider range of scales.

Discrete Gaussian filtering for scale-space analysis consists in replacing ev-

ery sample by a weighted average of the bed profile over the width of the

44

280 300 320 340 360 380
0

10

20

30

40

50

Distance [m]

B
ed

 e
le

va
tio

ns
 re

la
tiv

e
to

 a
rb

itr
ar

y
da

tu
m

 [m
]

Figure 3.6: Scale-space image from 15 successive applications of a Gaussian filter
with σ = 20 cm. Original bathymetry is lowermost line. Notice the smoothing
(flattening and broadening) of small-scale features.

45

(a)

(b)

(c)

280 300 320 340 360 380
0

50

100

150

200

S
m

oo
th

in
g

le
ve

l

280 300 320 340 360 380

0

2

4

6

8

D
ep

th
[m

]

280 300 320 340 360 380
0

10

20

30

40

50

S
m

oo
th

in
g

le
ve

l

Distance [m]

Figure 3.7: a. Fingerprint for 200 smoothing levels (Gaussian filter with σ = 20
cm applied on bathymetry shown in middle graph). b. Bathymetry. c. Highlight of
the 50 first smoothing levels to make smaller arches visible.

46

Gaussian filter, which is centered at the sample under consideration. To im-

plement a scale-space analysis of the Sulphur River bathymetry data set, the

bathymetry is defined by the pair of sequences {ξ(n), x(n)}, where ξ(n) are

distances along the boat track and x(n) are the depth data. As the data set is

not uniformly-spaced along the boat track, the discrete Gaussian filter (with

zero mean) defined at sample n takes on the following value at location k in

the neighborhood of n:

g(k) =
1

σ
√

2π
exp

(
−(ξ(k)− ξ(n))2

2σ2

)
; n1 < k < n2 (3.2)

= 0; otherwise (3.3)

where n1 < n < n2 are such that the distances |ξ(n) − ξ(n1)| and |ξ(n) −

ξ(n2)| are as close to the filter halfwidth as possible. That is, the sample limits

n1 and n2 depend upon the physical distribution of the data points and are

chosen so that the physical width of the filter remains approximately constant

at each application. Following the recommendation of Bergeron (1996), a filter

halfwidth 4σ was used. While computing a different set of n1 < n < n2 for each

data point is computationally expensive, it is the only practical approach since

interpolating the data to a uniform distribution for computational simplicity

would distort the data spikes and invalidate the analysis. Computing the

discrete filtered signal y(n) from the original signal x(n) is performed as

y(n) =

n2∑

k=n1

1

σ
√

2π
exp

(
−(ξ(k)− ξ(n))2

2σ2

)
x(k) (3.4)

47

A discrete approach to identifying lines and arches is provided below and

has been implemented by the author (see Code in Appendix ??).

Arches are easily determined as follows. Once Gaussian filtering is done,

producing a series of smoothing levels, each one of these is looped through to

locate troughs and peaks (giving them a code, 1 for a trough and 2 for a peak),

which are then recorded in another series of arrays. Each sample that is not

a peak or a trough is given the code 0. By searching each smoothing level for

pairs of (trough, peak), it is then determined whether the pair constitute the

summit of an arch. To satisfy this property, the elements of the pair must be

close enough to each other (separated by at most a number of samples fixed

by the user). The “legs” of each arch are then tracked down to the first level.

The height of the arch is then known in terms of the number of smoothing

levels while its width is taken as being the width of the arch within the first

level. The width is expressed in meters, thereby giving some length scale to

the structural element that generates the arch.

The next step consists in deciding which arches are caused by LWD. This

involves making assumptions as regard the likely geometry of such arches.

Given a window for acceptable heights and a window for acceptable widths, an

arch whose geometrical characteristics fall within these windows will be taken

as being caused by LWD. Once an arch is decided to be LWD, its location must

be determined. However, the width of an arch may be too wide for its precise

location to be inferred. Nevertheless, since an arch is formed by the encounter

of a peak leg and a trough leg, we may follow one of these legs down to the

48

first level, which gives a precise position along the x-axis. In a bathymetry

defined in terms of depth, spikes are troughs. LWD location is then given as

the trough leg of the arch.

In the context of scale-space analysis, a discrete piece of LWD in the bathymetry

data should produce an arch feature. Any arch can be characterized by a width

scale (W) and a smoothing scale (S). The scale W is the width of the arch

in physical space at the zero smoothing level. The scale S is the smoothing

level (number of applications of the Gaussian filter) at which the arch reaches

a maximum. Thus, to discriminate LWD arches from the background rough-

ness and larger scale bathymetric excursions, we need to define windows that

correspond to the maximum and minimum values for each scale. Scale-space

analysis does not provide any direct theory for correlating smoothing scales to

physical scales, so our approach has been to examine the results of the tech-

nique for a series of different windows. As a starting point, we are interested in

LWD with debris diameter scales 10 cm, so we can argue that an appropriate

window minimum for W is 5 cm. The appropriate upper window limit for W

is less clear, since the arch is a feature of the transition from peak to trough

and can be expected to be larger than the debris feature itself. Upper window

limits of 100, 150, and 200 cm for W are investigated. For the smoothing

levels, we expect there to be some lower limit to the window so as not to

include the background roughness of the bathymetry, and some upper limit

based upon the ability of the Gaussian filter to rapidly smooth a narrow spike.

Scale-space images of the bathymetry (e.g., Figure 3.6) show that data spikes

49

typically do not persist beyond 35 smoothing levels, so this was taken as a

reasonable upper limit to the S window. For the lower S limit, we investigated

smoothing levels of 5, 15 and 20.

Test cases shown in Figure 3.8 used a fixed W window of [5, 100] cm while the

S filter window was successively varied as [5, 35], [15, 35], and [20, 35] smooth-

ing levels. Although the entire data set was analyzed, for clarity only a subset

of the data that is directly comparable to Figure 3.4 is shown. The smallest

window, Figure 3.8a, misses most of the spikes that are likely LWD. For the

[15, 35] window, Figure 3.8b, additional arches are identified, but they are all

spawned by small-scale features rather than high spikes. This trend continues

when the window is set at [5, 35] in Figure 3.8c, which adds (over the en-

tire data set, not shown) 89 arches associated with small-scale features and 9

new arches associated with significant spikes. Decreasing the lower smoothing

bound increases the false identification of LWD locations, while missing some

clearly visible spikes.

A few other experiments with the same fixed W window of [5, 100] cm were

performed. In each case, the S window was heightened by increasing the upper

smoothing level. Utilizing S windows of [20, 40] and [20, 60] does not improve

the quality of LWD identification. In the latter case, only two new arches are

identified but consist of large-scale bathymetric features.

In a second set of tests (Figure 3.9), the S filter window is fixed at [15, 35]

smoothing levels and the W scale window is varied as [5, 100], [5, 150] and

50

(a)

(c)

(e)

(b)

(d)

(f)

1200 1300 1400 1500 1600 1700 1800

0

2

4

6

D
ep

th
 [m

]

La
tit

ud
e

1200 1300 1400 1500 1600 1700 1800

0

2

4

6

D
ep

th
 [m

]

Longtitude 1200 1300 1400 1500 1600 1700 1800

0

2

4

6

Distance [m]

D
ep

th
 [m

]

Figure 3.8: LWD Identification based upon arches geometry in the fingerprint
(obtained with Gaussian filtering with σ = 20 cm). The scatter plots on the left
show the suspected locations of LWD along the river. The plots on the right feature
these same locations (circles) as distances along the boat track. All arches having
their width between 5 cm and 100 cm are kept as LWD. Three different height
windows are tested: a. Between 20 and 35 smoothing levels. b. Between 15 and 35
smoothing levels. c. Between 5 and 35 smoothing levels.

51

[5, 200] cm. The smallest window, Figure 3.9a, is identical to Figure 3.8b.

Increasing the width window to [5, 150] cm in Figure 3.9b adds 31 new arches

(over the entire data set) but only three are generated by spikes that could

reasonably be considered LWD. Further increasing the window to [5, 200] cm

(Figure 3.9c) adds 40 more arches, but virtually none are associated with an

LWD spike. This suggests that an overly-wide W window leads to significant

false identification of LWD by including peak-trough combinations that are

too large to be LWD.

Although scale-space analysis provides an interesting view of the general

bathymetry structure, it does not appear to be a practical approach for iden-

tifying LWD. We have not been able to find an adequate coherence between

the visually identifiable physical spikes of the non-uniform data set and the

arch geometry of the fingerprint. As a result, the range of tested windows

both missed data spikes that should clearly be considered LWD, and falsely

identified regions of background roughness as LWD. It is not clear whether

a finer sampling interval or a more uniform data set might overcome these

difficulties.

3.3 Conclusions

This chapter demonstrates the use of two statistical methods for identifying

submerged large woody debris in single-beam echo sounder data. The first

method, σ-discrimination, is shown to be suitable for identifying likely LWD

data points so that they can be separated from the original data set. This

52

(a)

(c)

(e)

(b)

(d)

(f)

1200 1300 1400 1500 1600 1700 1800

0

2

4

6

D
ep

th
 [m

]

La
tit

ud
e

1200 1300 1400 1500 1600 1700 1800

0

2

4

6

D
ep

th
 [m

]

Longitude 1200 1300 1400 1500 1600 1700 1800

0

2

4

6

Distance [m]

D
ep

th
 [m

]

Figure 3.9: LWD Identification based upon arches geometry in the fingerprint
(obtained with Gaussian filtering with σ = 20 cm). The scatter plots on the left
show the suspected locations of LWD along the river. The plots on the right feature
these same locations (circles) as distances along the boat track. All arches having
their height between 15 and 35 smoothing levels are kept as LWD. Three different
width windows are tested: a. Between 5 and 100 cm (equivalent to Figure 3.8(b)
for comparison). b. Between 5 and 150 cm. c. Between 5 and 200 cm.

53

provides a background bathymetry that is effectively free from LWD and is

appropriate for modeling or GIS purposes. Additionally, this approach pro-

vides a data set of only LWD points, which may prove useful for tracking the

perennial evolution of submerged LWD fields in streams and rivers, as well as

developing models which account for the physics of turbulence around LWD.

The principle drawback of the σ-discrimination method is that it requires an

analyst to set an appropriate standard deviation multiplier for discriminating

between LWD and non-LWD data bins. As the appropriate multiplier will de-

pend on the LWD scales and the sampling resolution, it is impossible to a priori

set a generally applicable value. The second statistical method demonstrated,

scale- space analysis, proved less successful in identifying LWD. Scale-space

analysis for identifying LWD requires setting upper and lower windowing lim-

its on the “fingerprint” width and smoothing height of “arches” associated

with LWD. In the present work, we were unable to find a suitable set of win-

dows that identified the majority of LWD without also providing a significant

number of false positives.

54

Chapter 4

Filtering techniques

Linear and nonlinear filters are examined through their application to a

synthesized bathymetry. Their relative efficacy in spikes removal is evaluated.

4.1 Methodology

An artificial bathymetry has been synthesized to examine the performance

of linear and nonlinear filtering techniques in a controlled fashion. Field data

from the Sulphur River is used to further analyze the capabilities of the more

successful approach (nonlinear filtering). The key difficulty for any filtering

technique (which can be tested on a synthetic bathymetry) is differentiating

between LWD data spikes and abrupt transitions that are part of large-scale

features in the natural bathymetry. The synthetic bathymetry data (Figure

4.2) is 300 data points, which includes two sharp edges surrounding a 1 m

high and 15 m long upward rise. The left edge of the rise has a slope of 1:2.5

while the right edge has a shallower slope of 1:5. Three spikes (representing

LWD) are superposed on the bathymetry: a narrow spike (A) on top of the

55

bathymetry rise, a second narrow spike (B) on one slope, and a broader spike

(C) on a flat part of the bathymetry. Each spike has a 1 m amplitude. The

two narrow spikes each contain a single data point, while the broader spike

has six data points. The distance between successive samples is 16 cm, which

is the average distance between depth measurements in the TWDB Sulphur

River survey. Thus, the width of the narrow spikes is of order 10 cm, similar

to the data signal returned when a survey crosses a piece of LWD at a right

angle. The width of the broad spike is of order 100 cm, similar to the data

signal for a piece of LWD crossed at an oblique angle by a survey. A noise

signal was superposed on the bathymetry to represent natural variability in

a river bottom and oscillations that may be caused by motion of a survey

boat. The noise signal is developed by a random number generator with a

uniform distribution and maximum amplitude of 0.025 m. This is consistent

with the noise signal computed from a fine-scale survey over a cross-section

of the Guadalupe River conducted in April, 2003 using the same equipment

as the TWDB Sulphur River survey (see previous Chapter). The objective of

filtering the synthetic bathymetry is to remove the three spikes while retaining

a good representation of the underlying bathymetry.

4.1.1 Linear filtering

Linear filters are applied by convolving the filter kernel with the signal

to be filtered. Convolution can be efficiently performed by using a Fast

Fourier Transform (FFT) algorithm to compute the Discrete Fourier Trans-

form (DFT). In practice, DFT’s of the filter kernel and the signal are mul-

56

800 850 900 950 1000 1050

0

1

2

3

4

5

6

Distance [m]

De
pt

h
[m

]

Figure 4.1: Section of Sulphur River bathymetry featuring severe spikes.

tiplied, and then the inverse DFT of their product provides the filtered sig-

nal. A low-pass filter is designed to remove the high wave-number data (i.e.,

the LWD spikes with short wavelengths) from a digital signal, leaving only

the low wave-number (i.e., long wavelength) signal that should represent the

bathymetry without LWD. In applying a linear low-pass filter, the cutoff wave

number must be a priori defined. For a method to work mechanistically, the

cutoff wave number should have a defined relationship to the physical prop-

erties of the LWD. The wave number (k) is related to the wavelength (λ) by

k = 2π/λ, so a low-pass wave number filter is also a high-pass wavelength

filter. Linear filtering decomposes a signal into a linear sum of sine waves, so

that any spike or sharp transition must be composed of wave lengths substan-

tially smaller than the spike. It follows that the high-pass cutoff wavelength

57

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

A

B

C

Figure 4.2: Synthesized bathymetry providing a benchmark for filters. Both nar-
row spikes are made up of one data point while the broader spike contains six data
points.

58

should be an order of magnitude smaller than smallest LWD physical length

scale (L). Thus, for the synthetic bathymetry LWD spikes with L ≈ 10 cm

and L ≈ 100 cm, the cutoff wavelength should be 1 cm or less, leading to a

requirement for low-pass cutoff wave numbers greater than 6.3 cm−1. The per-

formance of a representative set of cutoff wave numbers [7.5, 15, 30, 45] cm−1

are analyzed below to illustrate how the predicted background bathymetry

and spike removal depend on the wave number selection. Smaller cutoff wave

numbers were tested (not shown), but did not significantly change the filtered

signal.

Linear filters fall into two categories: FIR and Infinite Impulse Response

(IIR) filters. FIR filters are unconditionally stable – no feedback is used – but

require larger convolution kernels than IIR filters, rendering their execution

slower. The faster IIR filters are only conditionally stable – feedback is used

– so particular care must be taken in their design (Oppenheim and Schafer,

1999). The poles of the rational transfer function characterizing IIR filters

must lie inside the unit circle in the z-plane. Since no feedback is used for

FIR filters, their transfer functions do not have poles and stability is not an

issue. In the following, the results of an FIR filter of order 50 and an IIR filter

of order 10 are presented. Filtering has been performed using the MatlabTM

Signal Processing Toolbox, which limits the FIR filter order to one-third of the

signal length. This limit allows a maximum FIR order of 100 for the synthetic

bathymetry. However, tests conducted on the synthetic bathymetry with FIR

filter orders higher than 50 produced poorer results (not shown). In particular,

59

(a) (b)

(c) (d)

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

Figure 4.3: The dashed and solid lines represent the original and filtered signals,
respectively. An FIR filter of order 50 has been used. Cutoff wave-numbers are: (a)
7.5 cm−1, (b) 15 cm−1, (c) 30 cm−1 and (d) 45 cm−1.

60

increasing the order beyond 50 does not improve spike removal, but induces

additional oscillations in the neighborhood of the spike. For IIR filters, beyond

an order of 10 the filter becomes unstable and cannot be applied. While linear

filters are well-known and computationally efficient, their use tends to remove

sharp details that may not be either noise or LWD. The results of our analysis

show that distortion of the underlying bathymetry makes linear filters less

suitable than nonlinear filters for LWD analysis.

A Hamming-windowed FIR linear filter of order 50 (with four different cutoff

wave numbers) has been applied to the synthetic bathymetry. Windowing

truncates the ideal low-pass filter (for an infinite length signal) in the physical-

space domain. Figure 4.3a shows that the lowest wave number cutoff will

remove both narrow spikes and excessively smoothes the sharp edges in the

bathymetry. Decreasing the cutoff wave number below the smallest value (used

in Figure 4.3a) does not significantly change the results: the narrow spikes

are removed and the broader spike remains a smoothed bump. A significant

problem with the low wave number cutoffs in Figure 4.3a and 4.3b is distortion

of the large-scale slopes. For both cases, the left and right edge slopes have

been reduced from 1:2.5 and 1.5 to approximately 1:6.5 and 1:8, respectively.

For a higher wave number cutoff, Figure 4.3c, the slopes are preserved but

transitional corners are rounded by the filter. At the highest wave number

cutoff (Figure 4.3d), the correct slopes are preserved, but the majority of the

broader spike and smaller portion of the narrower spikes still remain.

61

0 5 10 15 20 25 30 35 40 45 50

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

Figure 4.4: Comparison of digitized spike-free synthetic bathymetry (dashed line)
with digitized filtered bathymetries. Digitized filtered bathymetries are related to
Figure 4.3 as follows: Graph a: ◦, Graph b: ?, Graph c: �, Graph d: ♦.

River bathymetry collected at a fine scale may be applied at coarser scales

for use in developing TINs for GIS or modeling. Thus, the performance of a

filtering method is better analyzed by how well a coarse digitization of filtered

results compares to a similar digitization of the synthetic bathymetry without

the spikes. Figure 4.4 shows the filtered bathymetries from Figure 4.3 where

the bathymetry at 5 m spacings are computed from the mean of data binned

from the surrounding 5 m interval. The relative error (ε) between the filtered

and the spike-free original bathymetry is computed as

ε =

[∑
(hf − h0)2]1/2

[∑
(hs − h0)2]1/2 (4.1)

where hf and h0 are the mean digitized values of the filtered digital bathymetry

and the original spike-free bathymetry on 5 m intervals, and hs is the mean dig-

62

itized values of the synthetic bathymetry including the spikes. Thus, the rela-

tive error is a measure of how well the filtering reduces the error in the digitized

signal below the error resulting from digitizing without filtering. The relative

errors obtained for FIR filtering are displayed in Table 4.1 along with errors

for IIR filtering and nonlinear filters (discussed below). Digitized bathymetries

using 2 m spacings and 3.5 m spacings have also been computed. The relative

errors obtained (not shown) are not improved upon that for the 5 m spacings.

We tested three types of IIR filters: Butterworth, Type 1 Chebyshev, and

elliptic. All the filters gave similar results, so only the Butterworth filter results

are presented below. The same cutoff wave numbers used in the FIR results

were employed with IIR filters to obtain Figure 4.5. While the tested FIR filter

was order 50, the maximum IIR filter order was 10 to prevent instabilities for

low wave-number cutoffs. It can be seen that the lowest cutoff wave number

(Figure 4.5a) produces a similar slope distortion to the FIR results in Figure

4.3a, and causes additional distortion of the flat bathymetry section with the

broad spike. At the cutoff wave number of 15 cm−1, the slope error is less

severe than for the equivalent FIR (Figure 4.3b), but additional oscillations

appear near the sharp transitions. At higher cutoff wave numbers (Figure

4.5c,d) the IIR results are not substantially different from FIR results. The

mean error for the IIR results digitized at 5 m intervals are computed in the

same manner as for the FIR, and are provided in Table 4.1. It can be seen that

the relative errors are not substantially different. It should be pointed out that

a relative error exceeding 100% indicates that the original digital bathymetry

63

(with spikes) is actually closer to the original digital spike-free bathymetry

than the filtered digitial bathymetry.

(a) (b)

(c) (d)

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]
D

ep
th

 [m
]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

Figure 4.5: The dashed and solid lines represent the original and filtered signals,
respectively. A Butterworth filter of order 10 has been used. Cutoff wave-numbers
are: (a) 7.5 cm−1, (b) 15 cm−1, (c) 30 cm−1 and (d) 45 cm−1.

4.1.2 Nonlinear filtering

The spikes in the artificial bathymetry (Figure 4.2) are typical impulse noise

signals, whose removal via linear filtering will distort any sharp edges of larger-

scale features. Nonlinear filtering techniques, however, may remove impulse

noise without disturbing edges (Justusson, 1981). Nonlinear filters may be

64

more computationally demanding than linear filters, depending on the non-

linear filter order and the length of the data set. Nonlinear filters require a

selection operation for each data point, resulting in O(LK) operations, where

K is the length of the window and L is the length of the data set. In contrast,

the linear filtering FFTs require O(L log2 L) operations. Nonlinear filters are

discussed in terms of their order N , where the window length is K = 2N + 1.

It follows that nonlinear filtering will be more efficient than linear filtering only

when N < 0.5 log2 L. We tested nonlinear erosion and median filters in the

present study. The median filter is widely used in image processing to remove

impulse or “salt-and-pepper” noise without blurring sharp edges in an image

(e.g., Justusson (1981), King et al (1989), Dougherty and Astola (1999)). Im-

age processing also makes use of erosion filtering to dim images by thinning

out lighter elements (i.e. signal peaks).

Both erosion and median nonlinear filters use order statistics. For each point

x̃ in the sequence x(n), a filter window of length K = 2N + 1 is formed by

taking those N points preceding x̃ and those N points succeeding it. This set

is then ordered from the smallest to largest value. Erosion filtering replaces

the value at point x̃ with the minimum of the ordered set surrounding the

point. Median filtering replaces the value at x̃ with the median of the ordered

set. An example of median filtering with N = 2 for a small spike on a slope

is shown in Figure 4.6. The erosion filter operates similarly, except that it

uses the minimum of the order statistics instead of the median, and results

in filtered values of y(7) = 2.5 and y(8) = 3.0 for the example shown. Data

65

points within N points of the start or end of the signal do not have 2N + 1

data points in filter window, which is commonly handled by appending the

signal with copies of the start and end values (Justusson, 1981).

(a) (b)

(c) (d)

2 4 6 8 10 12 14
0

2

4

6

8

n

x(
n)

2 4 6 8 10 12 14
0

2

4

6

8

n

x(
n)

2 4 6 8 10 12 14
0

2

4

6

8

n

y(
n)

2 4 6 8 10 12 14
0

2

4

6

8

n

y(
n)

Figure 4.6: Illustration of median filtering for N = 2. x(n) and y(n) are the
original and filtered sequences, respectively. The dashed box contains the five n
samples to be algebraically ordered by x(n) and y(n) values. Plots (a) and (c) show
the filtering for n = 7 (circled), where the median of the boxed values provides
y(7) = 4.5. Plots (b) and (d) show the filtering for n = 8 (circled), where the
median of the boxed values provides y(8) = 5.0.

Erosion filtering selects the minimum of an ordered set, a bias which would

increase an LWD signal if applied to a set of depth measurements (since the

LWD causes a decrease in depth). Thus, for an erosion filter the bathymetry

data set must be redefined as the height above a datum or, equivalently, the

erosion filter can be redefined as selecting the maximum of the ordered depth

data in a window. The effect of erosion filtering on the synthetic bathymetry

66

is shown in Figure 4.7, where four different filter lengths have been used. The

N = 1 erosion filter is able to eradicate both narrow spikes (Figure 4.7a), but

cannot remove the broader spike (although it does reduce the spike width).

A N = 3 erosion filter is required to remove the broad spike (Figure 4.7b).

Although the large N erosion filters are able to preserve the sharp transitions

and slopes of the bathymetric rise, it can be seen that the overall width of the

rise is successively reduced as N increases (i.e., the rise is eroded). In contrast,

results of median filtering (Figure 4.8) show that the higher-order median

filters remove the spikes without significantly changing the bathymetric rise.

However, whereas an N = 3 erosion filter removed all the spikes, an N = 6

median filter is required to achieve the same result (Figure 4.8b). Relative

errors between the digitized filtered bathymetries and the synthetic spike-free

digitized bathymetry (using Eq. 4.1) are displayed in Table 4.1.

4.2 Discussion

From Table 4.1 as well as Figures 4.3, 4.5, 4.7, 4.8 and 4.9, it is evident that

linear filtering is largely outperformed by nonlinear filtering, with the median

filter providing the best removal of LWD while retaining the truest represen-

tation of the background bathymetry. A key difficulty of linear filtering is the

tradeoff between spike removal and distortion of the background bathymetry.

With lower cutoff wave numbers, linear filtering can guarantee spike removal,

but will significantly distort steep slopes in the background. In contrast, higher

cutoff wave numbers allow the slopes to be retained, but have poor removal of

larger spikes that may result from a survey crossing LWD at an oblique angle.

67

(a) (b)

(c) (d)

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

Figure 4.7: The dashed and solid lines represent the original and erosion-filtered
signals, respectively. The following filter lengths have been used: (a) 3 (N = 1), (b)
7 (N = 3), (c) 11 (N = 5) and (d) 13 (N = 6).

68

(a) (b)

(c) (d)

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

Figure 4.8: The dashed and solid lines represent the original and median-filtered
signals, respectively. The following filter lengths have been used: (a) 3 (N = 1), (b)
13 (N = 6), (c) 17 (N = 8) and (d) 25 (N = 12).

69

Figure 4.9: Illustration of the relative errors presented in Table 4.1. The numbers
1 through 4 for each method correspond to the order used in Table 4.1.

70

Filter type Cutoff wave number [cm−1] Filter length Relative error
FIR 7.5 - 88.3 %
FIR 15 - 87.0 %
FIR 30 - 99.2 %
FIR 45 - 105.8 %
IIR 7.5 - 139.9 %
IIR 15 - 97.0 %
IIR 30 - 101.6 %
IIR 45 - 105.6 %

Erosion - 3 (N = 1) 66.9 %
Erosion - 7 (N = 3) 75.2 %
Erosion - 11 (N = 5) 118.1 %
Erosion - 13 (N = 6) 139.4 %
Median - 3 (N = 1) 98.5 %
Median - 13 (N = 6) 6.6 %
Median - 17 (N = 8) 7.7 %
Median - 25 (N = 12) 9.0 %

Table 4.1: Relative errors between spike-free synthetic bathymetry and filtered
bathymetries: comparison between filters.

Deciding the appropriate cutoff wave number will therefore depend upon both

the characteristics of the data and the end use of the filtered bathymetry; it

follows that linear filtering depends on the skill of the analyst and cannot be

used in an entirely mechanistic manner.

While nonlinear filtering is clearly superior to linear filtering, practical appli-

cation requires a systematic approach to choosing the appropriate filter order.

For a signal with uniform data spacing it is possible to select the minimum

nonlinear filter order based solely on the filter construction. To ensure that

the median is not in a data spike, an effective median filter window must have

more points outside the spike than are included in the spike. Thus, an order

N filter (window size of order 2N + 1) is guaranteed to remove an LWD spike

71

of N data points or fewer. An erosion filter requires only one point in the

window that is outside the spike, so a filter of order N will remove spikes of

2N data points or fewer. For uniform data spacing of ∆x and a maximum

spike physical length scale of L, it follows that the required median filter order

is N ≥ L/∆x, and the required erosion filter order is N ≥ L/(2 ∆x). For the

synthetic bathymetry analyzed above, the largest data spike is precisely 0.96

m and the sample spacing is 0.16 m, so the minimum required median filter

is N = 6 and the minimum required erosion filter is N = 3. These theoreti-

cal minimums match the results in Figures 4.7b and 4.8b showing the lowest

order filters that remove all the data spikes. However, for a data set with

non-uniform data spacing, the previous simple arguments for choosing the fil-

ter order cannot be applied unless the filter order is allowed to change as a

function of the local data spacing. While this might be a possible approach, it

was considered overly-complex for the present work. Instead, we investigated

the use of a single filter order for an entire data set, where the filter order is

selected by a statistical analysis of the data spacing and the expected scales

of the LWD.

LWD in the Sulphur River (e.g., Figure 1.1 and Appendix B) is typically

tree trunks and large limbs with diameters in the range of 10-20 cm, along

with stumps and associated rootballs that may be more than a meter across.

Allowing for the possible oblique angle of the survey boat with the LWD, we

consider that a reasonable LWD length scale for filtering is L = 1 m. This

scale will also filter out similar scales of bathymetric roughness, but this is

72

unlikely to significantly affect the overall accuracy of the filtered bathymetry.

In the Sulphur River survey, the mean data spacing was 16 cm, with a standard

deviation of 7 cm. If the mean data spacing (∆x) is used to select the minimum

median filter order as N ≥ L/(∆x), a minimum median filter order of N =

6 would result. Similarly, the minimum erosion filter order would be N ≥

L/(2 ∆x), which results in N = 3. However, the possibility of slower boat

speeds coinciding with the signal from a piece of LWD leads us to prefer a

more conservative median filter order estimate based on

Nmedian ≥
L

∆x− σ
(4.2)

where σ is the standard deviation of the survey data spacing. This provides a

minimum median filter of N = 11 for the Sulphur River survey. For an erosion

filter, the appropriate minimum is

Nerosion ≥
L

2
(
∆x− σ

) (4.3)

resulting in an erosion filter of N = 6 for the Sulphur River survey. Filtered

and raw data for three 100-meter sections of surveyed bathymetry using the

minimum filters computed from equations 4.2 and 4.3 are shown in Figures

4.10 and 4.11. Additional experiments (not shown) were conducted to find the

minimum median and erosion filter orders that removed all the data spikes. An

N = 11 median filter and an N = 6 erosion filter are the minimum that visually

remove all the large spikes in the data set, indicating that equations 4.2 and

4.3 are suitably conservative. Indeed, in the present case it is possible to argue

73

(a)

(b)

(c)

280 300 320 340 360 380

0

2

4

6

860 880 900 920 940 960 980 1000

0

2

4

6

D
ep

th
 [m

]

1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270

0

2

4

6

Distance [m]

Figure 4.10: The dashed line and solid lines represent the original and filtered
signals, respectively. A N=11 median filter has been used, as calculated by Eq. 4.2.

74

(a)

(b)

(c)

280 300 320 340 360 380

0

2

4

6

860 880 900 920 940 960 980 1000

0

2

4

6

D
ep

th
 [m

]

1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270

0

2

4

6

Distance [m]

Figure 4.11: The dashed line and solid lines represent the original and filtered
signals, respectively. A N=6 erosion filter has been used, as calculated by Eq. 4.3.

75

that the LWD length scale and the mean data spacing provides a good filter

order – but this is unlikely to always hold true. Figures 4.10 and 4.11 show

that both filters effectively remove all the LWD spikes, but the erosion filter

produces unacceptably large erosion of the bathymetry throughout the signal.

The performance difference between the two nonlinear filtering methods can

be seen more clearly by plotting the filter effect – i.e. the absolute difference

between the filtered signal and the raw bathymetry (Figure 4.12). Regions

with steep bathymetry slopes without any sharp spikes (e.g., between 325 and

330 m), have continuous erosion of the bathymetry that peaks at 0.8 m for the

erosion filter. In contrast, the effect of the median filter outside of the large,

visually-identifiable spikes is more episodic and has a maximum of only 0.15

m. A comparison of three median filter orders has been performed and results

are shown in Figure 4.13. While using N = 6 – obtained from the expression

N ≥ L/(∆x) – misses some broad spikes, a filter order of N = 22 – taken to

be twice the order suggested by Eq. 4.2 – clearly erodes the original signal too

severly. The order N = 11 computed by Eq. 4.2 is a successful compromise

between those extreme situations.

From the foregoing, the erosion of steep slopes by an erosion filter would

seem to preclude their use in filtering LWD. However, in a closely-packed debris

field where the length scales of surveyed LWD are larger than distance between

debris items, an erosion filter may be preferable. It has been shown that

where impulses are separated by fewer than N samples, an order N nonlinear

filter may only partially remove the impulses (Justusson, 1981). Thus, for a

76

(a)

(b)

280 300 320 340 360 380

0

1

2

3

4

5

6

D
ep

th
 [m

]

280 300 320 340 360 380
0

1

2

3

4

Distance [m]

A
bs

. d
iff

. i
n

ba
th

ym
et

rie
s

[m
] erosion

median

Figure 4.12: Evaluation of erosion (N = 6) and median (N = 11) filtering per-
formance. (a) Original bathymetry. (b) Dashed and solid lines represent absolute
differences between original and filtered bathymetries, for erosion and median filters,
respectively.

77

(a)

(b)

(c)

280 300 320 340 360 380

0

2

4

6

280 300 320 340 360 380

0

2

4

6

D
ep

th
 [m

]

280 300 320 340 360 380

0

2

4

6

Distance [m]

Figure 4.13: Comparison of three median filter orders. Frame (a) shows filtering
withN = 6 obtained by using the expressionN ≥ L/(∆x). Frame (b) shows filtering
with N = 11 obtained from Eq. 4.2. Frame (c) shows filtering with N = 22, taken
to be twice the order used in the previous frame.

78

debris field with length scale L, the median filter will require spacing between

individual debris items greater than L. In contrast, an erosion filter need be

only half the order of a median filter for removing the same debris scales, so

an erosion filter can be effectively employed where the debris with minimum

separation of L/2. Thus, for river reaches with sections of closely-packed

debris, it may be effective to design a filtering algorithm that locally switches

between median and erosion filter application, depending on the spacing of

the data spikes. Developing an automated method for selective application of

different filters remains an area requiring further research.

4.3 Conclusions

This chapter has examined the effectiveness of both linear and nonlinear

filters for removing LWD signals from bathymetry data. Using a synthesized

bathymetry, it was shown that linear filters require a trade-off between remov-

ing impulse signals and distorting naturally steep slopes in the background

bathymetry. This trade-off makes linear filtering less desirable, and also in-

hibits development of an automated approach to removing LWD signals from

bathymetry data (the selection of linear filter characteristics to remove LWD

is a qualitative decision). It was demonstrated that nonlinear filtering, and

specifically median filtering, is effective for removing LWD signals without dis-

torting steep slopes. Nonlinear erosion filtering was shown to be less effective

as the method’s bias causes steep slopes to be eroded, with the scale of the

erosion being a function of the filter order and the slope steepness. Nonlinear

filtering was shown to be amenable to automatic selection of the filter order

79

using only statistics of the survey data spacing and the length scales of LWD.

Nonlinear median filtering methods were shown to provide a practical means

of removing the LWD signal from bathymetry data collected on the Sulphur

River, Texas. As discussed in the previous chapter, the difference between

the signal with LWD removed and the original bathymetry can be used to

map LWD locations, a technique applied by Osting et al (2003) as part of an

aquatic habitat analysis. Figure 4.14 shows the locations of LWD as deter-

mined by N = 11 median filtering. The entire bathymetric data set (shown in

Figure 2.8) has been processed. Spikes exceeding 0.5 m in height have been

considered LWD.

80

 33.306

 33.3065

 33.307

 33.3075

 33.308

 33.3085

 33.309

 33.3095

-94.727 -94.726 -94.725 -94.724 -94.723 -94.722 -94.721 -94.72 -94.719

L
a
tit

u
d
e
 [

d
e
g
.]

Longitude [deg.]

F
ig

u
re

4
.1

4
:

L
W

D
lo

cation
s

for
en

tire
b

ath
y
m

etric
d

ata
set

as
d

eterm
in

ed
b
y

N
=

11
m

ed
ian

fi
lterin

g.
S

p
ikes

ex
ceed

in
g

0.5
m

in
h

eigh
t

h
ave

b
een

con
sid

ered
L
W

D
.

81

Chapter 5

General conclusion

The more frequent use of two-dimensional hydrodynamic rivers models also

requires more detailed bathymetry surveys. For smooth bathymetries, there is

little difficulty in developing accurate translations from survey data to model;

however, in rivers with significant bottom structure – as is the case in the

Sulphur River –, simple data averaging and interpolation methods may lead

to misrepresentation of the bottom bathymetry.

Given the fine bathymetry gathered by Texas Water Development Board,

it was necessary to identify in the data set what was true bathymetry from

what was caused by large woody debris. To do so, the hypothesis was laid out

that severe disruptive spikes in the data set be the signature of large woody

debris. Two groups of methods have been investigated to serve our objective:

statistical techniques and filtering techniques.

Among the former, the first method, σ-discrimination, was shown to be suit-

able for identifying likely LWD data points so that they can be separated from

82

the original data set. This provides a background bathymetry that is effec-

tively free from LWD and is appropriate for modeling or GIS purposes. The

principal drawback of this method is that selection of the discriminative factor

F remains arbitrary and relies on visual inspection of the data. The second

statistical method demonstrated, scale-space analysis, proved less successful

in identifying LWD. Scale-space analysis for identifying LWD requires setting

upper and lower windowing limits on the “fingerprint” width and smoothing

height of “arches” associated with LWD.

We examined the effectiveness of both linear and nonlinear filters for re-

moving LWD signals from bathymetry data. Using a synthesized bathymetry,

it was shown that linear filters require a trade-off between removing impulse

signals and distorting naturally steep slopes in the background bathymetry.

This trade-off makes linear filtering less desirable. It was demonstrated that

nonlinear filtering, and specifically median filtering, is effective for removing

LWD signals without distorting steep slopes. Nonlinear erosion filtering was

shown to be less effective as the method’s bias causes steep slopes to be eroded.

Nonlinear filtering was shown to be amenable to automatic selection of the fil-

ter order using only statistics of the survey data spacing and the length scales

of LWD. Nonlinear median filtering methods were shown to provide a practi-

cal means of removing the LWD signal from bathymetry data collected on the

Sulphur River, Texas. The difference between the signal with LWD removed

and the original bathymetry can be used to map LWD locations, a technique

applied by Osting et al (2003) as part of an aquatic habitat analysis.

83

Appendix A

Acronyms

1D one-dimensional

2D two-dimensional

DTFT Discrete Time Fourier Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

LWD large woody debris

FFT Fast Fourier Transform

GPS Global Positioning System

TWDB Texas Water Development Board

84

Appendix B

Pictures of LWD in Sulphur River

This appendix contains more pictures of LWD in the Sulphur River. All
pictures were taken during low flow.

Figure B.1: Emergent LWD in the Sulphur River (Northeast Texas).

85

Figure B.2: Emergent LWD in the Sulphur River (Northeast Texas).

Figure B.3: Emergent LWD in the Sulphur River (Northeast Texas).

86

Figure B.4: Emergent LWD in the Sulphur River (Northeast Texas).

Figure B.5: Emergent LWD in the Sulphur River (Northeast Texas).

87

Appendix C

Bathymetry Process 1.1: User’s guide

C.1 Introduction

The program bp provides tools to process raw bathymetry data, export
processed data for use under Matlab, identify LWD (using median filtering)
and export filtered bathymetry.

For Linux users, if Gnuplot is available on the machine where bp is installed,
plotting is an option and allows for producing scatter plots of depth measure-
ment locations as well as original and filtered bathymetries. The latter is
particularly convenient for assessing the quality of a filter before quitting bp.

The interface between C and Gnuplot is provided by the gnuplot i library
written by N. Devillard (ndevilla.free.fr).

C.2 Installation

This section describes the requirements and the steps necessary to compile
and run bp.

C.2.1 Requirements

For Linux, the following is required :

• C compiler (gcc).

• make (to interpret the Makefile).

• Gnuplot is optional.

88

For Windows, a C or C++ compiler is required. I have not tried to compile
and run it under Windows but I was told it works well.

The Windows version does not support Gnuplot. The interface gnuplot i
uses POSIX pipes that are not supported under Windows.

C.2.2 Compilation of the source

Under Linux, the only thing to do is to type make from within the directory
containing the source. Note that make all or make os linux will do the same.

Under Windows, the first thing to do is to edit the file os.h and comment
out the line # define OS LINUX. This will ensure that all Gnuplot-related
instructions in the source code be removed by the preprocessor. It is now
ready for compilation. By using the Makefile, just type make os win. Without
using the Makefile, I don’t know but make sure not to include graphs.* and
gnuplot i.* in the compilation.

C.2.3 Completion

When installing under Linux, make sure the directories gnuplotdata and
gnuplotfigs are in the same directory as the binary.

C.3 Utilization

bp must be invoked with two arguments. The usage is

bp file prefix

where file is the file containing the raw data and prefix is the prefix of all
output files (more on that below). Note that invoking

bp --help

will display a short help message reminding the user how to run bp.

C.3.1 Processing raw data

This corresponds to item 1 in the main menu and leads to the raw data
menu that permits the user to choose among three data file configurations.
The menu items are self-explanatory.

89

Processing raw data must be performed prior to any other task. It reads the
file, stores all data into memory and computes statistics (such as mean depth
per GPS position).

C.3.2 Identifying Large Woody Debris

This selection corresponds to item 2 in the main menu and leads to the lwd
identification menu from which two identification methods are proposed.
Both are based on median filtering1. Under each selection, the user is required
to enter a filter half-length.

First method The first method filters the data with a single filter half-
length. The user is then invited to enter a discriminatory height h. LWD
identification works as follows. The difference between original and filtered
bathymetries is calculated and all spikes whose height is larger than h are
viewed as belonging to a piece of woody debris. In parallel to this process,
two files are created. Median-filtered data are exported into prefix.flt and
LWD locations are exported into prefix.lwd. The format of prefix.flt is

LON1 LAT1 H1

LON2 LAT2 H2

...

where LON, LAT and H are the longitude, latitude and filtered bathymetry
data point, respectively. The format of prefix.lwd is

LON1 LAT1 I1

LON2 LAT2 I2

...

where I is the data point index within the data set.

Second method The second method performs median filtering with several
filter half-lengths. If K is the filter half-length entered by the user, filtering will
be performed with filter half-lengths 1 2 . . . K. For each filtering, the two same
files as above are created, namely prefix ##.flt and prefix ##.lwd where
is replaced by one of the filter half-lengths. The second method allows for
distinguishing between spike widths, as explained in the appendix.

1Refer to section C.4 for a brief overview of median filtering or section 4.1.2 for more
detailed explanations.

90

C.3.3 Exporting processed data

Processed data may be exported into Matlab scripts. The following files are
created when selecting item 3 in the main menu. Within each of these files,
the first lines describe the content.

• prefix sum.m : This file contains summarized data per GPS position.

• prefix fin.m : This file contains all depth measurements with GPS
positions linearly interpolated between known positions.

• prefix lum.m : Obselete and not useful anymore. Will be disabled in
subsequent versions.

C.3.4 Plotting

Plotting with Gnuplot is only available in the Linux version2. Selecting
item 4 in the main menu enables the plotting menu. Three graphs may be
produced, either in paper version (Encapsulated Postscript format) or on the
screen. The first two items in this menu produce scatter plots of GPS locations.
The ’Fine scatter plot’ option linearly interpolates between GPS positions to
plot all depth measurement locations. The third menu item produces a two-
graph page comparing original and filtered bathymetries. For each of these
plots, the user is asked whether to produce a paper graph or not. In addition,
for the third graph, the x-axis range must be entered (or enter 0 0 for the
entire range).

C.4 Median filtering

A median filter of length 2N + 13 works the following way : for each depth
sounding, we build a data set made of the N soundings preceding it, the N
soundings following it and the sounding itself. We now have a data set of
2N + 1 soundings. The center sounding is replaced by the median of this set.
This type of filtering ensures that all edges be conserved. Therefore, sharp
changes in the bathymetry will not be affected. Only spikes will be totally
removed. Specifying a filter half-length of N will remove spikes whose width
contains up to N soundings.

2Who wants to use Windows anyway ?
3Note that the user enters the filter half-length N .

91

Appendix D

Bathymetry process: code listing

/* ----------------------------------

*

* main.c

*

* Laurent White

*

* Date of creation : 2002 -12 -19

*

* ---------------------------------- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include "os.h"

include "preprocess .h"

include "raw.h"

include "identifylwd.h"

include "stdev.h"

include "postprocess.h"

/* If compiling under Linux , include Gnuplot extension */

ifdef OS_LINUX

include "graphs.h"

include "gnuplot_i.h"

endif

int main (int argc , char ** argv)

{

int n_gps_positions; /* Number of different locations

* found in input file */

gps_position * gps_positions; /* Array of struct gps_position */

int main_menu_choice ;

int return_value;

#ifdef OS_LINUX

gnuplot_ctrl *h;

#endif

/* Handle arguments */

if (handle_arguments (argc , argv) == 0)

return 0;

/* Allocate memory */

gps_positions = (gps_position *) malloc (MAX_GPS_POSITIONS * sizeof(gps_position));

/* Display signature */

(void) display_signature ();

/* Enter main menu loop */

main_menu_choice = MM_NONE;

n_gps_positions = -1;

/* Initialization of Gnuplot */

ifdef OS_LINUX

h = gnuplot_init ();

endif

92

while (1)

{

switch (main_menu_choice)

{

case MM_RAW:

/* Read raw data and compute statistics */

n_gps_positions = process_raw (argv [1], gps_positions);

if (n_gps_positions == 0) /* An error occurred in ’process_raw ’ */

{

free (gps_positions);

return 0;

}

if (n_gps_positions == -1)

break;

break;

case MM_LWD:

/* LWD identification */

return_value = identify_LWD (argv [2], gps_positions , n_gps_positions);

if (return_value == 0) /* An error occurred in ’identify_LWD ’ */

{

free (gps_positions);

return 0;

}

if (return_value == -1)

break;

break;

case MM_EXP:

/* Export to Matlab */

return_value = export_to_matlab (argv [2], gps_positions , n_gps_positions);

break;

ifdef OS_LINUX

case MM_GRA:

/* Plotting */

return_value = plotting_menu (gps_positions , n_gps_positions , h);

break;

endif

case MM_EXIT:

printf ("Bye.\n");

/* Free memory */

free (gps_positions);

return 1;

break;

}

(void) display_main_menu ();

printf (" Selection : ");

scanf ("%d" , & main_menu_choice);

} /* End main menu loop */

ifdef OS_LINUX

gnuplot_close (h);

endif

return 1;

}

93

/* ----------------------------------

*

* os.h

*

* Laurent White

*

* Date of creation : 2003 -02 -21

*

* ---------------------------------- */

ifndef OS_H

define OS_H

/* If compiling for Windows , comment the next line */

define OS_LINUX

endif /* OS_H */

94

/* ----------------------------------

*

* defs.h

*

* Laurent White

*

* Date of creation : 2003 -02 -21

*

* ---------------------------------- */

ifndef DEFS_H

define DEFS_H

define MAX_FNAME_SIZE 128

/* Define the reference locations */

/* For Raw data 1 */

define LONGITUDE_1 94.0

define LATITUDE_1 33.0

define LONG_C_1 ’W’

define LAT_C_1 ’N’

/* For Raw data 2 */

define LONGITUDE_2 94.0

define LATITUDE_2 33.0

define LONG_C_2 ’W’

define LAT_C_2 ’N’

/* For Raw data 3 */

define LONGITUDE_3 97.0

define LATITUDE_3 29.0

define LONG_C_3 ’W’

define LAT_C_3 ’N’

/* Maximum allowable number of distinct GPS positions */

define MAX_GPS_POSITIONS 65536

/* Maximum allowable number of soundings at one GPS position */

define MAX_SOUNDINGS 256

/* Conversion factor : number of feet per meter */

define CONV_FEET_M 3.28083990

/* Earth radius */

define RE 6400000

/* Structure defining a GPS position */

typedef struct

{

int id;

double longitude;

double latitude;

int n_soundings; /* Number of soundings */

double soundings[MAX_SOUNDINGS]; /* Depth soundings */

double timestamps [MAX_SOUNDINGS]; /* Time stamps of soundings */

double depth_mean ; /* Mean depth of soundings */

double depth_mean_smooth ; /* Depth of smoothed bath. */

double depth_var; /* Variance of soundings */

double depth_var_smooth ;

double slope; /* Local slope (using the mean depths) */

double slope_mean ; /* Mean slope of all slopes between

this position and the next one */

double slope_var; /* Variance of all slopes between

this position and the next one*/

double distance; /* Distance between this position and

the next one */

} gps_position;

/* Constants used in Main Menu management */

define MM_NONE -1

define MM_RAW 1

define MM_LWD 2

define MM_EXP 3

define MM_GRA 4

define MM_EXIT 9

endif /* DEFS_H */

95

/* ----------------------------------

*

* preprocess .h

*

* Laurent White

*

* Date of creation : 2003 -02 -19

*

* ---------------------------------- */

ifndef PREPROCESS_H

define PREPROCESS_H

void display_help ();

void display_signature ();

void display_main_menu ();

int handle_arguments (int argc , char ** argv);

endif /* PREPROCESS_H */

96

/* ----------------------------------

*

* preprocess .c

*

* Laurent White

*

* Date of creation : 2003 -02 -19

*

* ---------------------------------- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include "os.h"

include "preprocess .h"

void display_help ()

/*

Arguments : /

#

Action : Display help.

#

Return : /

*/

{

printf ("Usage : bp [FILE] [PREFIX]");

printf ("\n\nThis program processes the raw data \

contained in FILE and outputs all results\n");

printf ("in files whose prefix is PREFIX .\n");

printf ("Please refer to manual for detailed help.\n");

printf ("\nFor bugs , please contact lwh@mail.utexas.edu (2003).\n");

}

void display_signature ()

/*

Arguments : /

#

Action : Display signature.

#

Return : /

*/

{

int system_call;

/* Execute ’clear ’ shell command */

system_call = system ("clear");

printf ("\n");

printf (" ---\ n");

printf ("This is bp (Bathymetry Process) version 1.1. \n");

printf ("Author : Laurent White (lwh@mail.utexas.edu). \n");

printf (" University of Texas at Austin . \n");

printf (" Environmental and Water Resources Engineering. \n");

printf (" Civil Engineering Department . \n");

printf (" \n");

ifndef OS_LINUX

printf ("Windows version. Gnuplot extension disabled . \n");

endif

ifdef OS_LINUX

printf ("Linux version. Gnuplot extension enabled. \n");

printf (" . All graphs are made with Gnuplot 3.7.3. \n");

printf (" . The interface between C and Gnuplot is provided by \n");

printf (" the gnuplot_i library written by N. Devillard . \n");

endif

printf (" ---\ n");

printf ("\n");

} /* display_signature */

int handle_arguments (int argc , char ** argv)

/*

Arguments : Same as ’Main’

#

Action : Verification of the number of arguments and

check if the user asked for help.

#

Return : 0 if an error occurred or the user asked for help . 1 otherwise.

97

*/

{

if (((argc == 2) && strncmp(argv [1], "--help" , 6)) || (argc < 2))

{

printf ("\n");

printf ("Error.\nThe source file and the prefix must be specified .\n");

printf ("\nUse the option \’--help\’ for help");

printf ("\n\n");

return 0;

}

/* Display help message if enquired by user*/

if (! strncmp(argv [1], "--help" , 6))

{

(void) display_help ();

return 0;

}

if (argc < 3)

{

printf ("\n");

printf ("Error.\nThe source file and the prefix must be specified .\n");

printf ("\nUse the option \’--help\’ for help");

printf ("\n\n");

return 0;

}

return 1;

} /* handle_arguments */

void display_main_menu ()

/*

Arguments : /

#

Action : Display help.

#

Return : /

*/

{

printf ("\nMAIN MENU\n");

printf (" ---------\n\n");

printf (" --\ n");

printf ("| Process raw data 1 |\n");

printf ("| Identify LWD 2 |\n");

printf ("| Export processed data 3 |\n");

ifdef OS_LINUX

printf ("| Plotting 4 |\n");

endif

printf ("| |\n");

printf ("| Exit 9 |\n");

printf (" --\ n");

printf ("\n");

} /* display_main_menu */

98

/* ----------------------------------

*

* raw.h

*

* Laurent White

*

* Date of creation : 2002 -12 -19

* Last update : 2002 -06 -20

*

* ---------------------------------- */

ifndef RAW_H

define RAW_H

include "defs.h"

int process_raw (char *fname_raw , gps_position * gps_positions);

int read_raw (char *fname_raw , gps_position * gps_positions);

int read_single_sounding_raw1 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp);

int read_single_sounding_raw2 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp);

int read_single_sounding_raw3 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp);

int compute_statistics (gps_position * gps_positions , int n_gps_positions);

double compute_depth_mean (gps_position *gps);

double compute_depth_variance (gps_position *gps);

double compute_slope (gps_position *gps1 , gps_position *gps2);

double compute_slope_mean (gps_position *gps1 , gps_position *gps2);

double compute_slope_variance (gps_position *gps1 , gps_position *gps2);

double compute_distance (gps_position *gps1 , gps_position *gps2);

endif

99

/* --

*

* raw.c

*

* Laurent White

*

* Date of creation : 2002 -12 -19

* Last update : 2003 -06 -20

*

* --- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include <math.h>

include "defs.h"

include "raw.h"

int process_raw (char *fname_raw , gps_position * gps_positions)

/*

Arguments : fname_raw is the name of the raw data file.

gps_positions is an array of (struct gps_position).

#

Action : 1. Read all soundings , eliminate invalid ones and lump them into

GPS position (using the structure gps_position)

2. Compute all statistics for each GPS position . That is , mean depth

depth variance , slope , mean slope (same as previous one) and slope

variance.

#

Return : Number of distinct GPS positions

-1 if the user wants to return to the main menu.

0 if an error occurred.

*/

{

int n_gps_positions; /* Number of distinct gps positions */

/* Read the file and lump it into distinct GPS positions */

n_gps_positions = read_raw (fname_raw , gps_positions);

if (n_gps_positions == -1)

return -1;

if (n_gps_positions == 0)

return 0;

/* Compute all statistics for each GPS position */

printf (" Computing statistics for each GPS position ...\n");

(void) compute_statistics (gps_positions , n_gps_positions);

printf ("Processing done . %d distinct GPS positions \

have been detected .\n\n" , n_gps_positions);

/* Return the number of GPS positions */

return n_gps_positions;

} /* process_raw */

int read_raw (char *fname_raw , gps_position * gps_positions)

/*

Arguments : fp_raw is pointer to a stream.

gps_positions is an array of (stuct gps_positions)

#

Action : Reads all lines in the file pointed by fp_raw (according

to the conversion string specified in ’read_single_sounding_rawN’),

where N is the raw data ID number.

Do not take into account records that are invalid. For each

GPS position in the array , we update the longitude , latitude , number

of soundings and array of depth soundings . Each GPS position is

ready for statistics computation.

#

Returns : Number of distinct GPS positions.

Returns 0 if an error occurred.

Returns -1 if the user wants to return to the Main Menu.

*/

{

/* Variables */

double longitude;

double latitude;

100

double ref_longitude; /* Reference longitude */

double ref_latitude; /* Reference latitude */

double depth;

double timestamp; /* Time stamp of sounding */

int valid;

int n_invalid_soundings ; /* Number of invalid soundings */

int n_soundings; /* Total number of soundings */

int n_distinct_positions ; /* Number of distinct GPS positions */

int n_local; /* Counter of soundings for a given GPS location */

int index;

int choice;

FILE *fp_raw; /* File pointer to raw data file */

/* Initializations */

n_invalid_soundings = 0;

n_soundings = 0;

n_distinct_positions = 0;

ref_longitude = 1000.0;

ref_latitude = 1000.0; /* Set the reference position outside any

* physical range so that the first sounding

* is always a new position

*/

/* Open file */

fp_raw = fopen (fname_raw , "r");

if (fp_raw == NULL)

{

printf ("Opening file ’%s ’ failed .\n" , fname_raw);

return 0;

}

/* Display menu */

printf ("\nRAW DATA MENU\n");

printf (" -------------\n\n");

printf (" --\ n");

printf ("| Sulphur River (May 2001) 1 |\n");

printf ("| Sulphur River (January 2002) 2 |\n");

printf ("| Guadalupe River (April 2003) 3 |\n");

printf ("| |\n");

printf ("| Return to Main Menu 9 |\n");

printf (" --\ n");

printf ("\n");

printf (" Selection : ");

scanf ("%d" , &choice);

if (choice == 9)

return -1;

printf ("\n");

printf ("\nProcessing all soundings in ’%s ’...\n" , fname_raw);

printf ("\n");

printf (" Lumping soundings into common GPS positions ...");

fflush (stdout);

/* Loop through all soundings */

while (! feof(fp_raw))

{

/* Increment counter of all soundings */

n_soundings++;

switch (choice)

{

case 1:

valid = read_single_sounding_raw1 (fp_raw , \

&longitude , & latitude , &depth , & timestamp);

if (valid == -1)

return -1;

break;

case 2:

valid = read_single_sounding_raw2 (fp_raw , \

&longitude , & latitude , &depth , & timestamp);

if (valid == -1)

return -1;

break;

case 3:

valid = read_single_sounding_raw3 (fp_raw , \

&longitude , & latitude , &depth , & timestamp);

101

if (valid == -1)

return -1;

break;

case 0:

return -1;

break;

default:

return -1;

break;

}

if (valid)

{

if ((latitude == ref_latitude) && (longitude == ref_longitude))

/* Same GPS position */

{

n_local ++;

gps_positions[index]. n_soundings++;

gps_positions[index]. soundings[n_local -1] = depth;

gps_positions[index]. timestamps [n_local -1] = timestamp;

}

else

/* New GPS position */

{

/* Increment the counter of distinct GPS positions */

n_distinct_positions ++;

/* Current coordinates become reference coordinates */

ref_longitude = longitude;

ref_latitude = latitude;

/* Sets the number of soundings for that GPS position to 1 */

n_local = 1;

/* Set values for new GPS position */

index = n_distinct_positions - 1;

if (index > (MAX_GPS_POSITIONS - 1))

{

fprintf (stderr , "Error. The index in \

’read_raw ’ is greater \

than the maximum allowed value.\n");

return -1;

}

gps_positions[index].id = n_distinct_positions ;

gps_positions[index]. n_soundings = 1;

gps_positions[index]. longitude = ref_longitude;

gps_positions[index]. latitude = ref_latitude;

gps_positions[index]. soundings[n_local -1] = depth;

gps_positions[index]. timestamps [n_local -1] = timestamp;

/* Initialization of all statistics */

gps_positions[index]. depth_mean = 0.0;

gps_positions[index]. depth_var = 0.0;

gps_positions[index]. slope = 0.0;

gps_positions[index]. slope_mean = 0.0;

gps_positions[index]. slope_var = 0.0;

gps_positions[index]. distance = 0.0;

}

}

else

/* Increment counter of invalid soundings */

n_invalid_soundings ++;

} /* end fp_raw */

printf (" (Detected %d invalid soundings out of %d soundings).\n" , \

n_invalid_soundings , n_soundings);

/* Close stream */

fclose (fp_raw);

return n_distinct_positions ;

} /* read_raw */

int read_single_sounding_raw1 (FILE *fp_raw , double *longitude , \

102

double *latitude , double *depth , double * timestamp)

/*

Arguments : fp_raw : pointer to a stream.

longitude , latitude , depth : data associated with current sounding.

The file MUST contain data using the format of SULPHUR RIVER SITE 1.

#

Action : Reads a line in the file pointed by fp_raw and

assigns values to longitude ,

latitude and depth.

#

Return : A non -zero integer if the sounding is valid.

In this case , the arguments ’longitude ’, ’latitude ’

and ’depth ’ have well -defined values.

#

0 if the sounding is invalid.

-1 if a reading error occurred.

In this case , the arguments ’longitude ’,

’latitude ’ and ’depth ’ have NULL values.

*/

{

/* Variable starting with underscore are used to scan the file */

int _day;

int _month;

int _year;

int _hour;

int _min;

double _sec;

double _depth;

int _quality;

double _tranducer_depth ;

int _speed_sound;

double _lat_deg;

double _lat_min;

double _long_deg;

double _long_min;

char _lat;

char _long;

int _tmp;

int n_read;

int valid;

/* Read the sounding (the nasty conversion string will convert raw1 data ONLY !!) */

n_read = fscanf (fp_raw , \

"%2d%2d%4d,%2d%2d%6lf ,HF ,%8lf ,%d, %4lf ,%4d,%5d ,%2lf %9lf%1c,%3lf %9lf%1c\n",

&_day , &_month , &_year , &_hour , &_min , &_sec , &_depth , & _quality ,

&_tranducer_depth , & _speed_sound , &_tmp ,

&_lat_deg , & _lat_min , &_lat , & _long_deg , & _long_min , & _long);

if (n_read != 17)

{

printf ("\nError while reading raw data file !\n");

return -1;

}

/*

* Check for validity of sounding : a quality of 1 indicates

* a valid sounding . Also , the latitude must be North and

* the longitude must be west.

*/

valid = (_quality == 1) && (_lat == LAT_C_1) && (_long == LONG_C_1);

/*

* If the degree part of the coordinate is 0, set it to

* the reference location.

*/

if (_lat_deg == 0)

_lat_deg = LATITUDE_1 ;

if (_long_deg == 0)

_long_deg = LONGITUDE_1;

/* Set the values of the arguments */

*longitude = _long_deg + _long_min / 60.0;

*latitude = _lat_deg + _lat_min / 60.0;

*depth = _depth / CONV_FEET_M;

*timestamp = (double) (_hour *3600 + _min *60 + _sec);

/*

* Change longitude to its opposite if it is ’West ’ longitude.

103

* Idem for latitude if it’s ’South ’ latitude

*/

if (_long == ’W’)

*longitude *= -1;

if (_lat == ’S’)

*latitude *= -1;

/* If sounding is invalid , set NULL to arguments */

if (! valid)

{

longitude = NULL;

latitude = NULL;

depth = NULL;

}

return valid;

} /* read_single_sounding_raw1 */

int read_single_sounding_raw2 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp)

/*

Arguments : fp_raw : pointer to a stream.

longitude , latitude , depth : data associated with current sounding.

The file MUST contain data using the format of SULPHUR RIVER SITE 2.

#

Action : Reads a line in the file pointed by fp_raw and assigns values to longitude ,

latitude and depth.

#

Return : A non -zero integer if the sounding is valid.

In this case , the arguments ’longitude ’,

’latitude ’ and ’depth ’ have well -defined values.

#

0 if the sounding is invalid.

-1 if a reading error occurred.

In this case , the arguments ’longitude ’,

’latitude ’ and ’depth ’ have NULL values.

*/

{

/* Variable starting with underscore are used to scan the file */

int _day;

int _month;

int _year;

int _hour;

int _min;

double _sec;

double _depth;

int _quality;

double _lat_deg;

double _lat_min;

double _long_deg;

double _long_min;

char _lat;

char _long;

int _latency;

int n_read;

int valid;

/* Read the sounding (the nasty conversion string will convert raw2 data ONLY !!) */

n_read = fscanf (fp_raw , \

"%2d%2d%4d,%2d%2d%6lf ,%8lf ,%d,%2lf %9lf%1c,%3lf %9lf%1c,%4d\n",

&_day , &_month , &_year , &_hour , &_min , &_sec , &_depth , & _quality ,

&_lat_deg , & _lat_min , &_lat , & _long_deg , & _long_min , &_long ,

&_latency);

if (n_read != 15)

{

printf ("\nError while reading raw data file !\n");

return -1;

}

/*

* Check for validity of sounding : a quality of 1 indicates

* a valid sounding . Also , the latitude must be North and

* the longitude must be west.

*/

valid = (_quality == 1) && (_lat == LAT_C_2) && (_long == LONG_C_2);

104

/*

* If the degree part of the coordinate is 0, set it to

* the reference location.

*/

if (_lat_deg == 0)

_lat_deg = LATITUDE_2 ;

if (_long_deg == 0)

_long_deg = LONGITUDE_2;

/* Set the values of the arguments */

*longitude = _long_deg + _long_min / 60.0;

*latitude = _lat_deg + _lat_min / 60.0;

*depth = _depth;

*timestamp = (double) (_hour *3600 + _min *60 + _sec);

/*

* Change longitude to its opposite if it is ’West ’ longitude.

* Idem for latitude if it’s ’South ’ latitude

*/

if (_long == ’W’)

*longitude *= -1;

if (_lat == ’S’)

*latitude *= -1;

/* If sounding is invalid , set NULL to arguments */

if (! valid)

{

longitude = NULL;

latitude = NULL;

depth = NULL;

}

return valid;

} /* read_single_sounding_raw2 */

int read_single_sounding_raw3 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp)

/*

Arguments : fp_raw : pointer to a stream.

longitude , latitude , depth : data associated with current sounding.

The file MUST contain data using the format of GUADALUPE RIVER.

#

Action : Reads a line in the file pointed by fp_raw and assigns values to longitude ,

latitude and depth.

#

Return : A non -zero integer if the sounding is valid.

In this case , the arguments ’longitude ’,

’latitude ’ and ’depth ’ have well -defined values.

#

0 if the sounding is invalid.

-1 if a reading error occurred.

In this case , the arguments ’longitude ’,

’latitude ’ and ’depth ’ have NULL values.

*/

{

/* Variable starting with underscore are used to scan the file */

int _day;

int _month;

int _year;

int _hour;

int _min;

double _sec;

double _depth;

int _quality;

double _tranducer_depth ;

double _lat_deg;

double _lat_min;

double _long_deg;

double _long_min;

char _lat;

char _long;

int _tmp;

int _latency;

int n_read;

105

int valid;

/* Read the sounding (the nasty conversion string will convert raw3 data ONLY !!) */

n_read = fscanf (fp_raw , \

"%2d%2d%4d,%2d%2d%6lf ,%5d,%8lf ,%d, %4lf ,%2lf %9lf%1c,%3lf %9lf%1c,%4d\n",

&_day , &_month , &_year , &_hour , &_min ,

&_sec , &_tmp , & _depth , & _quality ,

&_tranducer_depth ,

&_lat_deg , & _lat_min , &_lat ,

&_long_deg , & _long_min , &_long ,

&_latency);

if (n_read != 17)

{

printf ("\nError while reading raw data file !\n");

return -1;

}

/*

* Check for validity of sounding : a quality of 1 indicates

* a valid sounding . Also , the latitude must be North and

* the longitude must be west.

*/

valid = (_quality == 1) && (_lat == LAT_C_3) && (_long == LONG_C_3);

/*

* If the degree part of the coordinate is 0, set it to

* the reference location.

*/

if (_lat_deg == 0)

_lat_deg = LATITUDE_3 ;

if (_long_deg == 0)

_long_deg = LONGITUDE_3;

/* Set the values of the arguments */

*longitude = _long_deg + _long_min / 60.0;

*latitude = _lat_deg + _lat_min / 60.0;

*depth = _depth;

*timestamp = (double) (_hour *3600 + _min *60 + _sec);

/*

* Change longitude to its opposite if it is ’West ’ longitude.

* Idem for latitude if it’s ’South ’ latitude

*/

if (_long == ’W’)

*longitude *= -1;

if (_lat == ’S’)

*latitude *= -1;

/* If sounding is invalid , set NULL to arguments */

if (! valid)

{

longitude = NULL;

latitude = NULL;

depth = NULL;

}

return valid;

} /* read_single_sounding_raw3 */

int compute_statistics (gps_position * gps_positions , int n_gps_positions)

/*

#

#

Return : 1 no error was encountered while calculating the statistics .

0 if an error occurred.

*/

{

int i;

double dist;

/* Compute mean depth and depth variance */

for (i = 0 ; i < n_gps_positions ; i++)

{

(void) compute_depth_mean (gps_positions + i);

(void) compute_depth_variance (gps_positions + i);

}

106

/* Compute mean slope and slope variance */

for (i = 0 ; i < (n_gps_positions - 1) ; i++)

{

dist = compute_distance (gps_positions + i, gps_positions + i + 1);

if (dist > 0.0)

{

(void) compute_slope (gps_positions + i, gps_positions + i + 1);

(void) compute_slope_mean (gps_positions + i, gps_positions + i + 1);

(void) compute_slope_variance (gps_positions + i, gps_positions + i + 1);

}

else

fprintf (stderr , \

" Distance (%f) between GPS%d and GPS%d is \

negative or equal to 0. GPS%d will be skiped .\n" ,\

dist , i, i+1, i);

}

return 1;

} /* compute_statistics */

double compute_depth_mean (gps_position *gps)

/*

Arguments : gps is a pointer to (struct gps_position),

representative of a valid GPS position.

#

Action : Compute the mean of all depths at GPS position . Assign it to gps.

#

Return : mean of all depths at GPS position.

*/

{

int N; /* Number of soundings */

int i; /* Counter */

double sum_depth; /* Running sum of all depths */

/* Retrieve the number of soundings for the GPS position */

N = (* gps). n_soundings;

/* Initialiazes the sum of depths */

sum_depth = 0.0;

for (i = 0 ; i < N ; i++)

sum_depth += (* gps). soundings[i];

/* Compute the mean depth , assign it to GPS position

* and set it as return value (vive le C !) */

return ((* gps). depth_mean = (sum_depth / N));

} /* compute_depth_mean */

double compute_depth_variance (gps_position *gps)

/*

Arguments : gps is a pointer to (struct gps_position),

representative of a valid GPS position.

#

Action : Compute the variance of all depths at GPS position and assign it to gps.

#

Return : variance of all depths at GPS position.

*/

{

int N;

int i;

double depth_mean ; /* Mean depth of GPS position */

double sum_squared_difference ; /* Running sum of (h_i - h_avg)^2 */

/* Retrieve the number of soundings and the mean depth for the GPS position */

N = (* gps). n_soundings;

depth_mean = (* gps). depth_mean ;

/* Initialiazes the running sum */

sum_squared_difference = 0.0;

for (i = 0 ; i < N ; i++)

sum_squared_difference += pow ((* gps). soundings[i] - depth_mean , 2);

/* Compute the variance , assign it to GPS position

107

* and set it as return value (vive le C !) */

return ((* gps). depth_var = (sum_squared_difference / N));

} /* compute_depth_variance */

double compute_slope (gps_position *gps1 , gps_position *gps2)

/*

Arguments : gps1 and gps2 are pointers to (struct gps_position),

representative of valid GPS positions.

#

Action : Calculate the slope between GPS positions using the mean depths

at each position in the calculation. Assign it to gps1.

#

Return : Slope between GPS positions using the mean depths in the calculation.

*/

{

double dist;

double mean_depth1;

double mean_depth2;

dist = (* gps1). distance; /* Distance between GPS1 and GPS2 */

if (dist == 0.0)

{

fprintf (stderr , \

"Error. Distance between GPS%d and GPS%d \

must be computed before computing the slope.\n",\

(*gps1).id , (* gps2).id);

return 0;

}

mean_depth1 = (* gps1). depth_mean ;

mean_depth2 = (* gps2). depth_mean ;

return ((* gps1).slope = (mean_depth2 - mean_depth1) / dist);

} /* compute_slope */

double compute_slope_mean (gps_position *gps1 , gps_position *gps2)

/*

Arguments : gps1 and gps2 are pointers to (struct gps_position),

representative of valid GPS positions.

#

Action : Calculate the mean of all possible slopes between both GPS positions

and assign it to gps1.

#

Return : Mean of all possible slopes between both GPS positions.

*/

{

int N1;

int N2;

double dist; /* Distance between GPS positions */

int i;

int j;

double sum_slope; /* Running sum of all possible slopes */

/* Distance between GPS positions */

dist = (* gps1). distance;

if (dist == 0.0)

{

fprintf (stderr , \

"Error. Distance between GPS%d and GPS%d \

must be computed before computing the slope.\n",

(*gps1).id , (* gps2).id);

return 0;

}

/* Retrieve the number of soundings at each GPS position */

N1 = (* gps1). n_soundings;

N2 = (* gps2). n_soundings;

/* Compute sum of all possible slopes */

sum_slope = 0.0;

for (i = 0 ; i < N1 ; i++)

for (j = 0 ; j < N2 ; j++)

sum_slope += ((* gps2). soundings[j] - (* gps1). soundings[i]) / dist;

108

return ((* gps1). slope_mean = sum_slope / (N1*N2));

} /* compute_slope_mean */

double compute_slope_variance (gps_position *gps1 , gps_position *gps2)

/*

Arguments : gps1 and gps2 are pointers to (struct gps_position),

representative of valid GPS positions.

#

Action : Calculate the variance of all possible slopes between both GPS positions

and assign it to gps1.

#

Return : Variance of all possible slopes between both GPS positions.

*/

{

int N1;

int N2;

double dist; /* Distance between GPS positions */

int i;

int j;

double slope_ij; /* Slope between sounding i

of GPS1 and sounding j of GPS2 */

double slope_mean ; /* Mean of all slopes between GPS1 and GPS2 */

double sum_squared_difference ; /* Running sum of all possible slopes */

/* Distance between GPS positions */

dist = (* gps1). distance;

if (dist == 0.0)

{

fprintf (stderr , \

"Error. Distance between GPS%d and GPS%d \

must be computed before computing the slope.\n",

(*gps1).id , (* gps2).id);

return 0;

}

/* Mean of all slopes between GPS positions */

slope_mean = (* gps1). slope_mean ;

/* Retrieve the number of soundings at each GPS position */

N1 = (* gps1). n_soundings;

N2 = (* gps2). n_soundings;

/* Compute sum of all possible slopes */

sum_squared_difference = 0.0;

for (i = 0 ; i < N1 ; i++)

for (j = 0 ; j < N2 ; j++)

{

slope_ij = ((* gps2). soundings[j] - (* gps1). soundings[i]) / dist;

sum_squared_difference += pow (slope_ij - slope_mean , 2);

}

return ((* gps1). slope_var = sum_squared_difference / (N1*N2));

} /* compute_slope_variance */

double compute_distance (gps_position *gps1 , gps_position *gps2)

/*

Arguments : gps1 and gps2 are pointers to (struct gps_position),

representative of valid GPS positions between which

the distance is to be calculated .

#

Action : Calculate the distance between both GPS positions and assign it

to gps1.

#

Return : Distance between GPS positions.

*/

{

double lambda1; /* GPS1 - longitude (rad.) */

double phi1; /* GPS1 - latitude (rad .) */

double lambda2; /* GPS2 - longitude (rad.) */

double phi2; /* GPS2 - latitude (rad .) */

double x1,y1 ,z1; /* GPS1 - Cartesian coordinates */

double x2,y2 ,z2; /* GPS2 - Cartesian coordinates */

109

double L_sq; /* Distance of straight line

between (x1 ,y1 ,z1) and (x2 ,y2 ,z2) */

double alpha; /* Angle between radii defined by GPS1 and GPS2 */

/* Retrieve spherical coordinates (M_PI is defined in math.h) */

lambda1 = (* gps1). longitude * M_PI / 180.0;

phi1 = (* gps1). latitude * M_PI / 180.0;

lambda2 = (* gps2). longitude * M_PI / 180.0;

phi2 = (* gps2). latitude * M_PI / 180.0;

/* Conversion to Cartesian coordinates (RE = Earth radius) */

x1 = RE * cos (phi1) * cos (lambda1);

y1 = RE * cos (phi1) * sin (lambda1);

z1 = RE * sin (phi1);

x2 = RE * cos (phi2) * cos (lambda2);

y2 = RE * cos (phi2) * sin (lambda2);

z2 = RE * sin (phi2);

/* Distance (squared) between positions */

L_sq = pow (x1 -x2 , 2) + pow (y1 -y2 , 2) + pow (z1 -z2 , 2);

/* Compute the angle between both positions (Generalized Pythagoras) */

alpha = acos (1.0 - L_sq / (2.0* pow(RE ,2)));

return ((* gps1). distance = alpha*RE);

} /* compute_distance */

110

/* ----------------------------------

*

* postprocess.h

*

* Laurent White

*

* Date of creation : 2002 -12 -19

*

* ---------------------------------- */

ifndef POSTPROCESS_H

define POSTPROCESS_H

include "defs.h"

int export_to_dx (char *basename , int items);

int export_to_matlab (char *prefix , gps_position * gps_positions , \

int n_gps_positions);

int export_to_sms (char *prefix , gps_position * gps_positions , \

int n_gps_positions);

endif /* POSTPROCESS_H */

111

/* ----------------------------------

*

* postprocess.c

*

* Laurent White

*

* Date of creation : 2002 -12 -20

*

* ---------------------------------- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include "postprocess.h"

int export_to_dx (char *basename , int items)

/*

input_file : file basename containing the data to be exported into a DX format

items : number of items in the file (number of positions)

*/

{

FILE * fp_in;

FILE * fp_pos;

FILE * fp_dat;

FILE * fp_dx;

char fname_in [100]; /* File with processed data */

char fname_pos [100]; /* DX file : positions */

char fname_dat [100]; /* DX file : data */

char fname_dx [100]; /* DX file : field structure */

int _day;

int _month;

int _year;

double _time;

double _latitude;

double _longitude ;

double _depth;

double _var;

int _tmp;

/* -----------------------

* --- Opens the files ---

* ----------------------- */

strcpy (fname_in , basename);

strcat (fname_in , ".pro");

fp_in = fopen (fname_in , "r");

if (fp_in == NULL)

{

printf ("Opening file ‘%s ’ failed .\n" , fname_in);

return 0;

}

strcpy (fname_pos , basename);

strcat (fname_pos , ".pos");

fp_pos = fopen (fname_pos , "w");

if (fp_pos == NULL)

{

printf ("Opening file ‘%s ’ failed .\n" , fname_pos);

return 0;

}

strcpy (fname_dat , basename);

strcat (fname_dat , ".dat");

fp_dat = fopen (fname_dat , "w");

if (fp_dat == NULL)

{

printf ("Opening file ‘%s ’ failed .\n" , fname_dat);

return 0;

}

strcpy (fname_dx , basename);

strcat (fname_dx , ".dx");

fp_dx = fopen (fname_dx , "w");

if (fp_dx == NULL)

{

printf ("Opening file ‘%s ’ failed .\n" , fname_dx);

return 0;

}

112

/* ------------------------------

* --- Writes to the dx files ---

* ------------------------------ */

while (! feof(fp_in))

{

fscanf (fp_in , "%2d-%2d-%4d %lf %lf %lf %lf %lf %d\n",

&_day , & _month , &_year , &_time ,

&_latitude , & _longitude , & _depth , &_var , & _tmp);

fprintf (fp_pos , "%.10f %.10f\n" , _longitude , _latitude);

fprintf (fp_dat , "%lf\n", _depth);

}

fprintf (fp_dx , "# POSITIONS\n");

fprintf (fp_dx , "object 1 class array type float rank 1 shape 2 items %d\n",

items);

fprintf (fp_dx , "data file %s,0\n\n" , fname_pos);

fprintf (fp_dx , "# DATA\n");

fprintf (fp_dx , "object 2 class array type float rank 0 items %d\n" , items);

fprintf (fp_dx , "data file %s,0\n", fname_dat);

fprintf (fp_dx , "attribute \"dep \" string \" positions \"\n\n");

fprintf (fp_dx , "# FIELD\n");

fprintf (fp_dx , "object \" irregular positions \" class field\n");

fprintf (fp_dx , "component \" positions \" value 1\n");

fprintf (fp_dx , "component \" data \" value 2\n");

/* Closes files */

fclose (fp_in);

fclose (fp_pos);

fclose (fp_dat);

fclose (fp_dx);

return -1;

} /* export_to_dx */

int export_to_matlab (char *prefix , gps_position * gps_positions , int n_gps_positions)

/*

prefix : prefix of filenames used to export data to use under Matlab.

gps_positions : array of GPS positions (struct gps_position), each one containing

all data associated with it

(mean depth , distance to next position , ...)

n_gps_positions : number of distinct GPS positions (number of elements in the array)

#

ACTION : Export the data into three files :

’prefix.sum ’, ’prefix.lum ’ and ’prefix.fin’

’prefix.sum ’ contains summarized data for each GPS position.

’prefix.lum ’ is made up of a series of arrays numbered GPS1 to GPSN (where

N = n_gps_positions). Each array contains all depth measurements associated

with the GPS position.

’prefix.fin ’ is a fine version of the bathymetry obtained by using ALL

depth measurements (spread equidistantly between adjacent GPS positions).

*/

{

/* Variables */

FILE * fp_lum;

FILE * fp_sum;

FILE * fp_ori;

FILE * fp_fin;

char fname_lum [128]; /* Filename of file containing lumped data */

char fname_sum [128]; /* Filename of file containing summarized data */

char fname_ori [128]; /* Filename of file containing fine bathymetry -- not for MATLAB */

char fname_fin [128]; /* Filename of file containing fine bathymetry */

int i;

int j;

int n_skipped = 0;

double ksi; /* Curvilinear coordinate */

int n_local; /* Number of soundings at current GPS position */

double delta_ksi; /* Local increment in curvilinear coordinate */

double delta_x; /* Local increment in longitude */

double delta_y; /* Local increment in latitude */

double x;

double y;

113

if (n_gps_positions <= 0)

{

printf ("\nNo data to export ...\n");

printf ("Either an error occurred while processing the raw data\n");

printf ("or no data have been found. Make sure to process the data first !\n");

printf ("Aborting ...\n");

return 0;

}

/* -- */

/* I/O management */

/* -- */

strcpy (fname_lum , prefix);

strcat (fname_lum , "_lum.m");

fp_lum = fopen (fname_lum , "w");

if (fp_lum == NULL)

{

printf ("Opening file ’%s ’ failed in ’export_to_matlab ’.\n" , fname_lum);

return 0;

}

strcpy (fname_sum , prefix);

strcat (fname_sum , "_sum.m");

fp_sum = fopen (fname_sum , "w");

if (fp_sum == NULL)

{

printf ("Opening file ’%s ’ failed in ’export_to_matlab ’.\n" , fname_sum);

return 0;

}

strcpy (fname_ori , prefix);

strcat (fname_ori , ".ori");

fp_ori = fopen (fname_ori , "w");

if (fp_ori == NULL)

{

printf ("Opening file ’%s ’ failed in ’export_to_matlab ’.\n" , fname_ori);

return 0;

}

strcpy (fname_fin , prefix);

strcat (fname_fin , "_fin.m");

fp_fin = fopen (fname_fin , "w");

if (fp_fin == NULL)

{

printf ("Opening file ’%s ’ failed in ’export_to_matlab ’.\n" , fname_fin);

return 0;

}

printf ("\nExporting processed data for use under Matlab ...\n");

/* -- */

/* Exportation of summarized data (prefix.sum) */

/* -- */

printf (" Exporting summarized data to ’%s’\n" , fname_sum);

fprintf (fp_sum , "%% X,Y : Cartesian coordinates.\n");

fprintf (fp_sum , "%% HM ,HV : Mean depth and variance of depth.\n");

fprintf (fp_sum , "%% S,SM ,SV : Slope , mean slope (same as previous), \

variance of slope.\n");

fprintf (fp_sum , "%% T : Time stamps .\n");

fprintf (fp_sum , "%% N : Number of soundings at each position .\n");

fprintf (fp_sum , "DATA = [\n");

for (i = 0 ; i < n_gps_positions ; i++)

{

if ((gps_positions[i]. distance > 0) || (i == (n_gps_positions -1)))

fprintf (fp_sum , "%.10f %.10f %f %f %f %f %f %f %d\n",

gps_positions[i]. longitude , gps_positions[i].latitude ,

gps_positions[i]. depth_mean , gps_positions[i].depth_var ,

gps_positions[i].slope ,

gps_positions[i]. slope_mean ,

gps_positions[i]. slope_var ,

gps_positions[i]. timestamps [0], gps_positions[i]. n_soundings);

else

n_skipped ++;

114

}

fprintf (fp_sum , "];\n\n");

fprintf (fp_sum , "X = DATA (: ,1);\n");

fprintf (fp_sum , "Y = DATA (: ,2);\n");

fprintf (fp_sum , "HM = DATA (: ,3);\n");

fprintf (fp_sum , "HV = DATA (: ,4);\n");

fprintf (fp_sum , "S = DATA (1:%d,5);\n", n_gps_positions - 1 - n_skipped);

fprintf (fp_sum , "SM = DATA (1:%d,6);\n", n_gps_positions - 1 - n_skipped);

fprintf (fp_sum , "SV = DATA (1:%d,7);\n", n_gps_positions - 1 - n_skipped);

fprintf (fp_sum , "T = DATA (: ,8);\n");

fprintf (fp_sum , "N = DATA (: ,9);\n");

fprintf (fp_sum , "clear DATA;\n");

printf (" %d GPS position(s) has(have) been skipped.\n", n_skipped);

/* -- */

/* Exportation of lumped data (prefix.lum) */

/* -- */

printf (" Exporting lumped data to ’%s ’\n\n", fname_lum);

for (i = 0 ; i < n_gps_positions ; i++)

{

fprintf (fp_lum , "%% (%.10f ,%.10f)\n",

gps_positions[i].longitude , gps_positions[i]. latitude);

fprintf (fp_lum , "GPS%d = [\n" , gps_positions[i].id);

for (j = 0 ; j < gps_positions[i]. n_soundings ; j++)

fprintf (fp_lum , "%.8f \n" , gps_positions[i]. soundings[j]);

fprintf (fp_lum , "];\n\n");

}

/* -- */

/* Exportation of fine bathymetry (prefix.fin) */

/* -- */

printf (" Exporting fine bathymetry to ’%s’\n\n" , fname_fin);

fprintf (fp_fin , "%% X : Longitude [deg .].\n");

fprintf (fp_fin , "%% Y : Latitude [deg .].\n");

fprintf (fp_fin , "%% KSI : Curvilinear coordinates.\n");

fprintf (fp_fin , "%% H : Local depth measurement.\n");

fprintf (fp_fin , "%% HM : Mean depth measurement.\n");

fprintf (fp_fin , "%% T : Timestamps .\n");

fprintf (fp_fin , "DATA = [\n");

ksi = 0.0;

for (i = 0 ; i < (n_gps_positions - 1) ; i++)

{

/* Current GPS position */

x = gps_positions[i]. longitude;

y = gps_positions[i]. latitude;

/* Retrieve the number of soudings for the current GPS position */

n_local = gps_positions[i]. n_soundings;

/* Compute the increment in ksi. Note : we divide by n_local and not

(n_local -1) because the last sounding associated with the current GPS

position must not lie on the next one */

delta_ksi = gps_positions[i]. distance / n_local;

delta_x = (gps_positions[i+1]. longitude - x) / n_local;

delta_y = (gps_positions[i+1]. latitude - y) / n_local;

for (j = 0 ; j < n_local ; j++)

{

fprintf (fp_fin , "%.10f %.10f %.8f %.8f %.8f %.3f\n",

x, y, ksi ,

gps_positions[i]. soundings[j],

gps_positions[i].depth_mean ,

gps_positions[i]. timestamps [j]);

fprintf (fp_ori , "%.10f %.10f %.10f %.10f\n",

115

ksi , gps_positions[i]. soundings[j], x, y);

ksi += delta_ksi;

x += delta_x;

y += delta_y;

}

}

fprintf (fp_fin , "];\n\n");

fprintf (fp_fin , "X = DATA (: ,1);\n");

fprintf (fp_fin , "Y = DATA (: ,2);\n");

fprintf (fp_fin , "KSI = DATA (: ,3);\n");

fprintf (fp_fin , "H = DATA (: ,4);\n");

fprintf (fp_fin , "HM = DATA (: ,5);\n");

fprintf (fp_fin , "T = DATA (: ,6);\n");

fprintf (fp_fin , "clear DATA;\n");

/* -- */

/* Close streams */

/* -- */

fclose (fp_lum);

fclose (fp_sum);

fclose (fp_ori);

fclose (fp_fin);

return -1;

} /* export_to_matlab */

int export_to_sms (char *prefix , gps_position * gps_positions , int n_gps_positions)

/*

prefix : prefix of filenames used to export data to use under Matlab.

gps_positions : array of GPS positions (struct gps_position), each one containing

all data associated with it

(mean depth , distance to next position , ...)

n_gps_positions : number of distinct GPS positions (number of elements in the array)

*/

{

/* Variables */

FILE * fp_sms;

char fname_sms [128]; /* Filename of file containing lumped data */

int i;

int n_skipped = 0;

/* -- */

/* I/O management */

/* -- */

strcpy (fname_sms , prefix);

strcat (fname_sms , "_sms.m");

fp_sms = fopen (fname_sms , "w");

if (fp_sms == NULL)

{

printf ("Opening file ’%s ’ failed in ’export_to_SMS ’.\n", fname_sms);

return 0;

}

printf ("\nExporting processed data for use under SMS ...\n");

/* -- */

/* Exportation of summarized data (prefix.sum) */

/* -- */

printf (" Exporting summarized data to ’%s’\n" , fname_sms);

fprintf (fp_sms , "%% X,Y : Cartesian coordinates.\n");

fprintf (fp_sms , "%% HM : Mean depth.\n");

for (i = 0 ; i < n_gps_positions ; i++)

{

if ((gps_positions[i]. distance > 0) || (i == (n_gps_positions -1)))

fprintf (fp_sms , "%.10f , %.10f , %f\n",

gps_positions[i]. longitude , gps_positions[i].latitude ,

gps_positions[i]. depth_mean);

else

116

n_skipped ++;

}

printf (" %d GPS position(s) has(have) been skipped.\n", n_skipped);

fclose (fp_sms);

return -1;

} /* export_to_sms */

117

/* --

*

* medianfilter.h

*

* Laurent White

*

* Date of creation : 2003 -06 -16

* Last update : 2003 -06 -17

*

* --- */

ifndef MEDIANFILTER_H

define MEDIANFILTER_H

int median_filter (double *H_ori , double *H_flt , int length , int N);

double median (double *H, int length);

void bubble_sort (double *H, int length);

endif /* MEDIANFILTER_H */

118

/* --

*

* medianfilter.c

*

* Laurent White

*

* Date of creation : 2003 -06 -16

* Last update : 2003 -06 -17

*

* NOTE : in the arguments , ’length ’ ALWAYS refers to

* the number of elements in the array that

* is passed as argument . And N ALWAYS refers

* to half the length of the median filter ;

* the length being (2*N + 1).

* --- */

include <stdlib.h>

include <stdio.h>

include <math.h>

include "defs.h"

include "medianfilter.h"

int median_filter (double *H_ori , double *H_flt , int length , int N)

/*

Arguments : H_ori is the original signal.

H_flt is the filtered signal (returned by the function).

length is the number of elemnts in H_ori and H_flt.

N is half the length of the filter.

#

Action : Filter the original signal H_ori. The filtered signal is

H_flt.

#

Return : 0 if an error occurred . 1 otherwise.

*/

{

int i;

double * H_temp;

/* Create appended array */

H_temp = (double *) malloc ((length + 2*N) * sizeof (double));

if (H_temp == NULL)

{

printf ("Memory allocation failure in ’median_filter ’.\n");

return 0;

}

/*

* Append H_temp with N * H_ori [0] and N*H_ori[length], i.e.

* the first N values of H_temp are filled with H_ori [0] and

* the N last values of H_temp are filled with H_ori[length].

*/

for (i = 0 ; i < N ; i++)

{

H_temp[i] = H_ori [0];

H_temp[length + 2*N - 1 - i] = H_ori[length -1];

}

/* Copy H_ori to the central part of H_temp */

for (i = N ; i < (length + N) ; i++)

H_temp[i] = H_ori[i-N];

/* Median filtering */

for (i = 0 ; i < length ; i++)

{

H_flt[i] = median (H_temp + i , 2*N+1);

}

return 1;

} /* median_filter */

double median (double *H, int length)

/*

Arguments : ’H’ is an array of ’length ’ elements.

#

Action : Compute the median of the array.

#

119

Return : The median of the array.

*/

{

int i;

double * H_sort;

/* Create a copy of the array whose median is to be calculated . */

/* Necessary because the sorting function alters the array. */

H_sort = (double *) malloc (length * sizeof (double));

for (i = 0 ; i < length ; i ++)

H_sort[i] = H[i];

/* Sort the array */

(void) bubble_sort (H_sort , length);

/* Return the median */

if (fmod ((double) length , 2.0) != 0.0)

/* length is odd */

return H_sort [(length -1)/2];

else

/* length is even */

return (H_sort[length /2 - 1] + H_sort[length /2]) / 2.0;

/* Free memory */

free (H_sort);

} /* median */

void bubble_sort (double *H, int length)

/*

Arguments : ’H’ is the array to be sorted . It contains

’length ’ elements.

#

Action : Sorts the array.

#

Return : /

*/

{

int i;

int j;

double temp;

for (i = length - 1 ; i > 0 ; i--)

for (j = 0 ; j < i ; j++)

if (H[j] > H[j+1]) /* compare neighboring elements */

{

temp = H[j]; /* swap H[j] and H[j+1] */

H[j] = H[j+1];

H[j+1] = temp;

}

} /* bubble_sort */

120

/* --

*

* identifylwd.h

*

* Laurent White

*

* Date of creation : 2003 -06 -17

*

* --- */

ifndef IDENTTIFYLWD_H

define IDENTTIFYLWD_H

include "defs.h"

int identify_LWD (char *fname_out , gps_position * gps_positions , int n_gps_positions);

void create_fine_bathymetry (gps_position * gps_positions , \

int n_gps_positions , \

double *X, double *Y, double *KSI , double *H);

int median_filter_single_file (char *prefix , \

double *X, double *Y, \

double *KSI , double *H_ori , int length);

int median_filter_separate_files (char *prefix , double *X, \

double *Y, double *KSI , double *H_ori , int length);

int spot_LWD (char *prefix , double *X, \

double *Y, double *H_ori , \

double *H_flt , int length , \

int N, int flag , double height);

endif /* IDENTIFYLWD_H*/

121

/* --

*

* identifylwd.c

*

* Laurent White

*

* Date of creation : 2003 -06 -17

*

* --- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include <math.h>

include "identifylwd.h"

include "medianfilter.h"

include "stdev.h"

include "defs.h"

int identify_LWD (char *prefix , gps_position * gps_positions , int n_gps_positions)

/*

Arguments : prefix : prefix used to create output files.

gps_positions : array of ’n_gps_positions ’

struct gps_position (cfr. defs.h)

#

Action : Identification of LWD :

1. Creation of fine bathymetry (to be filtered subsequently)

2. Specification of filter length (user enters it)

3. Filtering of signal.

4. Comparison of original and filtered signals to spot LWD.

Output results.

#

Return : 0 if an error occurred , 1 otherwise.

-1 if the user wants to return to the main menu.

*/

{

/* ---------

* Variables

* --------- */

double *X; /* Array of longitudes */

double *Y; /* Array of latitudes */

double *KSI; /* Array of curvilinear coordinates */

double *H_ori; /* Array of depth soundings */

int i;

int length;

int choice;

if (n_gps_positions <= 0)

{

printf ("\nNo data to examine ... \n");

printf ("Either an error occurred while processing the raw data\n");

printf ("or no data have been found . \

Make sure to process the data first !\n");

printf ("Aborting ...\n");

return -1;

}

/* Display menu */

printf ("\nLWD IDENTIFICATION MENU\n");

printf (" -------------------------\n\n");

printf (" ---\ n");

printf ("| Median filter (common file) 1 |\n");

printf ("| Median filter (seperate files) 2 |\n");

printf ("| Standard deviation 3 |\n");

printf ("| |\n");

printf ("| Return to Main Menu 9 |\n");

printf (" ---\ n");

printf ("\n");

printf (" Selection : ");

scanf ("%d" , &choice);

if (choice == 9) /* Return to main menu */

return -1;

122

/* ---------------

* Allocate memory

* --------------- */

length = 0;

for (i = 0 ; i < (n_gps_positions - 1) ; i++)

length += gps_positions[i]. n_soundings;

X = (double *) malloc (length * sizeof (double));

Y = (double *) malloc (length * sizeof (double));

H_ori = (double *) malloc (length * sizeof (double));

KSI = (double *) malloc (length * sizeof (double));

/* -----------

* Fill arrays

* ----------- */

(void) create_fine_bathymetry (gps_positions , n_gps_positions , X, Y, KSI ,

H_ori);

switch (choice)

{

case 1:

(void) median_filter_single_file (prefix , X, Y, KSI ,

H_ori , length);

break;

case 2:

(void) median_filter_separate_files (prefix , X, Y, KSI ,

H_ori , length);

break;

case 3:

(void) stdev_identification (prefix , gps_positions ,

n_gps_positions);

break;

}

free (X);

free (Y);

free (H_ori);

free (KSI);

return 1;

} /* identify_LWD */

void create_fine_bathymetry (gps_position * gps_positions ,

int n_gps_positions , double *X,

double *Y, double *KSI , double *H)

/*

Arguments : ’ gps_positions ’ is an array of ’n_gps_positions ’ struct gps_position

(cfr defs.h).

X, Y : empty arrays to be filled with

H : empty array to be filled with detailed bathymetry .

#

Action : Browse the array of GPS positions and fill the other arrays . In particular ,

all soundings between two distinct GPS positions are given an interpolated

GPS position determined by calculating the distance between the

GPS position and dividing by the number of soundings.

#

Return : /

*/

{

int i;

int j;

int index;

double x;

double y;

double delta_x;

double delta_y;

double ksi;

double delta_ksi;

int n_local;

index = 0;

ksi = 0.0;

for (i = 0 ; i < (n_gps_positions - 1) ; i++)

123

{

/* Current GPS position */

x = gps_positions[i]. longitude;

y = gps_positions[i]. latitude;

/* Retrieve the number of soudings for the current GPS position */

n_local = gps_positions[i]. n_soundings;

/* Compute the increment in ksi. Note : we divide by n_local and not

(n_local -1) because the last sounding associated with the current GPS

position must not lie on the next one */

delta_x = (gps_positions[i+1]. longitude - x) / n_local;

delta_y = (gps_positions[i+1]. latitude - y) / n_local;

delta_ksi = gps_positions[i]. distance / n_local;

for (j = 0 ; j < n_local ; j++)

{

X[index] = x;

Y[index] = y;

H[index] = gps_positions[i]. soundings[j];

KSI[index] = ksi;

x += delta_x;

y += delta_y;

ksi += delta_ksi;

index ++;

}

}

} /* create_fine_bathymetry */

int median_filter_single_file (char *prefix , double *X,

double *Y, double *KSI , double *H_ori , int length)

/*

Arguments : prefix : prefix of output file name.

X, Y : arrays of longitudes , latitudes associated with the bathymetry

(this is used to export the locations of spotted LWD)

H_ori : Original bathymetry .

H_flt : Filtered bathymetry .

length : number of elements contained in all arrays

#

Action :

#

Return : 0 if an error occurred . 1 otherwise.

*/

{

/* ---------

* Variables

* --------- */

char fname_flt[MAX_FNAME_SIZE];

char fname_gnuplot[MAX_FNAME_SIZE];

FILE *fp_flt;

FILE *fp_gnuplot ;

double *H_flt;

int N;

int i;

double height;

int n_locations;

H_flt = (double *) malloc (length * sizeof (double));

/* ----------------------------------

* Filter & identification parameters

* ---------------------------------- */

printf ("\nEnter half -length of median filter : ");

scanf ("%d" , &N);

printf ("\nFiltering signal with median filter of length %d... " , 2*N+1);

fflush (stdout);

if (median_filter (H_ori , H_flt , length , N) == 0)

{

printf ("An error occurred while filtering !\n");

124

return 0;

}

printf ("Done\n");

/* ----------------------

* Output filtered signal

* ---------------------- */

/* Open output file */

strcpy (fname_flt , prefix);

strcat (fname_flt , ".flt");

fp_flt = fopen (fname_flt , "w");

if (fp_flt == NULL)

{

printf ("Opening file ’%s ’ failed in ’identify_LWD ’.\n" , fname_flt);

return 0;

}

/* Open gnuplot data source file */

strcpy (fname_gnuplot , "gnuplotdata/medflt.dat");

fp_gnuplot = fopen (fname_gnuplot , "w");

if (fp_gnuplot == NULL)

{

printf ("Opening file ’%s ’ failed in ’identify_LWD ’.\n" , fname_gnuplot);

return 0;

}

fprintf (fp_gnuplot , "# %d (length of median filter)\n" , 2*N+1);

printf ("Exporting filtered data into ’%s ’... " , fname_flt);

fflush (stdout);

for (i = 0 ; i < length ; i++)

{

/* Export for use under Matlab */

fprintf (fp_flt , "%.10f , %.10f , %.8f\n", X[i], Y[i], H_flt[i]);

/* Export for use with Gnuplot */

fprintf (fp_gnuplot , "%.8f %.8f %.8f %.8f\n",

KSI[i], H_ori[i], H_flt[i], fabs(H_ori[i] - H_flt[i]));

}

printf ("Done \n\n");

/* --------

* Spot LWD

* -------- */

printf ("Enter discriminative height [m] : ");

scanf ("%lf" , &height);

n_locations = spot_LWD (prefix , X, Y, H_ori , H_flt , length , N, 1, height);

fclose (fp_flt);

fclose (fp_gnuplot);

free (H_flt);

return 1;

} /* median_filter_single_file */

int median_filter_separate_files (char *prefix ,

double *X, double *Y, double *KSI , double *H_ori , int length)

/*

Arguments : prefix : prefix of output file name.

X, Y : arrays of longitudes , latitudes associated with the bathymetry

(this is used to export the locations of spotted LWD)

H_ori : Original bathymetry .

length : number of elements contained in all arrays

#

Action :

#

Return : 0 if an error occurred . 1 otherwise.

*/

{

/* ---------

* Variables

* --------- */

char fname_fltN [MAX_FNAME_SIZE];

125

char prefixN[MAX_FNAME_SIZE];

FILE *fp_fltN;

double *H_flt;

int N;

int i;

int j;

double height;

int common_height;

int n_locations; /* Number of locations for one filtering level */

int n_total_locations ; /* Total number of locations for all filtering levels */

H_flt = (double *) malloc (length * sizeof (double));

/* ----------------------------------

* Filter & identification parameters

* ---------------------------------- */

printf ("\nEnter half -length of median filter : ");

scanf ("%d" , &N);

printf ("\nUse same height for identification of all spikes [1|0] ? ");

scanf ("%d" , & common_height);

if (common_height != 0)

{

printf ("Enter discriminative height [m] : ");

scanf ("%lf" , &height);

}

/* Filtering with filters of half -lengths 1 to N */

n_total_locations = 0;

for (j = 1 ; j < N+1 ; j++)

{

/* Filtering with median filter of half -length j */

printf ("\nFiltering signal with median filter of length %d... " , 2*j+1);

fflush (stdout);

if (median_filter (H_ori , H_flt , length , j) == 0)

{

printf ("An error occurred while filtering !\n");

return 0;

}

printf ("Done\n");

/* ----------------------

* Output filtered signal

* ---------------------- */

/* Open output file */

sprintf (fname_fltN , "%s_%02d.flt", prefix , j);

fp_fltN = fopen (fname_fltN , "w");

if (fp_fltN == NULL)

{

printf ("Opening file ’%s ’ failed in ’identify_LWD ’.\n" , fname_fltN);

return 0;

}

printf ("Exporting filtered data into ’%s ’... " , fname_fltN);

fflush (stdout);

for (i = 0 ; i < length ; i++)

fprintf (fp_fltN , "%.10f %.10f %.8f\n" , X[i], Y[i], H_flt[i]);

printf ("Done \n");

fclose (fp_fltN);

/* --------

* Spot LWD

* -------- */

if (common_height == 0)

{

printf ("Enter discriminative height [m] : ");

scanf ("%lf" , &height);

}

sprintf (prefixN , "%s_%02d", prefix , j);

n_locations = spot_LWD (prefixN , X, Y, H_ori , H_flt , length , j, 2, height);

126

n_total_locations += n_locations;

} /* End filtering */

printf ("\nTotal number of suspected locations containing LWD : %d\n\n",

n_total_locations);

free (H_flt);

return 1;

} /* median_filter_separate_files */

int spot_LWD (char *prefix , double *X,

double *Y, double *H_ori ,

double *H_flt , int length , int N, int flag , double height)

/*

Arguments : fname_lwd : name of output file.

X, Y : arrays of longitudes , latitudes associated with the bathymetry

(this is used to export the locations of spotted LWD)

H_ori : Original bathymetry .

H_flt : Filtered bathymetry .

length : number of elements contained in all arrays

N : median filter half length

flag : 1 to identify spikes made of 1 to N soundings

2 to identify spikes made of N soundings only

#

Action : Compare original and filtered bathymetries to identify spikes that are

higher (relatively to the bottom) than a height specified by the user.

Locations where such spikes exist will be considered LWD -locations.

#

Return : 0 if an error occurred . 1 otherwise.

*/

{

/* ---------

* Variables

* --------- */

FILE *fp_lwd;

char fname_lwd[MAX_FNAME_SIZE];

int i;

int j;

double diff;

int n_spotted_lwd; /* Total number of spotted LWD */

int n_detected_soundings ; /* Local number of soundings shaping spike */

/* -----------

* Output file

* ----------- */

sprintf (fname_lwd , "%s.lwd", prefix);

fp_lwd = fopen (fname_lwd , "w");

if (fp_lwd == NULL)

{

printf ("Opening file ’%s ’ failed in ’spot_LWD ’.\n" , fname_lwd);

return 0;

}

/* --

* Examine difference between original and filtered signals

* --*/

if (flag == 1) /* Detection of spikes shaped by up to N soundings */

{

n_spotted_lwd = 0;

for (i = 0 ; i < length ; i++)

{

diff = H_ori[i] - H_flt[i];

n_detected_soundings = 0;

if (-diff >= height)

{

n_spotted_lwd ++;

n_detected_soundings ++;

/* Modified on 2003.08.18 for use under fucking Windoze (for Vanketesh) */

if (n_detected_soundings < N+1)

fprintf (fp_lwd , "%.10f , %.10f , %.8f\n", X[i], Y[i], -diff);

}

127

}

printf ("\n");

printf ("Number of suspected locations containing LWD : %d\n\n" , n_spotted_lwd);

}

else /* Detection of spikes shaped by EXACTLY N soundings */

{

n_spotted_lwd = 0;

n_detected_soundings = 0;

for (i = 0 ; i < length ; i++)

{

diff = H_ori[i] - H_flt[i];

if (-diff >= height)

n_detected_soundings ++;

else

{

if (n_detected_soundings == N)

{

for (j = i-N ; j < i ; j++)

fprintf (fp_lwd , "%.10f %.10f %d\n" , X[j], Y[j], j+1);

n_spotted_lwd += n_detected_soundings ;

}

n_detected_soundings = 0;

}

}

printf ("Number of suspected locations containing LWD : %d\n" , n_spotted_lwd);

}

fclose (fp_lwd);

return n_spotted_lwd;

} /* spot_LWD */

128

/* ----------------------------------

*

* graphs.h

*

* Laurent White

*

* Date of creation : 2003 -07 -23

*

* ---------------------------------- */

ifndef GRAPHS_H

define GRAPHS_H

include "gnuplot_i.h"

int scatter_plot (gps_position * gps_positions ,

int n_gps_positions , gnuplot_ctrl *h);

int scatter_plot_fin (gps_position * gps_positions ,

int n_gps_positions , gnuplot_ctrl *h);

int filteredbath_plot (gps_position * gps_positions ,

int n_gps_positions , gnuplot_ctrl *h);

int plotting_menu (gps_position * gps_positions ,

int n_gps_positions , gnuplot_ctrl *h);

void display_plotting_menu ();

endif /* GRAPHS_H */

129

/* ----------------------------------

*

* graphs.c

*

* Laurent White

*

* Date of creation : 2003 -07 -23

*

* ---------------------------------- */

include <stdio.h>

include <stdlib.h>

include "gnuplot_i.h"

include "defs.h"

include "graphs.h"

void display_plotting_menu ()

/*

* Arguments : /

*

* Action : Display plotting menu on the screen

*

* Return : /

*

* */

{

printf ("\nPLOTTING MENU\n");

printf (" -------------\n\n");

printf (" --\ n");

printf ("| Scatter plot 1 |\n");

printf ("| Fine scatter plot 2 |\n");

printf ("| Original and filtered bathymetries 3 |\n");

printf ("| |\n");

printf ("| Return to Main Menu 9 |\n");

printf (" --\ n");

printf ("\n");

} /* display_plotting_menu */

int plotting_menu (gps_position * gps_positions , int n_gps_positions , gnuplot_ctrl *h)

/*

* Arguments : ’ n_gps_positions ’ struct gps_position are passed.

* h is the Gnuplot handle (defined and initialized in main.c)

*

* Action : Display plotting menu.

*

* Return : -1 if user chooses to go back to main menu . 1 otherwise.

*

* */

{

int choice;

choice = -1;

while (1)

{

switch (choice)

{

case 1:

(void) scatter_plot (gps_positions , n_gps_positions , h);

break;

case 2:

(void) scatter_plot_fin (gps_positions , n_gps_positions , h);

break;

case 3:

(void) filteredbath_plot (gps_positions , n_gps_positions , h);

break;

case 9:

return -1;

break;

}

130

(void) display_plotting_menu ();

printf (" Selection : ");

scanf ("%d" , &choice);

}

return 1;

} /* plotting_menu */

int scatter_plot (gps_position * gps_positions , int n_gps_positions , gnuplot_ctrl *h)

/*

* Arguments : ’ n_gps_positions ’ struct gps_position are passed.

* h is the Gnuplot handle (defined and initialized in main.c)

*

* Action : Scatter plot of GPS positions.

*

* Return : 0 if an error occurred . 1 otherwise.

*

* */

{

/* Variables */

FILE * fp_gnuplot ;

char fname_gnuplot[MAX_FNAME_SIZE];

char fname_output[MAX_FNAME_SIZE];

int i;

int output_style;

/* I/O Management */

strcpy (fname_gnuplot , "gnuplotdata/scatter.dat");

fp_gnuplot = fopen (fname_gnuplot , "w");

if (fp_gnuplot == NULL)

{

printf ("An error occurred when opening file ’%s ’ !", fname_gnuplot);

return 0;

}

/* Check if there are data to plot */

if (n_gps_positions <= 0)

{

printf ("\nNo data to plot ...\n");

printf ("Either an error occurred while processing the raw data\n");

printf ("or no data have been found. Make sure to process the data first !\n");

printf ("Aborting ...\n");

return 0;

}

/* Reset all Gnuplot commands */

gnuplot_cmd (h, "reset");

/* Write into Gnuplot source file */

fprintf (fp_gnuplot , "# GNUPLOT Scatter plot\n");

for (i = 0 ; i < n_gps_positions ; i++)

fprintf (fp_gnuplot , "%.10f %.10f\n",

gps_positions[i].longitude ,

gps_positions[i]. latitude);

fclose (fp_gnuplot);

/* Scatter plot */

printf ("Paper [1] or screen [2] version (Default) ? ");

scanf ("%d" , & output_style);

/* Depending on output style , sets different terminals */

if (output_style == 1)

{

strcpy (fname_output , "gnuplotfigs/scatter.eps");

gnuplot_cmd (h, "set terminal postscript \" Helvetica \" 15");

gnuplot_cmd (h, "set output ’%s’" , fname_output);

printf ("Output file is : ’%s ’\n" , fname_output);

}

else

gnuplot_cmd (h, "set terminal x11");

/* Effective plotting takes place now ! */

gnuplot_cmd (h, "set nolabel");

131

gnuplot_cmd (h, "set grid");

gnuplot_cmd (h, "plot ’%s ’ notitle with dots" , fname_gnuplot);

return 1;

} /* scatter_plot */

int scatter_plot_fin (gps_position * gps_positions , int n_gps_positions ,

gnuplot_ctrl *h)

/*

* Arguments : ’ n_gps_positions ’ struct gps_position are passed.

* h is the Gnuplot handle (defined and initialized in main.c).

*

* Action : Scatter plot of GPS positions (’fin ’ stands for ’fine ’ -- new

* GPS positions have been added between existing ones by linear

* interpolation).

*

* Return : 0 if an error occurred , 1 otherwise.

*

* */

{

/* Variables */

FILE * fp_gnuplot ;

char fname_gnuplot[MAX_FNAME_SIZE];

char fname_output[MAX_FNAME_SIZE];

int i;

int j;

double ksi;

double x,y;

int n_local;

double delta_ksi;

double delta_x ,delta_y;

int output_style;

/* I/O Management */

strcpy (fname_gnuplot , "gnuplotdata/scatter_fin.dat");

fp_gnuplot = fopen (fname_gnuplot , "w");

if (fp_gnuplot == NULL)

{

printf ("An error occurred when opening file ’%s ’ !", fname_gnuplot);

return 0;

}

/* Check if there are data to plot */

if (n_gps_positions <= 0)

{

printf ("\nNo data to plot ...\n");

printf ("Either an error occurred while processing the raw data\n");

printf ("or no data have been found. Make sure to process the data first !\n");

printf ("Aborting ...\n");

return 0;

}

/* Reset all Gnuplot commands */

gnuplot_cmd (h, "reset");

/* Write into Gnuplot source file */

ksi = 0.0;

fprintf (fp_gnuplot , "# GNUPLOT Scatter plot (fine bathymetry)\n");

for (i = 0 ; i < (n_gps_positions - 1) ; i++)

{

/* Current GPS position */

x = gps_positions[i]. longitude;

y = gps_positions[i]. latitude;

/* Retrieve the number of soudings for the current GPS position */

n_local = gps_positions[i]. n_soundings;

/* Compute the increment in ksi. Note : we divide by n_local and not

(n_local -1) because the last sounding associated with the current GPS

position must not lie on the next one */

delta_ksi = gps_positions[i]. distance / n_local;

delta_x = (gps_positions[i+1]. longitude - x) / n_local;

delta_y = (gps_positions[i+1]. latitude - y) / n_local;

for (j = 0 ; j < n_local ; j++)

{

132

fprintf (fp_gnuplot , "%.10f %.10f\n", x, y);

ksi += delta_ksi;

x += delta_x;

y += delta_y;

}

}

fclose (fp_gnuplot);

printf ("Paper [1] or screen [2] version (Default) ? ");

scanf ("%d" , & output_style);

/* Depending on output style , sets different terminals */

if (output_style == 1)

{

strcpy (fname_output , "gnuplotfigs/scatter_fin.eps");

gnuplot_cmd (h, "set terminal postscript \" Helvetica \" 15");

gnuplot_cmd (h, "set output ’%s’" , fname_output);

printf ("Output file is : ’%s ’\n" , fname_output);

}

else

gnuplot_cmd (h, "set terminal x11");

/* Scatter plot */

gnuplot_cmd (h, "set nolabel");

gnuplot_cmd (h, "set grid");

gnuplot_cmd (h, "plot ’%s ’ notitle with dots" , fname_gnuplot);

return 1;

} /* scatter_plot_fin */

int filteredbath_plot (gps_position * gps_positions , int n_gps_positions ,

gnuplot_ctrl *h)

/*

* Arguments : ’ n_gps_positions ’ struct gps_position are passed.

* h is the Gnuplot handle (defined and initialized in main.c)

*

* Action : Plotting of two graphs on the same page/screen : top one is the original

* bathymetry . Bottom one is the median filtered bathymetry .

*

* IMPORTANT !! The source file used by Gnuplot is created within the function

* ’median_filter_single_file’ while exporting the data for use under Matlab.

*

* Return : 0 if an error occurred , 1 otherwise.

*

* */

{

/* Variables */

char fname_output[MAX_FNAME_SIZE];

char fname_gnuplot[MAX_FNAME_SIZE];

FILE * fp_gnuplot ;

int output_style;

char title1 [128];

char title2 [128];

char title3 [128];

char tmp [32];

double x0,x1; /* Range of x-axis */

int filter_length;

/* Reset all Gnuplot commands */

gnuplot_cmd (h, "reset");

/* Open Gnuplot source file to get title */

strcpy (fname_gnuplot , "gnuplotdata/medflt.dat");

fp_gnuplot = fopen (fname_gnuplot , "r");

if (fp_gnuplot == NULL)

{

printf ("An error occurred when opening file ’%s ’ !", fname_gnuplot);

return 0;

}

fscanf (fp_gnuplot , "%s %d" , tmp , & filter_length);

fclose (fp_gnuplot);

/* Check if there are data to plot */

if (n_gps_positions <= 0)

{

printf ("\nNo data to plot ...\n");

133

printf ("Either an error occurred while processing the raw data\n");

printf ("or no data have been found . \

Make sure to process the data first !\n");

printf ("Aborting ...\n");

return 0;

}

/* Which output version ? */

printf ("Paper [1] or screen [2] version (Default) ? ");

scanf ("%d" , & output_style);

printf ("\nEnter x-axis range using ’x0 x1 ’ \

format (for full range , enter 0 twice) : ");

scanf ("%lf %lf" , &x0 , &x1);

/* Depending on output style , sets different terminals */

if (output_style == 1)

{

strcpy (fname_output , "gnuplotfigs/medflt.eps");

gnuplot_cmd (h, "set terminal postscript \" Helvetica \" 10");

gnuplot_cmd (h, "set output ’%s’" , fname_output);

printf ("Output file is : ’%s ’\n" , fname_output);

}

else

gnuplot_cmd (h, "set terminal x11");

/* Effective plotting takes place now ! */

/* Titles */

sprintf (title1 , "Median -filtered bathymetry (filter length : %d)",

filter_length);

sprintf (title2 , "Original bathymetry ");

sprintf (title3 , "Absolute difference between bathymetries");

gnuplot_cmd (h, "set nolabel");

gnuplot_cmd (h, "set grid");

gnuplot_cmd (h, "set multiplot");

gnuplot_cmd (h, "set yrange [] reverse");

gnuplot_cmd (h, "set size 1 ,0.333");

/* x-axis range */

if ((x0 == 0.0) || (x1 == 0.0))

gnuplot_cmd (h, "set xrange []");

else

gnuplot_cmd (h, "set xrange [%f:%f]", x0 , x1);

/* Plot 1 (top) */

gnuplot_cmd (h, "set origin 0 ,0.666");

gnuplot_cmd (h, "plot ’gnuplotdata/medflt.dat ’ using 1:3 title \"%s\"with l",

title1);

/* Plot 2 (middle) */

gnuplot_cmd (h, "set origin 0 ,0.333");

gnuplot_cmd (h, "set ylabel \" Depth [m]\"");

gnuplot_cmd (h, "plot ’gnuplotdata/medflt.dat ’ using 1:2 title \"%s\" with l",

title2);

/* Plot 3 (bottom) */

gnuplot_cmd (h, "set origin 0,0");

gnuplot_cmd (h, "set ylabel \"\"");

gnuplot_cmd (h, "set xlabel \" Distance [m]\"");

gnuplot_cmd (h, "set yrange [] noreverse");

gnuplot_cmd (h, "plot ’gnuplotdata/medflt.dat ’ using 1:4 title \"%s\" with l",

title3);

/* Restore normal setting */

gnuplot_cmd (h, "set nomultiplot");

return 1;

} /* filteredbath_plot */

134

Appendix E

Scale-space filtering: code listing

/* ---

*

* main.c

*

* Laurent White

*

* Date of creation : 2003 -06 -10

*

*

* USAGE : [PREFIX] [N_LEVELS] [SIGMA]

* PREFIX : prefix of the files to be read and written to

* N_LEVELS : number of levels of smoothing

* SIGMA : standard deviation of Gaussian filter

*

* This program reads PREFIX.ori containing the bathymetry and

* applies a Gaussian filter of standard deviation SIGMA (N_LEVELS

* times). It then browses successive levels of smoothened bathymetries

* to identify troughs and peaks in order to produce a fingerprint

* (2-D image representing a plot of the displacement of troughs and

* peaks versus smoothing level), which can be read by MATLAB from

* the file PREFIX_fpr .m

*

* -- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include <time.h>

include "defs.h"

include "preprocess .h"

include "process.h"

include "postprocess.h"

int main (int argc , char ** argv)

{

/* =========

* Variables

* ========= */

double KSI[MAX_BATH_SIZE];

double H[MAX_BATH_SIZE];

double X[MAX_BATH_SIZE];

double Y[MAX_BATH_SIZE];

char fname_in[MAX_FNAME_SIZE];

char fname_fpr[MAX_FNAME_SIZE];

char fname_flt[MAX_FNAME_SIZE];

char fname_lwd[MAX_FNAME_SIZE];

int i;

int j;

time_t tic , toc;

double **SM; /* Smoothing matrix */

int **FEAT; /* Matrix of features (peaks and troughs) */

int n_levels;

double sigma;

135

int N_bath;

int return_value;

/* ===

* PREPROCESS : Arguments , read bathymetry , init matrix

* === */

tic = time (NULL);

/* Handle arguments */

return_value = handle_arguments (argc , argv , fname_in ,

fname_fpr , fname_flt , fname_lwd , & n_levels , & sigma);

if (return_value == 0)

return 0;

/* Read bathymetry */

N_bath = read_bathymetry (fname_in , KSI , H, X, Y);

/* Initialize smoothing matrix */

SM = (double **) malloc ((n_levels + 1) * sizeof (double *));

for (i = 0 ; i < (n_levels + 1) ; i++)

{

SM[i] = (double *) malloc (N_bath * sizeof (double));

if (SM[i] == NULL)

return 0;

}

for (i = 0 ; i < (n_levels + 1) ; i++)

for (j = 0 ; j < N_bath ; j++)

SM[i][j] = 0.0;

/* Initialize matrix of features */

FEAT = (int **) malloc ((n_levels + 1) * sizeof (int *));

for (i = 0 ; i < (n_levels + 1) ; i++)

{

FEAT[i] = (int *) malloc (N_bath * sizeof (int));

if (FEAT[i] == NULL)

return 0;

}

for (i = 0 ; i < (n_levels + 1) ; i++)

for (j = 0 ; j < N_bath ; j++)

FEAT[i][j] = 0;

/* ==

* PROCESS : Recursive application of Gaussian filter

* == */

(void) gaussian_filter (KSI , H, N_bath , SM , sigma , n_levels);

toc = time (NULL);

/* ===

* POSTPROCESS : Construction of fingerprint

* === */

(void) fingerprint (KSI , N_bath , SM , FEAT , n_levels , fname_fpr , fname_flt);

(void) identify_LWD (KSI , H, X, Y, N_bath , FEAT , n_levels , fname_lwd);

/* ===========

* Free memory

* =========== */

for (i = 0 ; i < (n_levels + 1) ; i++)

free (SM[i]);

free (SM);

for (i = 0 ; i < (n_levels + 1) ; i++)

free (FEAT[i]);

free (FEAT);

printf ("\nElapsed time : %ld s\n" , toc - tic);

return 1;

}

136

/* ----------------------------------

*

* defs.h

*

* Laurent White

*

* Date of creation : 2003 -06 -13

* Last update : 2003 -06 -13

*

* ---------------------------------- */

define MAX_BATH_SIZE 65536

define MAX_FNAME_SIZE 128

137

/* ----------------------------------

*

* preprocess .h

*

* Laurent White

*

* Date of creation : 2003 -06 -13

*

* ---------------------------------- */

int handle_arguments (int argc , char **argv ,

char *fname_in ,

char * fname_fpr ,

char * fname_flt ,

char * fname_lwd ,

int *n_levels , double *sigma);

int read_bathymetry (char *prefix , double *KSI , double *H, double *X, double *Y);

138

/* ----------------------------------

*

* preprocess .c

*

* Laurent White

*

* Date of creation : 2003 -06 -13

*

* ---------------------------------- */

include <stdio.h>

include <string.h>

include <stdlib.h>

include "preprocess .h"

int handle_arguments (int argc , char **argv ,

char *fname_in ,

char * fname_fpr ,

char * fname_flt ,

char * fname_lwd ,

int *n_levels , double *sigma)

/*

PRE :

POST :

*/

{

if (argc < 4)

{

printf ("Wrong number of arguments !\n");

printf ("USAGE : [PREFIX] [N_LEVELS] [SIGMA].\n");

return 0;

}

/* Filenames */

strcpy (fname_in , argv [1]);

strcpy (fname_fpr , argv [1]);

strcpy (fname_flt , argv [1]);

strcpy (fname_lwd , argv [1]);

strcat (fname_in , ".ori");

strcat (fname_fpr , "_fpr.m");

strcat (fname_flt , "_sl.m");

strcat (fname_lwd , "_lwd");

/* Number of levels */

*n_levels = (int) atoi (argv [2]);

/* Sigma */

*sigma = (double) atof (argv [3]);

return 1;

} /* handle_arguments */

int read_bathymetry (char *fname_in , double *KSI , double *H, double *X, double *Y)

/*

PRE :

POST :

*/

{

/* Variables */

int i;

double ksi;

double h;

double x;

double y;

int n_read; /* Number of numbers read by fscanf */

FILE *fp_bath;

printf ("Reading bathymetry in file ’%s’\n" , fname_in);

/* Open file */

fp_bath = fopen (fname_in , "r");

139

if (fp_bath == NULL)

{

printf ("Opening file ’%s ’ failed in ’read_bathymetry ’.\n", fname_in);

return 0;

}

/* Read bathymetry */

i = 0;

while (! feof(fp_bath))

{

n_read = fscanf (fp_bath , "%lf %lf %lf %lf\n" , &ksi , &h, &x, &y);

KSI[i] = ksi;

H[i] = h;

X[i] = x;

Y[i] = y;

i++;

} /* End browsing fp_bath */

fclose (fp_bath);

return i;

} /* read_bathymetry */

140

/* ----------------------------------

*

* process.h

*

* Laurent White

*

* Date of creation : 2003 -06 -12

* Last update : 2003 -06 -13

*

* ---------------------------------- */

int gaussian_filter (double *KSI , double *H, int N, double **SM , double sigma , int n_levels);

double mean_vector (double *V, int N);

141

/* ----------------------------------

*

* process.c

*

* Laurent White

*

* Date of creation : 2003 -06 -12

*

* ---------------------------------- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include <math.h>

include "process.h"

include "defs.h"

int gaussian_filter (double *KSI , double *H, int N_bath , double **SM , double sigma , int n_levels)

/*

PRE :

POST :

*/

{

double delta;

double mu;

double diff1;

double new_diff1;

double diff2;

double new_diff2;

int n1,n2;

int i; /* Multi -purpose counter */

int j; /* Multi -purpose counter */

int sl; /* Smoothing level counter */

double **EXT; /* Filter information */

double sum_G;

int k_left;

int k_right;

double tmp1; /* Factors to accelerate filtering calculation */

double tmp2;

double H_new[MAX_BATH_SIZE]; /* Bathymetry minus mean depth */

/* ===================

* Preparation of data

* =================== */

printf ("Recursive gaussian filtering : \n");

delta = 4.0 * sigma;

mu = mean_vector (H, N_bath);

for (i = 0 ; i < N_bath ; i++)

H_new[i] = H[i] - mu;

/* ==

* Find vector extremities between which filter is applicable

* == */

printf (" --> Preparation of data\n");

/* First extremity */

n1 = 0;

diff1 = delta;

new_diff1 = fabs (KSI[n1+1] - KSI[0] - delta);

while (diff1 > new_diff1)

{

diff1 = new_diff1;

n1++;

new_diff1 = fabs (KSI[n1+1] - KSI[0] - delta);

}

if ((KSI[n1] - KSI[0] - delta) < 0)

n1++;

/* Second extremity */

n2 = N_bath - 1;

diff2 = delta;

142

new_diff2 = fabs (KSI[N_bath -1] - KSI[n2 -1] - delta);

while (diff2 > new_diff2)

{

diff2 = new_diff2;

n2 --;

new_diff2 = fabs (KSI[N_bath -1] - KSI[n2 -1] - delta);

}

if ((KSI[N_bath -1] - KSI[n2] - delta) < 0)

n2 --;

/* =================================

* Calculation of filter information

* ================================= */

printf (" --> Calculation of filter information\n");

/* Construction of matrix */

EXT = (double **) malloc (3 * sizeof (double *));

for (i = 0 ; i < 3 ; i++)

EXT[i] = (double *) malloc ((n2 -n1 +1) * sizeof (double));

/* Initialization of filter information matrix */

for (i = 0 ; i < 3 ; i++)

for (j = 0 ; j < (n2 -n1 +1) ; j++)

EXT[i][j] = 0.0;

tmp1 = 1 / (sigma*sqrt (2* M_PI));

tmp2 = 2* sigma*sigma;

for (i = n1 ; i < n2+1 ; i++)

{

k_left = 0;

k_right = 0;

while ((KSI[i] - KSI[i - k_left - 1] - delta) < 0.0)

k_left ++;

while ((KSI[i + k_right + 1] - KSI[i] - delta) < 0.0)

k_right ++;

sum_G = 0.0;

for (j = - k_left ; j < (k_right + 1) ; j++)

sum_G += exp(- (KSI[i] - KSI[i+j]) * (KSI[i] - KSI[i+j]) / tmp2);

sum_G *= tmp1;

EXT [0][i - n1] = k_left;

EXT [1][i - n1] = k_right;

EXT [2][i - n1] = sum_G;

}

/* ==

* Successive applications of gaussian filter

* == */

printf (" --> Application of Gaussian filters \n");

printf (" ");

/* Zeroeth level of the smoothing matrix is the original bathymetry */

for (i = 0 ; i < N_bath ; i++)

SM[0][i] = H_new[i];

/* Recursive application of Gaussian filter */

for (sl = 1 ; sl < (n_levels + 1) ; sl++)

{

for (i = n1 ; i < n2 ; i++)

{

k_left = EXT [0][i - n1];

k_right = EXT [1][i - n1];

sum_G = EXT [2][i - n1];

/* Compute weighted average at position of index i*/

for (j = - k_left ; j < (k_right + 1) ; j++)

{

SM[sl][i] += SM[sl -1][i+j] * exp(- (KSI[i] - KSI[i+j]) * (KSI[i] - KSI[i+j]) / tmp2);

}

SM[sl][i] *= (tmp1 / sum_G);

} /** End loop on positions **/

143

printf (".");

(void) fflush (stdout);

} /** End loop on smoothing levels **/

printf ("\n");

/* ===========

* Free memory

* =========== */

for (i = 0 ; i < 3 ; i++)

free (EXT[i]);

free (EXT);

return 1;

} /* gaussian_filter */

double mean_vector (double *V, int N)

/*

*/

{

int i;

double sum;

sum = 0.0;

for (i = 0 ; i < N ; i++)

sum += V[i];

return (sum / N);

} /* mean_vector */

144

/* ----------------------------------

*

* postprocess.h

*

* Laurent White

*

* Date of creation : 2003 -06 -13

*

* ---------------------------------- */

char compare_sequence (double h_left , double h_center , double h_right);

int fingerprint (double *KSI , int N_bath ,

double **SM , int **FEAT ,

int n_levels ,

char *fname_fpr , char * fname_flt);

int identify_LWD (double *KSI , double *H, double *X, double *Y, int N_bath ,

int **FEAT ,

int n_levels , char * fname_lwd);

145

/* ----------------------------------

*

* postprocess.c

*

* Laurent White

*

* Date of creation : 2003 -06 -13

*

* ---------------------------------- */

include <stdio.h>

include <string.h>

include <stdlib.h>

include "postprocess.h"

char compare_sequence (double h_left , double h_center , double h_right)

/*

PRE : sequence of 3 numbers.

POST : if the sequence is

a positive slope : returns ’+’

a negative slope : returns ’-’

a trough : returns ’T’

a peak : returns ’P’

a zero slope : returns ’=’

*/

{

if ((h_left == h_center) && (h_center == h_right))

return ’=’;

if ((h_left <= h_center) && (h_center <= h_right))

return ’+’;

if ((h_left >= h_center) && (h_center >= h_right))

return ’-’;

if ((h_left > h_center) && (h_center < h_right))

return ’T’;

if ((h_left < h_center) && (h_center > h_right))

return ’P’;

return ’0’;

} /* compare_sequence */

int fingerprint (double *KSI , int N_bath ,

double **SM , int **FEAT ,

int n_levels ,

char *fname_fpr , char * fname_flt)

/*

PRE :

POST :

*/

{

/* =========

* Variables

* ========= */

FILE *fp_fpr; /* File to export fingerprint */

FILE *fp_flt; /* File to export smoothened signals */

int n_features ; /* Count of features (trough/peak) within one smoothing level */

int i;

int j;

char c;

/* =========

* Open file

* ========= */

fp_fpr = fopen (fname_fpr , "w");

if (fp_fpr == NULL)

{

printf ("Opening file ’%s ’ failed in ’fingerprint ’.\n", fname_fpr);

return 0;

}

146

fp_flt = fopen (fname_flt , "w");

if (fp_flt == NULL)

{

printf ("Opening file ’%s ’ failed in ’fingerprint ’.\n", fname_flt);

return 0;

}

printf ("Construction of fingerprint : \n");

/* ==

* Identify peaks and troughs within each smoothing level

* == */

fprintf (fp_fpr , "hold on\n");

fprintf (fp_flt , "SL = [\n");

for (i = 0 ; i < (n_levels + 1) ; i++)

{

/* Treatement of a new smoothing level */

n_features = 0;

fprintf (fp_fpr , "KSI%d = [" , i);

fprintf (fp_flt , "%.8f " , SM[i][0]);

/* Loop to read bathymetry data of current smoothing level */

for (j = 1 ; j < (N_bath - 1) ; j++)

{

c = compare_sequence (SM[i][j-1], SM[i][j], SM[i][j+1]);

/* Append fingerprint file */

if ((c == ’T’) || (c == ’P’))

{

fprintf (fp_fpr , "%.8f " , KSI[j]);

n_features ++;

}

fprintf (fp_flt , "%.8f ", SM[i][j]);

/* Append matrix of features */

if (c == ’T’)

FEAT[i][j] = 1;

if (c == ’P’)

FEAT[i][j] = 2;

} /* End loop treating current row */

fprintf (fp_flt , "%.8f " , SM[i][N_bath -1]);

fprintf (fp_flt , "\n");

fprintf (fp_fpr , "];\n");

fprintf (fp_fpr , "X%d=[" , i);

for (j = 0 ; j < n_features ; j++)

fprintf (fp_fpr , "%d ", i);

fprintf (fp_fpr , "];\n");

fprintf (fp_fpr , "plot(KSI%d,X%d,’.’,’ MarkerSize ’,\

3,’MarkerFaceColor ’,’b ’);\n" , i, i);

fprintf (fp_fpr , "\n\n");

printf (".");

(void) fflush (stdout);

} /* End loop treating rows */

printf ("\n");

fprintf (fp_flt , "];");

/* Close stream */

fclose (fp_fpr);

fclose (fp_flt);

/* Everything went well */

return 1;

} /* fingerprint */

int identify_LWD (double *KSI , double *H, double *X, double *Y,

int N_bath , int **FEAT , int n_levels , char * fname_lwd)

/*

* ARGS: KSI is the vector of curvilinear coordinates.

* SM is the matrix of smoothed levels.

* N_bath is the length of the bathymetry .

* FEAT is a matrix containing features associated

147

* with all smoothing levels (1 for a trough , 2 for a peak ,

* 0 otherwise). Note that the last smoothing level is the

* last line of the matrix.

* n_levels si the number of smoothing levels.

*

* RETURN : 1 if everything goes well , 0 if an error occurs.

*

* ACTION : Identification of arches in the fingerprint.

* This is perfomed as follows:

*

*

* */

{

int MAX_WIDTH ; /* Maximum width of arch summit */

int MAX_DEV; /* Maximum deviation in arch legs */

int LOWEST_LEVEL; /* Lowest level in which search for arch summits */

int i; /* A counter */

int j; /* Another counter */

int k; /* Another one ... */

int height; /* Arch height */

double width; /* Arch width */

int j_next; /* Index of next peak or trough */

int j_left; /* Index of left arch leg */

int j_left_old ; /* Index of left leg at previous level */

int j_right; /* Index of right arch leg */

int j_right_old;/* Index of right leg at previous level */

int f_left; /* Feature on the left of arch */

int f_right; /* Feature on the right of arch */

int arch; /* Indicates if the beginning of an arch is found */

int index_lwd ; /* Index of LWD location */

FILE * fp_lwd ; /* File for LWD locations */

/* Arch is considered caused by LWD if the geometry

* falls within the following limits . */

double min_width;

double max_width;

int min_height ;

int max_height ;

fp_lwd = fopen (fname_lwd , "w");

if (fp_lwd == NULL)

{

printf ("Error while opening file ’%s ’. Aborting.", fname_lwd);

return 0;

}

printf ("\nARCHES IDENTIFICATION\n");

printf (" ---------------------\n\n");

/* Ask the user to enter parameters */

/* Maximum summit width: */

printf ("Enter maximum arch summit width (in terms of samples): ");

scanf ("%d" , & MAX_WIDTH);

/* Maximum deviation in arch legs: */

printf ("Enter maximum deviation in arch legs (in terms of samples): ");

scanf ("%d" , &MAX_DEV);

/* Lowest level in which search for arch summit must be perfomed : */

printf ("Lowest level for search of arch summit : ");

scanf ("%d" , & LOWEST_LEVEL);

/* Get LWD geometric specifications */

printf ("Min width [cm]: ");

scanf ("%lf" , &min_width);

printf ("Max width [cm]: ");

scanf ("%lf" , &max_width);

printf ("Min height [in terms of smoothing levels]: ");

scanf ("%d" , & min_height);

printf ("Max height [in terms of smoothing levels]: ");

scanf ("%d" , & max_height);

/* Loop through smoothing levels (from upper down !) */

for (i = n_levels ; i > LOWEST_LEVEL -1 ; i--)

{

printf ("Smoothing level %d\n",i);

148

/* Loop to read features of current smoothing level */

j = 1;

while (j < (N_bath - 1))

/*for (j = 1 ; j < (N_bath - 1) ; j++)*/

{

height = 0;

width = 0;

arch = 0;

if ((FEAT[i][j] == 1) || (FEAT[i][j] == 2))

/* We’ve got a peak or a trough.

* Now , search the next one. */

{

j_next = j;

while (j_next < (N_bath -1))

{

j_next ++;

if (FEAT[i][j_next] + FEAT[i][j] == 3)

{

if (j_next - j + 1 <= MAX_WIDTH)

arch = 1;

break; /* Got a potential arch */ }

}

/* At this point , if arch is 1, we have

* a potential beginning of arch. Otherwise ,

* there is no valid arch. If an arch has

* been found , we may continue the loop

* after the second leg of the arch. */

}

if ((arch == 1) && (i < n_levels))

{

/* Check if features really constitute

* beginning of arch - that is , check if

* other features exist within the above level

* above the pair of features that have been

* found */

/* Search the level above the current one (i) */

k = i + 1;

/* LEFT LEG */

/* Look on the left */

j_left = j;

while (FEAT[k][j_left] != f_left)

{

j_left --;

if (j_left == 0)

break;

}

if (j - j_left + 1 > MAX_DEV)

/* Unable to find left leg on the left.

* Now , we have to look on the right. */

{

j_left = j;

while (FEAT[k][j_left] != f_left)

{

j_left ++;

if (j_left == N_bath - 1)

break;

}

if (j_left - j + 1 > MAX_DEV)

/* Lost track */

j_left = -1;

}

/* RIGHT LEG */

/* Look on the left */

j_right = j_next;

while (FEAT[k][j_right] != f_right)

{

j_right --;

if (j_right == 0)

break;

}

149

if (j_next - j_right + 1 > MAX_DEV)

/* Unable to find right leg on the left.

* Now , we have to look on the right. */

{

j_right = j_next;

while (FEAT[k][j_right] != f_right)

{

j_right ++;

if (j_right == N_bath -1)

break;

}

if (j_right - j_next + 1 > MAX_DEV)

/* Lost track */

j_right = -1;

}

if ((j_left != -1) || (j_right != -1))

/* Then , the pair extends above the current pair

* of found features ==> this is not the beginning

* of an arch. */

arch = 0;

/* === END CHECKING WHETHER THE PAIR OF FEATURES

* REALLY CONSTITUTES THE BEGINNING OF ARCH === */

}

/* Continue if valid arch was found */

if (arch == 1)

{

/* At this point , we’ve got a valid

* beginning of arch */

f_left = FEAT[i][j];

f_right = FEAT[i][j_next];

j_left_old = j;

j_right_old = j_next;

printf ("Arch located between %.8f and %.8f. ",

KSI[j], KSI[j_next]);

printf ("Tracking it down ...\n");

/* Track arch down from current level to level 1 */

for (k = i -1 ; k > 0 ; k--)

{

if ((j_left_old == 0)

|| (j_right_old == N_bath -1))

{

printf("AAAAAAAA\n");

(void) fflush (stdout);

break;

}

/* LEFT LEG */

/* Look on the left */

j_left = j_left_old ;

while (FEAT[k][j_left] != f_left)

{

j_left --;

if (j_left == 0)

break;

}

if (j_left_old -j_left +1 > MAX_DEV)

/* Unable to find left leg on the left.

* Now , we have to look on the right. */

{

j_left = j_left_old ;

while (FEAT[k][j_left] != f_left)

{

j_left ++;

if (j_left == N_bath -1)

break;

}

if (j_left -j_left_old +1 > MAX_DEV)

/* Lost track */

j_left = -1;

}

/* Update index of left leg at ’previous ’

150

* level.*/

j_left_old = j_left;

/* RIGHT LEG */

/* Look on the left */

j_right = j_right_old;

while (FEAT[k][j_right] != f_right)

{

j_right --;

if (j_right == 0)

break;

}

if (j_right_old -j_right+1 > MAX_DEV)

/* Unable to find right leg on the left.

* Now , we have to look on the right. */

{

j_right = j_right_old;

while (FEAT[k][j_right] != f_right)

{

j_right ++;

if (j_right == N_bath -1)

break;

}

if (j_right -j_right_old+1 > MAX_DEV)

/* Lost track */

j_right = -1;

}

j_right_old = j_right;

/* Increment arch height */

if (j_left == -1 || j_right == -1)

{

/* Not a valid arch */

height = 0;

break;

}

height ++;

} /* End tracking down arch */

if (height > 0)

{

/* Width in [cm] */

width = (KSI[j_right] - KSI[j_left]) * 100;

printf ("--> Arch located between %.8f and %.8f (height = %d, width = %.1f cm)\n",

KSI[j_left], KSI[j_right],

height , width);

}

if (height > 0)

/* Check if arch is caused by LWD */

{

if ((width >= min_width) &&

(width <= max_width) &&

(height >= min_height) &&

(height <= max_height))

{

/* Index of LWD location:

* we take the index of

* the trough.*/

if (f_left == 1)

index_lwd = j_left;

else

index_lwd = j_right;

fprintf (fp_lwd , "%.8f %.8f %.8f %.8f\n",

KSI[index_lwd],

H[index_lwd],

X[index_lwd],

Y[index_lwd]);

}

151

}

j = j_next;

} /* End treating valid arch */

j++;

} /* End loop treating current row */

} /* End loop treating rows */

fclose (fp_lwd);

return 1;

} /* identify_LWD */

152

Bibliography

Abbe, T. B., Montgomery, D. R. 1996. Large woody debris jams, channel
hydraulics and habitat formation in large rivers. Regulated Rivers: Research
and management. Vol. 12, Nos. 2-3, 201-221.

Bergeron, N. E. 1996. Scale-space analysis of stream-bed roughness in coarse
gravel-bed streams. Mathematical geology. Vol. 28, No. 5, 537-561.

Biggs, B. J. F. 1996. Hydraulic habitat of plants in streams. Regulated Rivers:
Research and management. Vol. 12, Nos 2-3, 131-144.

Butler, J. B., Lane, S. N. and Chandler, J. H. 2001. Characterization of the
structure of river-bed gravels using two-dimensional fractal analysis. Math-
ematical geology. Vol. 33, No. 3, 301-330.

Cherry, J. and Beschta, R. L. 1989. Coarse woody debris and channel mor-
phology: a flume study. Water Resources Bulletin Vol. 25, No. 5, 1031-1036.

Davis, J. A. and Barmuta, L. A. 1989. An ecologically useful classification of
mean and near-bed flows in streams and rivers. Freshwater biology. Vol. 21,
271-282.

Dougherty, E. R. and Astola, J. T. 1999. Nonlinear filters for image processing.
SPIE/IEEE Series on Imaging Science & Engineering.

Dudley, S. J., Fischenich, J. C., Abt, S. R. 1998. Effect of woody debris en-
trapment on flow resistance. Journal of the American Water Resources As-
sociation Vol. 34, No 5, 1189-1197.

Ghanem, A., Steffler, P., Hicks, F., Katopodis, C. 1996. Two-dimensional
hydraulic simulation of physical habitat conditions in flowing streams. Reg-
ulated Rivers: Research and management. Vol. 12, Nos. 2-3, 185-200.

Gerhard, M., Reich, M. 2000. Restoration of streams with large wood: effects
of accumulated and built-in wood on channel morphology, habitat diversity

153

and aquatic fauna. Internationl Review of Hydrobiology. Vol. 85, No. 1, 123-
137.

Gippel, C. J. 1995. Environmental hydraulics of large woody debris in streams
and rivers. Journal of Environmental Engineering. Vol. 121, No. 5, 388-395.

Gippel, C. J., O’Neill, I. C., Finlayson, B. L., Schnatz, I. 1996. Hydraulic
guidelines for the reintroduction and management of large woody debris
in lowland rivers. Regulated Rivers: Reasearch and Management. Vol. 12,
223-236.

Gippel, C. J., Finlayson, B. L. and O’Neill, I. C. 1996. Distribution and hy-
draulic significance of large woody debris in a lowland Australien river. Hy-
drobiologia. Vol. 318, 179-194.

Harmon, M. E., Franklin, J. F., Swanson, F. J., Gregory, S. V., Lattin, J. D.,
Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkaemper, G.
W., Cromack Jr, K. and Cummins, K. W. 1986. Ecology of coarse woody
debris in temperate ecosystems. Advances in Ecological Research. Vol. 15,
133-302.

Hoare, C.A.R., 2003. Algorithm 63 (partition) and algorithm 65 (find). Com-
munications of the ACM. Vol. 4 pp. 321-322, 1961.

Hodges, B. R. 2001. Effects of large woody debris in habitat models: some
thoughts on future research directions. Civil Engineering Department,
EWRE, University of Texas at Austin. Internal note.

Henderson, F. M. 1966. Open Channel Flow. Macmillan, New York, N Y.

Jain, S. C. and Kennedy, J. F., 1974. The spectral evolution of sedimentary
bed forms. Joural of Fluid Mechanics. Vol. 63, No. 2, 301-314.

Journel, A. G. and Huijbregts, Ch. J. 1978. Mining Geostatistics. Academic
Press Inc. (London) LTD..

Justusson, B. I. 1981. Median filtering: statistical properties. Topics in Ap-
plied Physics. Two-Dimensional Digital Signal Processing II: Transforms
and Median Filters. Springer-Verlag.

Keller, E. A. and Swanson, F. J. 1979. Effects of large organic material on
channel form and fluvial processes. Earth Surface Processes. Vol. 4, No. 4,
361-380.

154

Kemp, J. L., Harper, D. M., Crosa, G. A. 2000. The habitat-scale ecohydraulics
of rivers. Ecological Engineering. Vol. 16, 17-29.

King, R., Ahmadi, M., Gorgui-Naguib, R., Kwabwe, A. and Azimi-Sadjadi, M.
1989. Digital filtering in one and two dimensions: design and applications.
Plenum Publishing Corporation.

Land and Water Australia, 2002. Fact Sheet 7: managing woody debris in
rivers. Land & Water Australia’s National Riparian Lands Research and
Development Program.

Lisle, T. E. 1995. Effects of coarse woody debris and its removal on a chan-
nel affected by the 1980 eruption of Mount St. Helens, Washington. Water
Resources Research. Vol. 31, No. 7, 1797-1808.

Manga, M. and Kirchner, J. W. 2000. Stress partitioning in streams by large
woody debris. Water Resources Research. Vol. 36, No. 8, 2373-2379.

Marriott, M. J. 1996. Prediction of effects of woody debris removal in flow
resistance. Journal of Hydraulic Engineering. Vol. 122, No. 8, 471-472.

Minshall, G. W. 1984. Aquatic insect-substratum relationships. The Ecology
of Aquatic Insects. V. H. Resh and D. M. Rosenberg. Praeger Publishers,
New York, N.Y., 358-400.

Norris, H. M. 1955. Flow in rough conduits. Transactions of the American
Society of Civil Engineers. Vol. 120, 373-398.

Mutz, M. 2000. Influences of woody debris on flow patterns and channel mor-
phology in a low energy, sand-bed stream reach. International Review of
Hydrobiology. Vol. 85, No. 1, 107-121.

Nordin, C. F. and Algert, J. H. 1966. Spectral analysis of sand waves. Journal
of the Hydraulics Division, ASCE. Vol. 92, No. HY5, 95-114.

Nowell, A. R. M. and Church, M. 1979. Turbulent flow in a depth-limited
boundary layer. Journal of Geophysical Research. Vol. 84, 4816-4824.

Oliver, M. A. and Webster, R. 1986. Semi-variograms for modelling the spa-
tial pattern of landform and soil properties. Earth surface processes and
landforms. Vol. 11, 491-504.

Oppenheim, A. V. and Schafer, R. W. 1999. Discrete-Time Signal Processing,
second edition. Prentice Hall Signal Processing Series.

155

Osting, T., Mathews, R., Austin, B. 2003. Analysis of Instream Flows for the
Sulphur River: Hydrology, Hydraulics and Fish Habitat Utilization. (Draft
submitted to the US Army Corps of Engineers) Texas Water Development
Board (Surface Water Availabiliy Section).

Osting, T. 2003. An improved anisotropic scheme for interpolating scattered
bathymetric data points in sinuous rivers channels. (TWDB Draft submitted
to Dr. Paul F. Hudson, GRG384C Watershed Systems and Environmental
Management) Texas Water Development Board.

Petryk, S. and Bosmajian, G. 1975. Analysis of flow through vegetation. Jour-
nal of the Hydraulics Division, ASCE. Vol. 101, No. HY7, 871-884.

Ranga Raju, K. G., Rana, O. P. S., Asawa, G. L., Pillai, A. S. N. 1983.
Rational assessment of blockage effect in channel flow past smooth circular
cylinders. Journal of Hydraulic Reasearch. Vol. 21, No. 4, 289-302.

Shields Jr, F. D. and Nunnally, N. R. 1984. Environmental aspects of clearing
and snagging. Journal of Environmental Engineering. Vol. 110, No. 1, 152-
165.

Shields Jr, F. D. and Gippel, C. J. 1995. Prediction of effects of woody debris
removal on flow resistance. Journal of Hydraulic Engineering. Vol. 121, No.
4, 341-354.

Sullivan, K., Lisle, T. E., Dolloff, C. A., Grant, G. E. and Reid, L. 1987.
Stream channels: the link between forest and fishes. Streamside manage-
ment, forestry and fishery interactions. E. O. Salo and T. W. Cundy editions,
Coll. of Forest Resour., University of Washington, Seattle, Washington, 39-
97.

Young, W. J. 1992. Clarification of the criteria used to identify near-bed flow
regimes. Freshwater biology. Vol. 28, 383-391.

Witkin, A. P. 1983. Scale-space filtering: Proc. Eighth Intern. Joint Conference
on Artificial Intelligence (IJCAI) (Karlsruhe, Germany). Vol. 2, 1019-1022.

156

Vita

Laurent White was born in Uccle, Belgium on 10 November, 1979, the

son of Annie Frère and Allen White. After completing his work at Collège

Cardinal Mercier (Braine L’alleud, Belgium) in 1997, he entered the Université

Catholique de Louvain in Louvain-La-Neuve, Belgium. He received a Diploma

in Engineering in Applied Mathematics in June, 2002. In September 2002, he

entered The Graduate School at the University of Texas.

Permanent Address: 13, Rue du Cortil Bailly

1380 Lasne

Belgium

This thesis was typeset in LATEX by the author.

157

