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ABSTRACT 

The current paper proposes an approach to accommodate flexible spatial dependency structures in 

discrete choice models in general, and in unordered multinomial choice models in particular. The 

approach is applied to examine teenagers’ participation in social and recreational activity episodes, a 

subject of considerable interest in the transportation, sociology, psychology, and adolescence 

development fields.  The sample for the analysis is drawn from the 2000 San Francisco Bay Area 

Travel Survey (BATS) as well as other supplementary data sources. The analysis considers the 

effects of a variety of built environment and demographic variables on teenagers’ activity behavior. 

In addition, spatial dependence effects (due to common unobserved residential neighborhood 

characteristics as well as diffusion/interaction effects) are accommodated. The variable effects 

indicate that parents’ physical activity participation constitutes the most important factor influencing 

teenagers’ physical activity participation levels, In addition, part-time student status, gender, and 

seasonal effects are also important determinants of teenagers’ social-recreational activity 

participation. The analysis also finds strong spatial correlation effects in teenagers’ activity 

participation behaviors.  

 

 

Keywords: Spatial econometrics, composite marginal likelihood, teenager activity behavior, 

unordered-response, discrete choice, copula.  
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1. INTRODUCTION 

Spatial dependence is inherent in many aspects of human decision-making, with the choice decisions 

of one individual being affected by those of other individuals who are proximal in space. This inter-

relationship in decision-making may be a consequence of several reasons, including diffusion effects, 

social interaction effects, or unobserved location-related influences (see Jones and Bullen, 1994, and 

Miller, 1999). The importance of such spatial dependence effects has been recognized for several 

decades now in a variety of disciplines, including geography, urban planning, economics, political 

science, and transportation to name just a few (see Páez, 2007 and Franzese and Hays, 2008 for 

recent reviews). However, much of the work explicitly recognizing such dependence in modeling 

human decision-making directly, or as an aggregation of decisions across several individuals residing 

in a “neighborhood”, has been confined to situations where the variable of interest is continuous (see, 

for instance, Cho and Rudolph, 2007, Boarnet et al., 2005, Messner and Anselin, 2004, Dubin, 1998, 

Cressie, 1993, and Case, 1992). On the other hand, many choice decisions in the context of activity-

travel analysis and several other fields are inherently discrete, and can be strongly influenced by 

spatial considerations. In this regard, the current study contributes to the area of spatial analysis in 

discrete choice modeling by developing a flexible econometric modeling approach that accounts for 

spatial dependence in an unordered multinomial choice model setting. From an empirical standpoint, 

the study contributes to the area of activity-travel modeling in general, and teenagers’ participation in 

social and recreational episodes in particular.  

In the next section, we position the current study from a methodological perspective. Then, in 

Section 1.2, we discuss the value of the proposed methodology from an application perspective, 

particularly in the estimation of activity-travel models.  

 

1.1. The Methodological Context 

The recognition that spatial dependence is ubiquitous when examining human decision making 

processes has led to an increasing attention in recent years on accommodating spatial dependence in 

models with discrete choice dependent variables (see reviews of this literature in Franzese and Hays, 

2008, and Bhat and Sener, 2009). But even this attention is almost exclusively on binary choice 

situations, such as whether or not an individual participates in physical activity (Bhat and Sener, 

2009), or whether or not a nation ratifies the Montreal Protocol on Substances that Deplete the 
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Ozone Layer (Beron et al., 2003), or whether or not a firm adopts a new technology (Hautsch and 

Klotz, 2003). Further, these binary choice studies typically use a multivariate normality assumption 

to characterize the spatial dependence structure across observational units (see, for instance, Case, 

1992, McMillen, 1992, Pinkse and Slade, 1998, LeSage, 2000, Beron and Vijverberg, 2004, and 

Smith and LeSage, 2004). This multivariate normality assumption imposes the restriction that the 

dependence between the spatial error terms across observational units is radially symmetric about the 

center point of the multivariate normal distribution. The result is a spatial binary probit model that is 

estimated using frequentist maximum likelihood techniques and/or Bayesian simulation techniques. 

Unfortunately, these estimation techniques become computationally very costly or even infeasible to 

implement for moderate-to-high numbers of observational units (see Bhat and Sener, 2009, and 

Smirnov, 2010).1 

Yet, even with all the limitations discussed above, the number of spatial binary choice studies 

are certainly on the rise. The same, however, cannot be said about spatial unordered multinomial 

choice models. This, of course, is because maximum likelihood and/or Bayesian techniques become 

much more difficult to implement in a spatial unordered multinomial choice context than in a spatial 

binary context. The handful of studies focusing on spatial dependence in an unordered multinomial 

choice context have dealt with this computational issue by imposing relatively restrictive local 

spatial dependency structures that allow a constant stochastic dependence structure within 

observational units in pre-specified spatial regions, but no stochastic dependence in observational 

units in different spatial regions (see, for example, Bhat, 2000, and Dugundji and Walker, 2005). 

This leads to tractability in the resulting multinomial unordered choice probability expressions, but 

also is not likely to be representative of unobserved spatial effects that are global and continuous in 

space. As importantly, these studies assume that two observation units that are very close in space, 

but categorized in different spatial regions, will have zero unobserved spatial dependence, while two 

observation units very far apart but in the same spatial region will have substantial spatial 

                                                 
1 Exceptions to the use of a multivariate normality assumption to capture spatial dependence include the studies by Klier 
and McMillen (2008), and Carrion-Flores et al. (2009). Both these studies use a closed-form logit approach, combined 
with a linearized logit version of Pinkse and Slade’s generalized method of moments (GMM) estimator, to develop a 
practical approach to accommodating spatial dependence in discrete choice models. However, as indicated by Bhat and 
Sener (2009), the “linearization technique does not work in the purely spatial error model since the gradient with respect 
to the spatial correlation term is zero for all observations at the starting linearization point that corresponds to the 
correlation term being equal to zero.” Further, the asymptotic properties of the estimator are not easy to derive (see 
Smirnov, 2010). 
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dependence. Essentially, the problem is that the earlier studies assume that space is discrete, while 

space is, in reality, a continuous entity. The net result is that these studies are likely to be more 

affected by the modifiable areal unit problem (MAUP) than studies that accommodate general 

autocorrelation structures that are not as dependent on the definition of spatial regions (see Páez and 

Scott, 2004).2 

A recent study by Smirnov (2010), on the other hand, allows global spatial dependencies 

using a spatial lag model, and uses a pseudo-maximum likelihood (PML) estimator to obtain model 

parameters.3 Smirnov’s PML estimator is essentially based on estimating the spatial autoregressive 

term in the spatial lag model by recognizing the effects of exogenous variables of observation  units 

on the dependent variable of a proximally located observation unit, while ignoring the spatial 

correlation across observational units (that is also generated by the spatial lag structure). But this 

approach is not applicable for the case where the spatial dependency originates from a pure spatial 

error model (see Anselin, 2003), precisely because the only way to estimate the spatial dependency in 

such a specification is to explicitly account for the correlation across observation units. It should also 

be noted that the study by Smirnov (2010) uses a restrictive multivariate normal distribution to 

generate spatial dependencies.  

The discussion above motivates the methodological research in this paper. Specifically, the 

current paper proposes a copula approach to accommodate flexible dependence structures between 

the error terms of observational units in unordered multinomial response models. The copula 

approach enables the construction of a flexible multivariate dependence structure for the joint 

distribution of random variables that is derived purely from pre-specified parametric marginal 

distributions of each random variable. By separating the marginal distributions from the dependence 

structure, the approach allows substantial flexibility in generating dependence among random 

variables (see Trivedi and Zimmer, 2007, Nelsen, 2006, and Bhat and Eluru, 2009 for recent reviews 

                                                 
2 In Anselin’s (2003) taxonomy, the work of Bhat (2000), Dugundji and Walker (2005), and Case (1992) (described 
earlier in the section) corresponds to “local” spatial effects, while more general correlation structures allow “global” 
spatial effects.  
3 A spatial lag model corresponds to one in which the spatial dependency is generated through a specification in which 
the continuous dependent variable value (or a latent underlying continuous utility value of a discrete dependent variable) 
at one location is directly affected by the dependent variable value (or its latent counterpart value for a discrete dependent 
variable) at other locations (see Anselin, 2006). Thus, in a spatial lag model, spatial dependency results from both 
“spillage” effects (that is, the direct effects of exogenous variables at one location on the dependent variable at a proximal 
location) as well as through correlation in unobserved values. A spatial error model, on the other hand, is one in which 
the spatial dependency is generated purely from correlation in unobserved values (the error terms) across locations.  
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of the copula approach). Thus, several parametric dependence structures may be considered (the 

multivariate normal dependence structure being but one of these) and compared using statistical and 

data fit considerations. The copula-based spatial model is estimated using a pseudo-likelihood 

estimation technique based on a composite likelihood-based inference method, which reduces the 

computational burden involved in models with flexible global spatial dependence without 

compromising on the consistency and asymptotic normality properties of the resulting estimator. 

Overall, the approach presented here is simple, flexible, easy-to-implement, is applicable to data sets 

of any size, does not require any simulation machinery, and does not impose restrictive assumptions 

on the dependency structure.  

 

1.2. The Application Context 

As stated by Goodchild (2004), “space is an essential part of human experience: along with time it 

frames events, since everything that happens happens somewhere in space and time”. That is, 

individuals, in part, make their activity/travel decisions based on the availability and proximity of 

activity participation locations. Thus it is no surprise that time and space play a central role in 

activity-based travel models (see Bhat and Lawton, 2000; Axhausen, 2000; Davidson et al., 2007).  

In fact, several studies have identified the potential global spatial dependency among individuals in 

such varied activity-travel choices as vehicle ownership, type of vehicles owned, out-of-home 

activity participation by purpose, non-motorized mode use, and activity location (see, for instance, 

Ferdous et al., 2011, Miyamoto et al., 2004, Páez et al., 2007, Hammadou et al., 2008, 

Chamarbagwala, 2009, and Adjemian et al., 2010). However, despite the clear recognition of the 

need to accommodate spatial effects in individuals’ activity-travel choices, there have been few 

studies actually incorporating global spatial dependence effects into models of activity participation 

behavior and travel choices. In this study, we apply a new spatial analysis methodology to examine 

one such empirical choice context -- teenagers’ participation in weekday out-of-home social-

recreational activity episodes. Specifically, a choice model is used to model teenagers’ participation 

in social, physically inactive recreation, and physically active recreation episodes (the precise 

definitions of these activity purposes are provided later). A flexible spatial error dependence in 

participation propensities in these activity purposes is generated across teenagers based on the 

proximity of their residences.  Such dependencies may be the result of unobserved residential urban 
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form factors (such as good bicycle and walk path continuity) that may increase participation 

tendencies in specific activities, or diffusion and social interaction effects between proximally 

located teenagers so that unobserved lifestyle perspectives (such as physically active lifestyle 

attitudes) that affect activity participation decisions become correlated.4,5 We accommodate spatial 

error correlation through a copula structure that does not pre-impose any dependence structure. For 

instance, for a given (say positive) spatial correlation, the traditional multivariate normal dependence 

structure imposes the assumption that proximally located teenagers may have a simultaneously low 

propensity for physically active recreational participation or a simultaneously high propensity for 

physically active recreational participation.  However, the multivariate normal dependence structure 

does not allow asymmetric dependence structures, such as would be the case if proximally located 

teenagers have a simultaneously high propensity for physically active recreational participation but 

not necessarily a simultaneously low propensity for physical activity participation. That is, 

unobserved factors that increase physical activity propensity may diffuse more among teenagers than 

unobserved factors that decrease physical activity propensity. Such a spatial correlation pattern can 

only be reflected through the use of a copula dependence structure that has strong right tail 

dependence (strong correlation at high values) but weak left tail dependence (weak correlation at low 

values). Our approach allows the comparison of such an asymmetric dependency structure with the 

symmetric multivariate normal (or Gaussian) dependency structure.  

Teenagers’ participation in social and recreational activity episodes, the application focus of 

this paper, is an important area of study in several fields, including child development, public health, 

and transportation. In the child development field, many studies have established the positive role 

that out-of-home social-recreational activity participation plays in children’s self-development in the 

context of social skills, self-esteem, identity exploration, sense of responsibility, and understanding 

of fairness concepts (see, for instance, Hofferth and Sandberg, 2001, Darling, 2005, and Campbell, 

2007).  This is particularly so during adolescence due to the rapid emotional and physical personality 

                                                 
4 In this regard, note that the spatial distance between residences may also be considered as a proxy for the potential of 
diffusion/interaction effects at schools, and religious and other activity centers. This is because teenagers residing in close 
proximity are likely to be going to the same middle/high schools, and also will have a higher probability of interacting at 
activity centers around their residential locations.  
5 Such correlation effects may get generated over time, and so there is a time component to these correlation effects. 
However, in this study, we focus on long-run equilibrium propensities to participate in activities, and so do not focus 
on the time dimension. 
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developments at this life stage (Fredricks and Eccles, 2008). In fact, as indicated by Sanchez-Samper 

and Knight (2009), “adolescence is a time of physical, emotional, and psychological maturation as 

well as a period of searching for independence and experimentation”. However, along with the 

potentially substantial mental/physical growth and independence that adolescents experience, this is 

also a period when individuals are prone to gravitate toward health-risky behaviors such as drug use, 

tobacco use, and unprotected sex (see Tiggemann, 2001, and Lerner and Steinberg, 2004). Such 

behaviors can be controlled and reduced by motivating adolescents to participate in social-

recreational activities that provide a vehicle to develop healthy and communicative relationships with 

peers and adults (see Eccles and Gootman, 2002). Focusing on the factors that influence participation 

in social-recreational activities as a way to reduce health-risky behaviors among adolescents is also 

consistent with a “positive youth development” (PYD) paradigm approach to address challenges 

during the adolescence period (as opposed to much child development research that focuses almost 

exclusively on intervention programs to restrain risky behaviors; see Larson, 2000, who initiated 

research on the PYD paradigm).  

Teenagers’ participation in social-recreational activities has also been an important area of 

research in the public health field. In addition to the mental health issues that overlap with the child 

development literature, the participation of teenagers in physically active recreational pursuits has 

interested public health researchers for some time now. The current paper contributes to this research 

area, particularly because we differentiate between physically active and physically inactive 

recreation activities within the category of recreational activities. As is now well established in the 

public health literature, sedentary (or physically inactive) life styles are associated with obesity, heart 

disease, diabetes, high blood pressure, and several forms of cancer and mental health diseases (see, 

for instance, Nelson and Gordon-Larsen, 2006, Centers for Disease Control and Prevention (CDC), 

2006, and Ornelas et al., 2007). On the other hand, physical activity increases cardiovascular fitness, 

enhances agility and strength, reduces the need for medical attention, and contributes to improved 

mental health, and decreases depression and anxiety.6 But despite the negative physical health 

consequences of sedentary lifestyles and the positive benefits of an active lifestyle, about a third of 

                                                 
6 The statements here are not intended to imply that all sedentary activities are unhealthy activities. As discussed earlier, 
participation in social-recreational activities (regardless of physical activity levels) can be helpful in a youth’s overall 
personal development. 



7 
 

teenagers do not engage in adequate physical activity for health, and this low-level of physical 

activity participation is particularly acute among older teenagers and teenage girls (CDC, 2010).  

The study of teenagers’ out-of-home social-recreational activity participation is not just 

relevant to the child development and public health fields. Analyzing and modeling activity-travel 

patterns of children, and teenagers in particular, has started to attract increasing attention in the 

activity-based travel demand modeling field since children’s/teenagers’ activities inherently 

influence, and are influenced by, adults’ activity-travel patterns (see, for instance, McDonald, 2005, 

Sener et al., 2008, Stefan and Hunt, 2006). Adults (especially parents) spend a considerable amount 

of time escorting children and teenagers to out-of-home activities, and participating with children in 

joint social-recreational activities (Reisner, 2003, McGuckin and Nakamoto, 2004, and Sener and 

Bhat, 2007). The weekday focus of the current study is particularly important because of the 

increased amount of adults’ activity episodes and trips attributable to children’s/teenagers’ after-

school social-recreational activity participation (Reisner, 2003). Indeed, studies in the literature have 

pointed out that children as young as 6-8 years start developing their own identities and 

individualities, and social needs (see Stefan and Hunt, 2006, CDC, 2005, Eccles, 1999). They then 

interact with their parents and other adults to facilitate these activity-travel needs. Also, the 

consideration of children’s activity-travel patterns is important in its own right because these patterns 

contribute directly to travel demand. For instance, using data from the 2002 Child Development 

Supplement to the Panel Study of Income Dynamics, Paleti et al. (2011) found that a significant 

percentage of teenagers (about 35% in the US) do not return home immediately after school, and the 

majority of activities pursued by these teenagers at the out-of-home location is social-recreational in 

nature.  

 The rest of this paper is structured as follows. The next section presents the structure of the 

copula-based spatial multinomial unordered response model and discusses the (composite marginal 

likelihood) estimation approach employed in the current paper. Section 3 presents description of the 

data source and sample formation procedures used in the empirical context of our study. Section 4 

presents the empirical analysis results. The final section summarizes the important findings and 

concludes the paper.  
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2. MODEL FORMULATION 

2.1. Copula-based Spatial Unordered Response Model Structure 

Let *~
qiu  be the indirect (latent) utility of the qth observational unit for the ith alternative (q = 1, 2,…, 

Q; i = 1, 2, …, I).7  Let *~
qiu  be written in the usual way as a linear combination of a deterministic 

component qiV  and a stochastic component qiε . The deterministic component is assumed to be 

linear-in-parameters; ,qiqi xV β ′= where qix is a vector of exogenous variables and β  is a 

corresponding coefficient vector. The error terms qiε  are assumed to be type I extreme value 

(Gumbel) distributed with a scale parameter of qσ  (this allows for heteroscedasticity across 

observation units). 

 Let qiD  be a dummy variable indicator that takes the value of 1 if q selects i and 0 otherwise. 

Since the alternatives i = 1, 2, …, I are collectively exhaustive, the values of 1qD , 2qD , …, 1−qID  

suffice to characterize the chosen alternative for q (that is, if qiD = 0 for i = 1, 2, …, 1−I , it 

automatically implies that individual q chooses alternative I). Then, in the usual tradition of random 

utility maximization (RUM), we can write: 

1=qiD   for   i = 1, 2, …, 1−I    if and only if *

,...,2,1

* ~  max~
qk

ik
Ikqi uu

≠
=

>   (1) 

1=qID  for the last alternative I   if and only if *

,...,2,1

* ~  max~
qk

ik
Ikqi uu

≠
=

<  for all i = 1, 2, …, 1−I  

 Next, define a random variable as follows: 

)1 ..., ,2 ,1(~  max *

,...,2,1
−=−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
≠
=

Iiuh qiqk
ik

Ikqi ε  

Then, the equation system in Equation (1) can be written as: 

1=qiD  for i = 1, 2, …, 1−I  if and only if qiqi Vh <   (2) 

1=qID  for   alternative I   if and only if qiqi Vh >  for all Ii ≠  

                                                 
7 We will use general notation in the presentation of the model formulation to emphasize the generality of the formulation 
for multinomial discrete choice analysis. In the specific empirical context of the current paper, q is the index for 
teenagers and i is the index for the type of social-recreational activity chosen for participation at each episode choice 
instance. 
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Let ),...,,( 21,...,, 21 qIqq zzzH
qIqq εεε  be the multivariate cumulative distribution of the alternative error 

terms 1qε , 2qε , …, qIε . In the case when the error terms are independent and identically distributed 

(IID) across alternatives with each error term being Gumbel distributed with scale qσ , this 

multivariate distribution is: 

1 2, ,..., 1 2
1

( , ,..., ) exp exp
q q qI

I
qi

q q qI
i q

z
H z z zε ε ε σ=

⎧ ⎫⎡ ⎤⎪ ⎪= − −⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ .8  (3) 

With the IID error distribution across alternatives for the error terms, the implied marginal 

distribution of qih  (i = 1, 2, …, I – 1) is: 

,

1

1)()(
)|(

1

ln)|(|

|

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

−≠

∑

+

=
+

==<
≠∑

q

qqkV

k
q

qqkq

q

esV

ik

s

s

qiqi

e

ee
esGshP

σ

σσσ

σ

σ
                                                    (4) 

which is logistic distributed. Further, if there is no spatial correlation in the error terms  qiε across 

observation units q, then the probability above )( shP qi <  is independent of the probability 

)( shP iq <′  for all qq ≠′  (because of the construction of the qih variable). Thus, from Equation (2), 

we can write the probability of choice of observation unit q for alternative i (i = 1, 2, …, I – 1) as: 

.)()()1( )|(

|

)|(|

|

qqk

qqi

qqkqqi

qqi

V

k

V

V

ik

V

V

qiqiqiqiqi
e

e
ee

eVGVhPDP σ

σ

σσ

σ

∑∑
=

+
==<==

≠

 

This, of course, corresponds to the case of the simple heteroscedastic multinomial logit (IHMNL) 

model for each observation unit. Further, if the scale qσ is identical across all observation units, the 

result is the independent multinomial logit (IMNL) model.  

 The situation is more difficult when the error terms qiε are dependent across observation 

units q for each i (that is, 0),cov( ≠′iqqi εε , though we will maintain that 0),cov( =′′iqqi εε ). The 

                                                 
8 On the other hand, if the error terms are Generalized Extreme Value (GEV) distributed across alternatives with identical 
scale parameters, this equation takes the familiar GEV form. In the rest of this section, we will consider the error terms to 
be IID across alternatives for ease in presentation, though extension to the GEV structure is straightforward. In fact, in 
the empirical analysis, we explore nested logit models (a form of the GEV structure).  
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dependence in errors across observation units for each alternative can arise through spatial 

dependency effects, as we postulated earlier in this paper. In this case, the random terms qih  (q = 1, 

2, …, Q, i = 1, 2, …, I – 1) with the pre-specified parametric marginal distributions (.)qiG  are no 

more independent across observations q for each i. In the current paper, we tie the qih  random terms 

together across observations q for each i (i = 1, 2, …, I – 1) using a copula, which is a device or 

function that generates a stochastic dependence relationship (i.e., a multivariate distribution) among 

random variables with pre-specified marginals (see Bhat and Eluru, 2009 for a detailed discussion of 

copulas). The power of the copula approach is that it disassociates the marginal distributions of 

random variables from the dependence structure. Let θC be the Q-dimensional copula considered for 

each alternative i, with θ  being a parametric vector of the copula referred to as the dependence 

parameter vector.9 Then by Sklar’s (1973) theorem, a joint Q-dimensional distribution function for 

the random variables qih  (q = 1, 2, …, Q) with the continuous marginal distribution functions )(sGqi  

can be generated as follows: 

1 2 1 1 2 2 1 1 2 2( , ,..., ) Pr( , ,..., ) ( ), ( ),..., ( ) ,i Q i i Qi Q i i Qi QF s s s h s h s h s C G s G s G sθ ⎡ ⎤= < < < = ⎣ ⎦
10                                     (5) 

 Several different multivariate copulas exist in the literature, though there are only a limited 

number of these that can allow for differential dependence intensities among pairs of variables. In 

the context of spatial dependence, one expects such differential dependence intensities between 

observational units q based on spatial proximity. Three types of flexible multivariate copulas that are 

well suited for spatial dependence are the Gaussian, Farlie-Gumbel-Morgenstein (FGM), and the 

Generalized Gumbel Copula recently proposed by Bhat (2009). Of these, the first two copulas are 

radically symmetric and assume the property of asymptotic independence. The third copula, on the 

other hand, allows asymmetric and extreme tail dependence (i.e., the dependence is higher in the 

right tail than in the left tail). It also allows only for positive dependence. To write these copula 

                                                 
9 In fact, one can use different copulas to tie the hqi terms across q for different alternatives i (i = 1, 2, …, I – 1).  In 
addition, the dependence parameter vector θ can vary across alternatives i. However, such flexibility also creates 
exchangeability problems, since the copulas (and the dependence vectors) estimated for each alternative i will not be 
independent of the decision of which alternative is considered as the last alternative I. Hence, we prefer the specification 
that restricts the copula (and the dependence vector) to be the same across alternatives i (i = 1, 2, …, I – 1). 
10 If the random terms hqi (q = 1, 2, …, Q) are independent, then this equation collapses to: 

).()()()Pr()Pr()Pr(),,,( 2211221121 QQiiiQiQiiiQi sGsGsGshshshsssF ……… ××=<×<×<=  
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forms, consider the Q-dimensional copula θC  of uniformly distributed random variables U1, U2, U3, 

…, UK with support contained in [0,1]Q. Then, the three copula structures are as follows. 

 

Multivariate Gaussian Copula 

),),(),...,(),((

),,Pr() ,..., ,(
1

2
1

1
1

221121

θ
θ

QiiiQ

qiQiiiiiQiii

uuu

uUuUuUuuuC
−−− ΦΦΦΦ=

<<<= "
  (6) 

where QΦ  is the Q-dimensional standard normal cumulative distribution function (CDF) with zero 

mean and a correlation matrix whose off-diagonal elements are captured in the vector θ ,  and 

(.)1−Φ  is the inverse of the univariate standard normal CDF. In the context of Equation (5), 

)( iqiqi sGu =  for all q = 1, 2, …, Q. The dependence structure in the Gaussian copula is radially 

symmetric about the center point. That is, for a given correlation, the level of dependence is equal in 

the upper and lower tails. When all elements of θ  are zero in the Gaussian copula, this implies 

independence among the uniform variates U1, U2, U3,…, UK:  

1 2( , ,..., ,..., )i i qi QiC u u u u = 1 2 ... ,... .i i qi Qiu u u u    

 

Multivariate FGM Copula 

,)1)(1(1),...,,(
1

1

11
21 ⎥

⎦

⎤
⎢
⎣

⎡
−−+= ∑∑∏

+=

−

==
kiqiqk

Q

qk

Q

q
qi

Q

q
Qiii uuuuuuC θθ  (7) 

where qkθ  is the dependence parameter between qU and kU  (–1 ≤ qkθ  ≤ 1), qkθ = kqθ  for all q and k. 

The FGM copula has a simple analytic form and allows for either negative or positive dependence. 

Like the Gaussian copula, it also imposes the assumptions of asymptotic independence and radial 

symmetry in dependence structure (see Bhat and Sener, 2009). When ),(0 kqqk ∀=θ  pairs, we 

obtain the independence case.  

 

Multivariate Generalized Gumbel Copula 

[ ] ,)ln()ln(exp),...,,( /1
,

/1
,

1

1

1
21

⎭
⎬
⎫

⎩
⎨
⎧

−+−−= ∑∑
+=

−

=

ρρρ
θ αα kiqkkqiqkq

Q

qk

Q

q
Qiii uuuuuC                    (8) 

10 , ≤≤ qkqα  for all q and k, and 1, =∑ qkq
j

α  for all q, and 10 ≤< ρ . 
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The dependence parameter vector θ  in this multivariate Generalized Gumbel (GG) copula includes 

the qkq,α  terms as well as the dissimilarity parameterρ . This generalized version of the Gumbel 

copula, which is based on a cumulative multivariate extreme-value distribution, allows different 

dependence parameters between each variable pair qU and kU  (see Bhat, 2009). Independence is 

achieved in the GG copula when ρ =1 in Equation (8).  

 A couple of parameterizations are in order before proceeding to estimation. First, we 

parameterize qσ  in Equation (4) as )exp()( qqq wwg λλσ ′=′=  where qw  includes variables specific 

to pre-defined “neighborhoods” or other groupings of observational units and individual related 

factors, and λ  is a corresponding coefficient vector to be estimated. If all elements of the vector λ  

are zero, this implies no heteroscedasticity across observation units. Second, it is not possible to 

estimate a separate dependence term qkθ  for each pair of observational units q and k for the Gaussian 

and FGM copulas. So, we assume that the spatial process is isotropic (that is, qkθ = kqθ ) and 

parameterize qkθ  for the Gaussian and FGM copulas as: 

qk

qk
qk se

se
~)(1

~)(
′+

′
±= ς

ς

θ ,  (9) 

where qks~  is a vector of variables (taking on non-negative values) that influences the level of spatial 

dependence between observational units q and k choosing the same alternative, and ς  is a 

corresponding set of parameters to be estimated. The functional form above ensures that –1 ≤ qkθ  ≤ 

1, as required in the FGM and Gaussian copulas (see Equations (6) and (7)). Further, in a spatial 

context, we expect observational units in close proximity to have similar preferences, because of 

which we impose the ‘+’ sign in front of the expression in Equation (9). Note that the functional 

form of Equation (9) can accommodate various (and multiple) forms of spatial dependence through 

the appropriate consideration of variables in the vector qks~ (see Bhat et al., 2010 for a more detailed 

discussion of the reasons that motivate the functional form in Equation (9)). In particular, the 

dependence form nests the typical spatial dependence patterns used in the extant literature as special 

cases, including dependence based on (1) whether observational units are in the same 

“neighborhood” or in contiguous “neighborhoods” (obtained by including a single variable in the  
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qks~
 
vector that takes a value of 1 if q and k are in the same predefined “neighborhood” or in 

contiguous “neighborhoods”, and 0 otherwise), (2) shared border length of the “neighborhood” of 

two observational units (obtained by having the border length or some functional transformation of 

the border length as the sole variable in the qks~ vector, and (3) distance between observational units 

(obtained by including an appropriate representation of distance as the sole variable in the 

qks~ vector).11 

For the generalized Gumbel copula of Equation (8), the dependence vector θ  includes the 

qkq  ,α  terms as well as the ρ  term. Since we cannot estimate a separate qkq  ,α  term for each pairing 

of observational units q and k choosing the same alternative, and also because we require that 0 ≤ 

qkq  ,α  ≤ 1 for all q and k choosing the same alternative and ∑ =
k

qkq 1,α  for all q, we use the 

following parameterization: 

∑ ′

′
=

l
ql

qk
qkq s

s
)~exp(

)~exp(
, δ

δ
α   (10)  

The above form can include general forms of dependence based on the specification of qks~ . The 

dependence is strictly positive in the Generalized Gumbel Copula.  

 

2.2. Estimation Approach 

Without loss of generality, assume that the first 1Q  of the Q observational units in the data select 

alternative 1, the next 11 +Q  to 2Q  observational units select alternative 2, and so on. The likelihood 

function for the spatially correlated unordered MNL model may then be written using Equations (2) 

and (5) as: 

                                                 
11 Several functional forms of distance may be used, such as inverse of distance, square of inverse of distance, and 
distance “cliff” measures (the latter form essentially allows the spatial correlation between two teenagers to go to zero 
beyond a certain distance threshold). Also, the representation of distance may be in the form of time to travel or spatial 
distance, and may be measured as network distances or Euclidean distances (“crowfly” distances) or other measures of 
spatial separation.  
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Note that, as explained earlier, the alternatives i = 1, 2, …, I are collectively exhaustive, and so the 

choice of alternative I for the last 1)1( +−IQ  to Q observational units is equivalent to the non-choice 

of the first (I – 1) alternatives. This is reflected in the multiple inequality conditions for each of these 

last observations within the second { } parenthesis in Equation (11). In the case of the extensively 

studied spatially correlated binary model, I = 2 and the likelihood collapses to the simpler form: 

], ..., , ,  ; ..., , ,Pr[)or  ,,( 1,1,1,21,21,11,11,1,21211111 111111 QQQQQQQQ VhVhVhVhVhVhL >>><<<= ++++δςλβ        (12) 

where )( 122121 qqqqqq Vuh εεε −+=−=  for all q = 1, 2, …, Q. Even in this simple binary case, the 

likelihood function is very difficult to estimate, though Bhat and Sener (2009) and Bhat et al. (2010) 

have recently proposed computationally feasible and practical approaches to do so.12 In the more 

general unordered case of Equation (11), the likelihood function is all but impossible to evaluate 

using simulation methods, because the qih  terms are correlated across individuals for each i. In the 

current paper, we use a composite marginal likelihood (CML) approach that is gaining attention in 

the statistics field, though there has been little coverage of the method in econometrics and related 

fields (see Varin, 2008; Bhat et al., 2010; and Ferdous et al., 2010 for recent reviews of this 

method). 

                                                 
12 As Bhat et al. (2010) indicate, extant “brute force” simulation methods within a classical or Bayesian framework such 
as those adopted by Bhat (2003), Beron and Vijverberg (2004), and LeSage (2000) are impractical and/or infeasible in 
binary choice situations with moderate sample sizes. 
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2.2.1. The CML Approach 

The CML approach is a useful inference approach when it is difficult or infeasible to evaluate the 

full information likelihood function, but when it is possible to compute the marginal likelihoods of 

subsets of the data. In this case, the analyst can form a pseudo-likelihood function by compounding 

the marginal likelihoods for the subsets. The resulting composite score function is a linear 

combination of legitimate likelihood score functions, and it is unbiased. This translates to the 

consistency and asymptotic normality of the CML estimator under usual regularity assumptions 

(Cox and Reid, 2004, Molenberghs and Verbeke, 2005, page 191). While there is a theoretical 

efficiency loss associated with the CML estimator relative to the full maximum likelihood estimator, 

this efficiency loss has been shown to be small in practice (see Lele and Taper, 2002, Henderson and 

Shimakura, 2003, and Lele, 2006). 

In the current paper, we adopt a two-step CML procedure to develop a simple pseudo-

likelihood function. First, we construct a first-level composite likelihood by taking the product of 

marginal likelihoods corresponding to the subset of observations that choose each of the alternatives 

i = 1, 2, …, 1−I , and the marginal likelihood of the observations that choose the final alternative. 

Thus, the composite likelihood is written as: 
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The composite likelihood function above enables the explicit consideration of dependence across the 

qih  terms for each alternative i = 1, 2, …, I – 1, which originates from the use of an appropriate 

copula. At the same time, it is very difficult to evaluate the joint probability of the second 

parenthesis term in Equation (11) for the final alternative, and thus we construct the composite 

marginal likelihood function using the marginal probability for each observation choosing the final 

alternative (note the independence in choice probabilities across observations in the final row of 

Equation 13).  
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2.2.2. The Pairwise Marginal Likelihood Inference Approach 

The composite likelihood function of Equation (13) is still difficult to evaluate, especially for the 

Gaussian copula, which will entail the evaluation of (I – 1) multidimensional integrals (the first 

being of 1Q  dimensions, the second being of 12 QQ −  dimensions, and so on). So, we further 

simplify the function in a second step to use a pairwise marginal likelihood estimation approach, 

which corresponds to a CML approach based on bivariate margins. In the process of doing so, we 

also introduce two weight terms qkω  ( kqqkandkqQkq ωω =≠∈ }; ..,. ,2 ,1{, ) and  

),1 ..., ,2 ,1( −= Iiqiμ  both of which we will define shortly. The CML function takes the following 

form: 
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where 
qqi

qqi

V
I

j

V

qiqiqi

e

eVGu
σ

σ

/

1

/

)(
∑
=

== , )exp( qq wλσ ′= , and the qkθ  terms are related to ζ  or δ  as in 

Equation (9) and Equation (10), respectively, for the FGM/Gaussian copula and the Generalized 

Gumbel copula ( 0 0Q =  and IQ Q=  by notation in Equation 14). The non-negative weight 

terms, qkω , take the value of 1 if  qk S∈   and 0 otherwise, where qS  is the set of observational units 
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k within a certain optimal threshold distance optτ  of unit q.13  The weights qkω are introduced 

because, in a spatial case where dependency drops quickly with inter-observation distance, the pairs 

formed from the closest observations provide much more information than pairs that are very far 

away. In fact, as demonstrated by Varin and Vidoni (2009), Varin and Czado (2008), and 

Apanasovich et al. (2008) in different empirical contexts, retaining all observational pairs not only 

increases computational costs, but may also reduce estimator efficiency. The optimal distance, optτ , 

for inclusion of observation pairs may be set based on knowledge about the spatial process or based 

on minimizing the estimated asymptotic variance of estimators with varying values of the distance 

threshold (we will get back to this point at the end of the section). The normalizing weight terms, 

{ } { }1( 1, 1 , 1,qi i iq Q Q i Iμ −∈ + − ∈ in Equation (14), are inversely proportional to the number of 

pairings involving observation q  (that chooses alternative i ) with other observations choosing 

alternative i, and takes the specific form below: 

.1,...,2,1},,1{,1
1

},1{
         

1

−=+∈= −
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≠
∑
−

IiQQq ii

QQk
qk

qk
qi

ii

ω
μ   (15) 

Defining iM  as the total number of observations choosing alternative i  1( )i i iM Q Q −= − , it is easy to 

see that )1/(1 −= iqi Mμ  when all pairings of individuals are considered within the group choosing 

each alternative i  (i = 1, 2, 3, …, I – 1). In this particular instance, and if there is no spatial 

correlation across individuals, it is straightforward to see that the composite likelihood function in 

Equation (14) collapses to the maximum likelihood function for an independent heteroscedastic 

multinomial logit (IHMNL) model.  

 The log composite likelihood function corresponding to Equation (14) is: 
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The above function can be maximized to obtain estimates of the relevant parameters. The 

CML estimator of )or  ,,( ′′′= δςλβγ , obtained by maximizing the function in Equation (16) with 

                                                 
13 In the empirical context of the current study. the distance between teenagers is computed as the Euclidean distance 
between the residence TAZ activity centroids of the teenagers. 
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respect to the vector γ , is asymptotically normal distributed with asymptotic mean γ  and variance 

matrix given by the inverse of Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 

2005, and Bhat et al., 2010). To conserve on space, we do not provide details in the current paper for 

the estimator of the variance matrix. These details are available in a supplementary note at: 

http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/Unordered_Copula_CML/Supp_note.pdf. 

The optimal threshold distance optτ  that provides the most efficient parameter estimates in 

any copula model can be set by estimating the asymptotic variance matrix Var(γ) of the estimator for 

different distance values and selecting the distance value that minimizes the total estimated variance 

across all parameters as given by tr[Var(γ)], where ][Atr  denotes the trace of the matrix A.  

 

3. DATA SOURCES AND SAMPLE FORMATION 

In the current study, we examine the out-of-home weekday activity participation of teenagers in 

social, physically inactive recreational, and physically active recreational activities. The analysis is 

undertaken at an episode level, with the dependent variable being the type of activity (from among 

social, physically inactive recreation, and physically active recreation) participated in during each 

out-of-home episode. A comprehensive set of individual-related, household-related, and residential 

physical environment variables are used as explanatory variables. In addition, the analysis 

accommodates spatial dependence among teenagers’ activity participation choice decisions based on 

their household geographic location. In the rest of this section, we discuss the data sources and the 

sample formation procedure.  

 

3.1. The Primary Data Source 

The primary source of data is the 2000 San Francisco Bay Area Travel Survey (BATS), which was 

designed and administered by MORPACE International, Inc. for the Bay Area Metropolitan 

Transportation Commission (see MORPACE International Inc., 2002). The survey collected detailed 

information on individual and household socio-demographic and employment-related characteristics 

from about 15,000 households in the Bay Area. The survey also collected information on all activity 

and travel episodes undertaken by individuals of the sampled households over a two-day period (the 

two day period comprised either two consecutive weekdays, or a Friday and a Saturday, or a Sunday 

and a Monday, but not a Saturday and a Sunday). The information collected on activity episodes 
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included the type of activity (based on a 17-category classification system), the name of the activity 

participation location (for example, Jewish community center, Riverpark plaza, etc.), the type of 

participation location (such as religious place, or shopping mall), start and end times of activity 

participation, and the geographic location of activity participation.  

 

3.2. The Secondary Data Source 

In addition to the BATS survey, several other secondary Geographic Information System (GIS) data 

layers of highways, local roadways, bicycle facilities, businesses, and land-use/demographics were 

used to obtain spatial variables and neighborhood physical environment variables characterizing the 

residential traffic analysis zone (TAZ) of each teenager.14 The physical environment variables  

related to the residential neighborhood of teenagers include:  

1) Zonal land-use structure variables, including housing type measures (fractions of single family, 

multiple family, duplex and other dwelling units), land-use composition measures (fractions of 

zonal area in residential, commercial, and other land-uses), and a land-use mix diversity index,  

2)  Zonal size and density measures, including total population, number of housing units, 

population density, household density, and employment density by several employment 

categories, as well as dummy variables indicating whether the area corresponds to a central 

business district (CBD), urban area, suburban area, or rural area. 

3) Regional accessibility measures, which include Hansen-type (Fotheringham, 1983) employment, 

school, shopping, and recreational accessibility indices that are computed separately for the drive 

and transit modes. 

4)  Zonal ethnic composition measures, constructed as fractions of Caucasian, African-American, 

Hispanic, Asian and other ethnic populations for each zone.  

5) Zonal demographics and housing cost variables, including average household size, median 

household income, and median housing cost in each zone. 

6) Zonal activity opportunity variables, characterizing the composition of zones in terms of the 

intensity, the density or the presence of various types of activity centers. The typology used for 

activity centers includes five categories: (a) maintenance centers, such as grocery stores, gas 

stations, food stores, car wash, automotive businesses, banks, medical facilities, (b) physically 

                                                 
14 Due to privacy considerations, the point coordinates of each teenager’s residence is not available; only the TAZ of 
residence of each teenager is available. 
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active recreation centers, such as fitness centers, sports centers, dance and yoga studios, (c) 

physically passive recreational centers, such as theatres, amusement centers, and arcades, (d) 

natural recreational centers such as parks and gardens, and (e) restaurants and eat-out places. 

Note that the ‘presence of an activity center’ was defined by a dummy variable, which takes the 

value of one if there exist at least one (relevant) activity center, and zero otherwise.  

7) Zonal transportation network measures, including highway and local roadway density (miles of 

highway facilities and local roadway facilities, respectively, per square mile), bikeway density 

(miles of bikeway facilities per square mile), street block density (number of blocks per square 

mile), and transit accessibility (number of zones connected by transit within 30 minutes).  

8) Spatial dependence variables, characterizing the spatial dependence based on the residences of 

each pair of teenagers (these are the elements of the sqk vector in Equation (9) and Equation (10) 

of Section 2.1). These include (1) whether or not two teenagers reside in the same TAZ, (2) 

whether or not two teenagers reside in contiguous TAZs, (3) the boundary length of the shared 

border between the residence zones of two teenagers, and (4) several functional forms of the 

Euclidean distance (“crowfly” distance) between the residence TAZ activity centroids of the two 

teenagers, such as inverse of distance and square of inverse of distance.15 

 

3.3. Sample Formation 

The sample used for the current analysis is confined to a single weekday of 897 teenagers from 897 

different households residing in nine Counties (Alameda, Contra Costa, San Francisco, San Mateo, 

Santa Clara, Solano, Napa, Sonoma, and Marin) of the San Francisco Bay Area. Since the empirical 

context of the paper is the social-recreational activity participation of teenagers, only individuals 

aged 13 to 19 years were considered in the analysis. Further, all activity episodes in which teenagers 

participated were classified by purpose, location (as out-of-home and in-home), and day of week, 

and only the weekday out-of-home social-recreational activity episodes were chosen for this study. 

The recreational activity episodes were further classified into physically active or physically inactive 

                                                 
15 For two teenagers in the same zone, we assigned a distance that was one-half of the distance between that zone and its 
closest neighboring zone. 
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episodes, based on the activity type classification and the type of participation location.16  That is, an 

episode designated as “recreation” activity by a respondent and pursued at a fitness center (such as 

working out at the gym) or pursued outdoors (such as walking/running/bicycling around the 

neighborhood “without any specific destination”) is labeled as physically active. On the other hand, 

an episode designated as “recreation” activity by a respondent and pursued at a movie theater is 

labeled as physically inactive. The distribution of the number of social/recreational activity episodes 

in the sample is as follows: (1) social (30%), (2) physically inactive recreation (44.3%), and (3) 

physically active recreation (25.7%).  

 

4.  EMPIRICAL ANALYSIS 

4.1. Model Specification  

The model specification included variables falling into one of three broad categories: 

(1) Individual characteristics, including age, sex, race, driver’s license holding, and physical 

disability status. 

(2) Household characteristics, including number of adults, number of children, household 

composition and family structure, household income, dwelling type, whether the house is 

owned or rented, and parents’ activity participation characteristics. 

(3) Physical environment variables, including seasonal variables as well as the neighborhood 

physical environment variables related to the residential neighborhood of teenagers (as 

discussed in Section 3.2). 

The final model specification was based on a systematic process of including variables based on 

their statistical significance, intuitive considerations, parsimony in specification, and insights from 

the previous studies on teenager’s social/recreational activity participation. Several alternative 

functional forms of variables and various interaction terms were considered in the analysis. The final 

specification includes some variables that are not highly statistically significant, because of their 

intuitive effects and potential to guide future research efforts in the field. Three different nesting 

structure specifications of the three alternatives were also considered to examine the possible 

presence of common unobserved effects in the utilities across alternatives for each teenager (for 

                                                 
16 A physically active episode requires regular bodily movement during the episode, while a physically passive episode 
involves maintaining a sedentary and stable position for the duration of the episode. For example, swimming or walking 
around the neighborhoods would be a physically active episode, while going to a movie is a physically inactive episode. 



22 
 

example, to test if a teenager who is more likely to participate in social activity episodes is also more 

likely to participate in physically inactive recreation episodes). Finally, we also examined three 

different multivariate copula structures (Gaussian, FGM, and Generalized Gumbel (or GG)) for 

specifying the spatial dependence between the error terms qih  across individuals q for different 

alternatives.  

Table 1 presents the univariate descriptive statistics of each variable in the final model 

specification. The top row provides the total number of teenagers in the full sample (897 teenagers) 

as well as the number of teenagers participating in episodes of each of the three activity purpose 

categories. The remaining entries provide either the frequency (for categorical exogenous variables) 

or the mean value (for ordinal and continuous exogenous variables).  Thus, the entry “454 (50.6)” 

for the “Female” variable in the “Full Sample” column indicates that 454 of the 897 teenagers are 

female, which corresponds to 50.6% of the teenagers. Similarly, the entry “155 (57.6)” for the 

“Female” variable in the “Social Activity” column indicates that 155 of the 269 teenagers who 

participate in social activities are female, which corresponds to 57.6% of the teenagers who 

participate in social activities. A comparison of the percentages across columns for categorical 

variables, and of the mean values across columns for ordinal/continuous variables, provides a 

preliminary sense of the directionality of the effects of variables. However, it should be kept in mind 

that these are but the univariate effect of each variable without controlling for the effects of other 

variables. The multivariate model results presented in Section 4.3 provides the more comprehensive 

picture. With that caveat, the statistics in Table 1 for the “female” variable indicate that female 

teenagers are more likely (relative to male teenagers) to participate in social activity and less likely 

to participate in active recreation, while teenagers of Hispanic origin are more likely (relative to 

teenagers of other races) to participate in social activity and less likely to participate in inactive 

recreation. Other observations may be similarly drawn.  

A final summary statistic that may be of interest. The Euclidean distance (in miles) between 

the residence locations of teenagers varies from a minimum of 0.120 miles to a maximum of 151.46 

miles with a mean value of 37.34 miles.  
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4.2. Model Selection  

The three nesting structures considered in our specifications were either inconsistent with utility 

maximization or were not statistically superior to the simple multinomial logit model. Hence, we 

used the simple MNL model in the analysis.  The optimal distance for selecting pairwise terms for 

inclusion in the composite likelihood was set based on minimizing the trace of the variance-

covariance matrix of parameters. Specifically, we computed the trace of the variance matrix of 

parameters for various distance thresholds (that is, the threshold distance used to compute the 

qkω terms in Equation (15)), including 5 miles, 10 miles, 15 miles, 20 miles, 25 miles, 30 miles, 35 

miles, 40 miles, 45 miles, 50 miles, 100 miles, and 151.46 miles, the last one representing the case of 

including all the ( 1) / 2i iM M − possible likelihood pairings of individuals choosing each alternative i 

in the CML function. Although the trace values did not change substantially based on the distance 

threshold used, the results showed that the best estimator efficiency, across all copula models, was 

obtained at about =optτ 45 miles. 

Among the three copula models (the FGM, the Gaussian, and the Generalized Gumbel), the 

Generalized Gumbel (GG) copula model turned out to be the preferred one based on the notion of 

decreasing spatial dependence with an increase in distance among teenager residences as well as 

data fit based on Varin and Vidoni’s (2005) composite likelihood information criterion. The 

implication in the current empirical context is that radially symmetric dependence patterns (such as 

those implied by the Gaussian and FGM copulas) may not be appropriate to capture spatial 

dependence in the types of activity episodes that teenagers participate in. Specifically, the 

dependence form of the GG copula implies that the dependency in unobserved components across 

teenagers in the propensity to participate in social-recreational episodes is strong at the right tail, but 

not at the left tail. That is, teenagers in close proximity (in terms of residence) tend to have 

uniformly high activity levels (tighter clustering of data points at the high end of the social-

recreational utility spectrum), but there is lesser clustering of teenagers in close residential proximity 

toward the low activity levels (the low end of the social-recreational utility spectrum). That is, 

higher activity levels appear to “rub off” more and diffuse more than lower activity levels for each of 

the social, physically active recreation, and physically inactive recreation activity categories. Such 

asymmetric correlation patterns cannot be captured by an FGM or Gaussian copula model, as 

discussed in the model structure section.  
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The composite marginal likelihood value at convergence of the GGMNL model is -693.966, 

while that of the independent model with heteroscedasticity but no spatial dependence (IHMNL) is   

-696.763 and the independent IMNL model with no heteroscedasticity and no spatial dependence is 

lower at -700.393 (note that, as discussed in Section 2.1, the IHMNL model results when 1=ρ  in 

the GGMNL model, and the IMNL model results when 1=ρ  and all elements of λ  are zero (note 

that ),exp( qq wλσ ′= so that qq ∀= 1σ  when all elements of λ are zero). The composite marginal 

likelihood ratio test (CLRT) statistic, computed as twice the difference in the composite marginal 

log-likelihood values, yields a value of 5.594 for testing the GGMNL model with the IHMNL 

model, a value of 12.854 for testing the GGMNL model with the IMNL model, and a value of 7.260 

for testing the IHMNL model with the IMNL model. However, the CLRT statistic does not have the 

standard chi-squared asymptotic distribution under the null hypothesis as in the case of the 

maximum likelihood inference procedure (see Bhat et al., 2010 for detailed discussion on this CLRT 

statistic). Pace et al. (2011) have recently proposed a way out, indicating that the adjusted CLRT 

statistic, ADCLRT, may be considered to be asymptotically chi-squared distributed. Consider the 

null hypothesis 00 : ττ =H  against 01 : ττ ≠H , where τ  is a subvector of γ  of dimension d; i.e., 

),( ′′′= ατγ . Then, the ADCLRT statistic takes the following form: 

CLRTADCLRT ×
′

′
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all the matrices above are computed under the null hypothesis. The denominator of the above 

expression is a quadratic approximation to the CLRT, while the numerator is a score-type statistic 

with an asymptotic 2
dχ  null distribution. Thus, the ADCLRT is also very close to being an 

asymptotic 2
dχ   distributed under the null. The ADCLRT statistic yields a value of 174.010  for the 

test between GGMNL model and the IMNL model, which is substantially larger than the critical χ2 

value with 5 degrees of freedom (corresponding to the total of three heteroscedasticity and two 

spatial dependence parameters) at any reasonable level of significance, confirming the importance of 

accommodating heteroscedasticity and spatial dependence. In any case, the t-statistics on the 

heteroscedasticity and spatial dependence parameter estimates are highly statistically significant (as 
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discussed in Section 4.4), indicating the data fit superiority of the GGMNL model. Furthermore, the 

results also show that the IHMNL and IMNL models provide less efficient estimates. In particular, 

the average of the trace of the covariance matrix of parameter estimates is 0.00136 for the GGMNL 

model, 0.00321 for the IHMNL model, and 0.00377 for the IMNL model, indicating the higher 

standard errors (by about 157%) from the IHMNL and IMNL models relative to the preferred 

GGMNL model. Overall, the recognition of spatial dependence (and heteroscedasticity) leads to 

substantially improved estimates of estimator efficiency. In fact, the results also indicate that the use 

of the IMNL model can potentially lead to inaccurate estimates regarding the effects of variables, as 

we discuss further in Section 4.5.  

                                

4.3. Estimation Results  

To conserve on space, we only present the results for the best unordered response model (that is, 

GGMNL model). Table 2 presents the estimation results for this GGMNL model. The coefficients in 

the table provide the effects of variables on the latent propensity of teenagers to participate in social 

activities (first main column), physically inactive recreation activities (second main column), and 

physically active recreation activities (third main column). In instances where the coefficients on a 

variable for one or more alternatives are excluded, the omitted alternative category or categories 

form the base.  

 The coefficients on the alternative specific constants in Table 2 do not have substantive 

interpretations. They capture generic tendencies to participate in different activity alternatives as well 

as accommodate the range of continuous independent variables in the model. 

  

4.3.1. Individual Characteristics 

The effects of individual characteristics indicate that, among teenagers, females are less likely than 

males to participate in inactive and active recreation activities, and more likely than males to 

participate in social activities. Further, among recreational activities, the results show that females 

are particularly less likely to participate in physically active recreation compared to their male peers. 

These results are consistent with several previous studies, including Mhuircheartaigh, 1999, Bhat, 

2008, Azevedo et al., 2007, King et al., 2007, and Trolano et al., 2008. For instance, King et al. 

(2007) found that girls are likely to participate more intensively, and have a higher enjoyment, in 
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social and self-improvement activities, while boys are more likely to participate, and have a higher 

enjoyment, in physically active recreation activities. Of course, the reasons for such sex-related 

differences need to be studied in much more depth to understand the influence of environmental and 

societal expectations/norms on such stereotypical inclinations.  

The race-related effects suggest that Hispanic teenagers are less predisposed (relative to their 

peers of Caucasian, African, Asian, and other racial descents) to engage in inactive recreation, while 

Asian teenagers are more predisposed toward social activities. Part-time students have a higher 

propensity (relative to full-time students and non-students) to participate in recreational activities 

rather than social activities. Finally, the results indicate that teenagers with a driver’s license are 

more likely to participate in social activities than in recreational activities. This is perhaps a 

reflection of the freedom to drive to social activity opportunities that may be far away from one’s 

own residential neighborhood (such as a party at a friend’s place who lives far away). However, we 

also noticed that this variable serves as a proxy for age-related effects (in fact, when we introduced a 

dummy variable for age greater than 16 years, the statistical significance of the driver’s license 

coefficient dropped; however, because of multicollinearity problems, the age-related effect was not 

statistically significant). Earlier studies have also suggested that, as children get older, they gravitate 

more toward unstructured social activities rather than structured sports activities and unstructured 

free play (see Sallis et al., 2000, and Copperman and Bhat, 2007).  

  

4.3.2. Household Characteristics 

The household-related variable effects show the higher propensity among teenagers living in nuclear 

family households (i.e., households with both parents living with the teenager) to participate in out-

of-home active and inactive recreational activities rather than social activities. This may be a 

reflection of the increased time availability of adults in nuclear family households to engage in joint 

recreational activities with children, though the result needs further exploration (for instance, the 

result may also be a reflection of teenagers with divorced parents spending time visiting the parent 

with whom they do not live, leading to the higher social activity participation and reduced recreation 

participation of such teenagers compared to teenagers in nuclear families).  

The results corresponding to the household income variable point to the positive effect of 

higher socio-economic status on social and inactive recreational activity participation. This may be 
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due to financial constraints in low income households, which hamper the ability to partake in 

social/inactive recreation (for example, going to the movies entails an admission fee).  However, the 

results do suggest that income does not appear to be an economic factor in participation in active 

recreation. This is somewhat surprising, given that earlier transportation and public health studies 

(see Parks et al., 2003, Loukaitou-Sideris, 2004, and Day, 2006) have indicated that adults from low 

income households partake less in active recreation, both in terms of walking/bicycling around their 

neighborhoods (potentially because of poor non-motorized mode infrastructure and safety/security 

concerns) as well as in terms of physical activity at gyms and health clubs (potentially because of the 

financial cost). Whether the difference in the finding in this paper and those of earlier papers is 

because of the segment of the population studied (teenagers as opposed to adults), or due to our focus 

on the San Francisco Bay area with its relatively rich mixed land-use and non-motorized mode 

infrastructure (that may provide better opportunities for inexpensive active recreation opportunities 

such as walking and bicycling around the neighborhood), or some other factors is an issue that needs 

further exploration.  

The effect of the number of motorized vehicles in Table 2 indicates a tendency of teenagers 

from households with several motorized vehicles to participate more in inactive recreation than in 

social or active recreation episodes. Finally, in the category of household variables, the physical 

activity levels of parents positively influences the physical activity levels of teenagers (for the 

purpose of this research, we designate a parent as participating in physically active recreation if the 

parent pursues one or more active recreation episodes on the survey day). As emphasized in the 

literature (see, for instance, Davison et al., 2003, Trost et al., 2003,  Davis et al., 2007, and Sener et 

al., 2010), this is because teenagers (and children) explicitly model their parent’s physical activity 

participation (or physically active lifestyle). Further, the joint recreational activity participation of 

parents and teenagers can significantly lead to an increased level of physical activity for both 

teenagers and their parents. These results suggest the importance of family-oriented educational 

campaigns to increase awareness regarding the benefits of a physically active lifestyle. For instance, 

middle school and high schools may want to consider organizing information sessions on health and 

physical activity for parents of students in their schools, rather than confining health-related 

instruction to students.   
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4.3.3. Physical Environment Variables 

The first variable among the physical environment variables corresponds to seasonal effects. As one 

would expect, teenagers are less likely to participate in physically active recreational pursuits during 

the winter months, presumably because the weather conditions may discourage outdoor physical 

activity during the cold winter months relative to the other times of the year (see also Tucker and 

Gilliland, 2007 and Sener et al., 2010 for a similar finding).17 The lower physical activity 

participation of teenagers in active out-of-home activities during winter should be carefully 

examined by policy makers to increase (and balance) physical activity participation throughout the 

year. One possible consideration is to provide more indoor activity opportunity centers at affordable 

cost and close to residential neighborhoods.  

 The next set of variables highlights the importance of the residential location and built 

environment variables. Of course, the effects of this set of variables should be viewed with some 

caution since we have not considered potential residential self-selection effects. That is, it is possible 

that highly physically active families self-select themselves into zones with built environment 

measures that support their active lifestyles (see Bhat and Guo, 2007, and Bhat and Eluru, 2009 for 

methodologies to accommodate such self-selection effects). With that caveat, the results show that 

accessibility to schools has a significant and positive effect on recreational activity participation 

(both physically inactive and active). This is probably a reflection of the location flexibility 

motivating and increasing teenager’s recreational activity participation. That is, teenagers going to 

schools within close proximity of their residences are less dependent on their parents (or on other 

adult household members) for transportation to/from schools, and can walk/bicycle to school for 

recreational activity participation. Also, as indicated recently by Paleti et al. (2011) in their 

extensive examination of children’s non-school activity participation based on the 2002 Child 

Development Supplement (CDS) of the Panel Study of Income Dynamics (PSID), a unique aspect of 

children’s activity-travel patterns is the role school plays as a significant location for out-of-home 

organized and recreation activity participation.  Thus, it is not at all surprising that school 

accessibility has a strong positive influence on recreation activity participation. One should also note 

                                                 
17 Admittedly, the winter weather conditions in San Francisco are not that harsh from an absolute temperature standpoint 
as in other northern parts of the country such as Wisconsin or North Dakota. However, winter months are still colder in 
San Francisco relative to the other times of the year. Given that human beings tend to adapt themselves to the conditions 
they live in, an individual residing in San Francisco will therefore perceive the winter months as being cold compared to 
the other parts of the year.  
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that school accessibility, while promoting the physically active/inactive recreational activity 

participation at school, can also lead to an increase in the physical activity levels of children due to 

active transportation (though this is not a subject of our study). Next, the presence of physical 

activity opportunity centers in a zone increases the active recreation among teenagers residing in the 

zone, suggesting the importance of providing more such centers in close proximity of residences 

and/or developing attractive, accessible and affordable physically active recreation programs at 

neighborhood youth community centers. Teenagers living in residential areas with a high bicycle 

facility density (as measured by miles of bicycle lanes per square mile in the residential TAZ) have a 

higher likelihood to partake in physically active recreation and social activities rather than physically 

inactive recreational activities, suggesting the potential benefits of dense, mixed land-use, walkable 

and bikeable neighborhoods for the promotion of socially vibrant and physically active life styles 

(see also Cervero and Duncan, 2003, Krizek et al., 2004, and Bhat and Sener, 2009). The results also 

indicate the increased likelihood to participate in physically inactive recreation with good transit 

accessibility.   

Finally, teenagers residing in dense and urban environments are more likely to engage in 

social activities, and less likely to pursue recreational activities, relative to teenagers in less dense 

and non-urban environments. This result needs to be explored and acted upon further, since a healthy 

balance in both social activity participation (to build identity and healthy relationships with peers) 

and physically active recreation (to enhance mental and physical state of the mind and body) is 

important for the development of teenagers. 

  

4.4. Heteroscedasticity and Spatial Dependency  

This section presents the parameter estimates characterizing heteroscedasticity and spatial 

dependence in the teenager’s social-recreational activity participation model. 

 

4.4.1. Heteroscedasticity  

As discussed in Section 2.1, the model formulated in the current paper allows the incorporation of 

heteroscedasticity among individuals through the λ  vector embedded in )exp( qq wλσ ′= . We 

examined the effect of several variables in the qw  vector, and those that turned out to be statistically 

significant are presented in Table 2 under the label of “(Spatial) heteroscedasticity variables” 
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corresponding to the λ  vector. The results indicate a tighter variation (i.e., less spread) in the social-

recreational activity propensity of teenagers in nuclear families relative to teenagers in other family 

types. This effect, in conjunction with the direct positive effect of nuclear families on recreational 

activity participation, suggests a uniformly higher propensity of teenagers in nuclear family 

households to participate in recreational activities. Further, the results also indicate a much tighter 

variation in the propensity of social-recreational activity participation on Fridays compared to other 

days of the week, and among teenagers residing in zones with out-of-home recreational activity 

centers relative to teenagers in zones with no out-of-home recreational activity centers.  

 

4.4.2. Spatial Dependence Effects 

As indicated in Section 4.2, the GGMNL model provided the best fit to capture spatial dependence 

effects. The dependency among observational units in this model is captured through the dependence 

vector θ, including the ρ term as well as the qkq  ,α terms (see Section 2.1). The estimated value of 

the ρ parameter is 0.570, with a standard error of 0.0251. A t-statistic test with respect to 1 (which 

represents the case of no spatial dependence) returns a value of 17.13, which is higher than the t-

statistic table value at any reasonable level of significance. The second parameter under the “Spatial 

dependence variables” corresponds to the qks~
 
vector (and the corresponding δ coefficient vector) of 

qkq  ,α
 
in Equation (10). The best specification for the unordered model included a single “inverse of 

distance variable” (distance being measured as the spatial separation in miles between the residence 

TAZ centroids of teenagers) in the qks  vector.  In other words, as the distance between a teenager’s 

residence zone and another teenager’s residence zone increases, the degree of dependency in the 

propensities to pursue social activity episodes decreases. The same holds true for the physically 

inactive and physically active recreation purposes.  

The above discussion highlights that the spatial dependence effect is very highly statistically 

significant, and needs to be accommodated. The IMNL model completely ignores these spatial 

dependencies, while the proposed copula model (GGMNL) explicitly considers both spatial 

dependency and (spatial) heteroscedasticity. The result, as indicated earlier, is that the IMNL model 

provides less efficient estimates, which can have implications regarding inferences associated with 
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the effects of variables. Further, as we discuss in the next section, the IMNL model also provides 

inconsistent elasticity effects.   

 

4.5 Aggregate-Level Elasticity Effects 

The parameters on the exogenous variables in Table 2 do not directly provide the magnitude of the 

effects of variables in the choice probabilities of each episode type. To address this issue, we 

compute the aggregate-level “elasticity effects” of variables. 

To compute an aggregate-level “elasticity” of an ordinal exogenous variable (such as the 

number of household vehicles), we increase the value of the ordinal variable by 1 unit for each 

individual and obtain the relative change in expected aggregate shares. Thus, the “elasticities” for 

the ordinal exogenous variables can be viewed as the relative change in expected aggregate shares 

due to an increase of 1 unit in the ordinal variable across all individuals.  To compute an aggregate-

level “elasticity” of a dummy exogenous variable (such as whether a teenager is female, is in a 

nuclear family, or is Asian), we change the value of the variable to one for the subsample of 

observations for which the variable takes a value of zero and to zero for the subsample of 

observations for which the variable takes a value of one. We then sum the shifts in expected 

aggregate shares in the two subsamples after reversing the sign of the shifts in the second subsample 

and compute an effective proportional change in expected aggregate shares in the entire sample due 

to a change in the dummy variable from 0 to 1. Finally, the aggregate-level “arc” elasticity effect of 

a continuous exogenous variable (such as bicycle facility density) is obtained by increasing the value 

of the corresponding variable by 10% for each individual in the sample, and computing a percentage 

change in the expected aggregate shares of each activity type. While the aggregate level elasticity 

effects are not strictly comparable across the three different types of independent variables (dummy, 

ordinal, and continuous), they do provide order of magnitude effects. 

The elasticity effects by variable category for both the (aspatial) IMNL model and the 

proposed GGMNL model are presented in Table 3. The results reveal that parent’s physical activity 

participation constitutes the most important factor positively influencing teenagers’ physical activity 

participation level. This result highlights the importance of increasing the awareness of the health 

benefits of active recreation among parents, which would have a direct influence on teenager’s 

physical activity participation. In addition, being a part-time student is also found to have a 

substantial positive impact on teenagers’ recreational activity participation levels (both physically 
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active and physically inactive). This may be because part-time students, relative to their full-time 

peers, may have more time to spend in after-school activities (such as music courses, arts-crafts, or 

coached sports) pursued at (school-) clubs on weekdays. If so, the results suggest that an effective 

component of a successful PYD program, as discussed in Section 3.1., would be to provide more 

opportunities for teenagers to participate in flexible, yet organized, recreational activities to help 

them discover their talents, strengths and full potential. Another important result from the table is the 

strong gender differences in different types of activity participation. Specifically, the results show 

that females are much more likely than males to participate in social activities, and much less likely 

to partake in active recreation activities. These gender stereotype differences require careful further 

examination. Furthermore, the results also indicate the lower likelihood of active recreation during 

the winter season compared to other seasons, perhaps emphasizing the importance of public health 

policies aimed at providing (more) indoor active recreation opportunities (although this lower winter 

season physical activity pattern may also simply be a reflection of the sluggish winter “mood” of 

individuals and/or related to the holiday period associated with the winter season).  

There are also clear differences between in the elasticity effects between the aspatial IMNL 

model and the spatial GGMNL model. This, in conjunction with the better data fit of the spatial 

model, points to the inconsistent elasticity effects from the IMNL model. For instance, while the 

IMNL model indicates a positive effect of being in a nuclear family on teenagers’ active recreation 

activity, the GGMNL model indicates a mild negative effect on active recreation activity. There are 

also quite substantial differences in the effects of the physical environment variables between the 

aspatial and spatial models (see, for example, the differential effects of the “winter” dummy 

variable, the “presence of physically active recreation centers”, the “logarithm of household 

population density in zone”, and the “urban” residence variables). It is also important to note that the 

IMNL model fails to capture the impact of two of the variables (the “presence of out-of-home 

recreational activity centers” variable and the “Friday” dummy variable) on social-recreational 

activity participation, while these variables have relatively high effects in the GGMNL model, 

especially on the active recreation category.  Overall, ignoring spatial effects, when present, and 

using the IMNL model, can lead to inconsistent parameter estimates, which may result in unreliable 

policy evaluations.  
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5. SUMMARY AND CONCLUSIONS 

The current paper proposes an approach to accommodate flexible spatial dependency structures in 

discrete choice models in general, and in unordered multinomial choice models in particular. 

Specifically, we combine a copula-based formulation for spatial dependence in an unordered 

multinomial response model with a pseudo-likelihood estimation technique based on a composite 

marginal likelihood (CML) inference approach. While the copula approach provides a flexible 

structure for incorporating spatial dependence (that do not impose any restrictive assumption on the 

dependency structure), the proposed CML estimation approach leads to a simple and practical 

approach, which is applicable to data sets of any size and does not require any simulation machinery.  

 The proposed copula-CML model is applied to examine teenagers’ participation in social-

recreational activity purposes, a subject of considerable interest in the adolescence development, 

public health, and transportation fields. The data for the analysis is drawn from the 2000 San 

Francisco Bay Area Survey. A flexible spatial error dependence in participation propensities in the 

activity purposes is generated across teenagers based on the proximity of their residences.  Such 

dependencies may be the result of unobserved residential urban form effects and/or diffusion and 

social interaction effects between proximally located teenagers, so that unobserved lifestyle 

perspectives (such as physically active lifestyle attitudes) that affect activity participation decisions 

become correlated. Several copula model forms were tested to capture the spatial error dependencies 

across teenagers during the empirical specification, from which the Generalized Gumbel (GG) 

copula formulation emerged as the best specification (that is, provided the best data fit). This implies 

that teenagers in close proximity (in terms of residence) tend to have uniformly high activity levels 

(tighter clustering of data points at the high end of the social-recreational utility spectrum), but there 

is lesser clustering of teenagers in close residential proximity toward the low activity levels (low end 

of the social-recreational utility spectrum). The variable effects indicate that parents’ physical 

activity participation constitutes the most important factor influencing teenagers’ physical activity 

participation levels, suggesting that one of the most effective ways to increase active recreation 

among teenagers would be to direct physical activity benefit-related information and education 

campaigns toward parents, perhaps at special physical education sessions at schools for parents of 

teenagers studying there. In addition, part-time student status, gender, and seasonal effects are also 

important determinants of teenagers’ social-recreational activity participation.  
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TABLE 1 Descriptive Statistics of the Sample Data 
 
 

 Value “#(%) or Mean” 

 
Full 

Sample 
(n=897) 

Teenager’s participating in...* 

 Social 
Activity 
(n=269) 

Inactive 
Recreation 

Activity 
(n=397) 

Active 
Recreation 

Activity 
(n=231) 

Variable 

Individual characteristics     
Female 454 (50.6) 155 (57.6) 200 (50.4) 99 (42.9) 
Hispanic 48 (5.4) 19 (7.1) 16 (4.0) 13 (5.6) 
Asian 56 (6.2) 20 (7.4) 24 (6.0) 12 (5.2) 
Part-time student 24 (2.7) 4 (1.5) 12 (3.0) 8 (3.5) 
Licensed driver 365 (40.7) 139 (51.7) 142 (35.8) 84 (36.4) 

Household characteristics     
Nuclear family 423 (47.2) 107 (39.8) 201 (50.6) 115 (49.8) 
Household income greater than 90K 367 (40.9) 116 (43.1) 173 (43.6) 78 (33.8) 
Number of household vehicles 2.67 2.69 2.98 2.64 
Teenager’s mother physically active 204 (22.7) 47 (17.5) 71 (17.9) 86 (37.2) 
Teenager’s father physically active 154 (17.2) 30 (11.2) 64 (16.1) 60 (26.0) 

Activity-day variables      
Friday 169 (18.8) 56 (20.8) 77 (19.4) 36 (15.6) 

Physical environment  variables     
Winter 62 (6.9) 17 (6.3) 36 (9.1) 9 (3.9) 
Residence location/neighborhood variables     
Accessibility to schools 0.08033 0.07997 0.08097 0.07964 
Presence of physically active recreation 
centers 588 (65.6) 186 (69.1) 243 (61.2) 159 (68.8) 

Presence of out-of-home recreational 
activity centers 771 (86.0) 241 (89.6) 337 (84.9) 193 (83.5) 

Bicycle facility density (miles of bike lanes 
per square mile) 1.83 2.06 1.65 1.85 

Number of zones connected by transit 
within 30 minutes 7.80 6.80 8.35 8.01 

Logarithm of household population density 8.72 8.77 8.72 8.67 
Urban residence 130 (14.5) 46 (17.1) 53 (13.4) 31 (13.4) 

                                                 
* Percentages are based on total number of teenagers participating in each activity type. 
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TABLE 2 GGMNL Model Estimation Results for the Teenager’s Social-Recreational 
Activity Participation 

 Social Inactive Recreation Active Recreation 
Variable Parameter t-stat Parameter t-stat Parameter t-stat 

Alternative specific constants - - 0.362 0.86 0.207 0.55 
Individual characteristics       
Female - - -0.083 -2.32 -0.169 -2.83 
Hispanic - - -0.181 -2.98 - - 
Asian 0.140 3.24 - - - - 
Part-time student - - 0.363 3.08 0.363 3.08 
Licensed driver 0.139 2.95 - - - - 
Household characteristics       
Nuclear family - - 0.085 1.13 0.085 1.13 
Household income greater than 90K  0.093 2.24     0.093 2.24 - - 
Number of household vehicles - - 0.019 1.94 - - 
Teenager’s mother physically active - - - - 0.210 2.79 
Teenager’s father physically active - - - - 0.133 2.54 
Physical environment variables       
Seasonal variables - - - - - - 
Winter - - - - -0.238 -2.78 
Residential location and built environment variables       
Accessibility to schools - - 1.993 2.66 1.993 2.66 
Presence of physically active recreation centers - - - - 0.097 2.59 
Bicycle facility density (miles of bike lanes per square 

mile) 0.022 2.69 - - 0.013 1.80 

Number of zones connected by transit within 30 
minutes - - 0.005 2.79 - - 

Residential neighborhood variables       
Logarithm of household population density in zone 0.054 2.13 - - - - 
Urban 0.160 2.60 - - - - 
(Spatial) heteroscedasticity variables        
Nuclear family -0.394 -3.17 -0.394 -3.17 -0.394 -3.17 
Friday -0.408 -2.36 -0.408 -2.36 -0.408 -2.36 
Presence of out-of-home recreational activity centers -1.206 -3.25 -1.206 -3.25 -1.206 -3.25 
Spatial dependence variables       
ρ  term * - - 0.570 17.13 0.570 17.13 
δ in the α parameter 
 “Inverse of distance between zonal centroids” - - 0.797 2.33 0.797 2.33 

Number of Observations 897 
Trace of G 1.232 
Log-composite likelihood at convergence -693.966 
Trace of the matrix in the CLIC statistic 142.352 
Penalized log-composite likelihood (PLCL) -836.318 

 

                                                 
* The t-statistic is computed for the null hypothesis that ρ =1 
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TABLE 3 Aggregate-level Elasticity Effects of the Aspatial IMNL and Spatial GGMNL Model 
  

 Aspatial IMNL Model  Spatial GGMNL Model 

 
Social Inactive 

Recreation
Active 

Recreation Social Inactive 
Recreation

Active 
RecreationVariable 

Individual characteristics       

Female  25.88   -4.87 -35.29  25.08  -5.16 -34.72 

Hispanic  19.01 -29.74  19.77  24.26 -38.22  23.61 

Asian  27.85 -17.53 -16.52  38.18 -21.46 -19.00 

Part-time student -52.27  33.26  30.37 -61.89  41.62  35.95 

Licensed driver  37.80 -23.82 -22.36  31.85 -21.33 -18.65 

Household characteristics       

Nuclear family -17.46  11.03  10.30 -14.55  15.84  -1.96 

Household income greater than 90K    8.27    9.22 -30.10    6.83    7.70 -25.13 

Number of household vehicles -1.93    3.01   -1.99  -2.28    4.46  -2.76 

Teenager’s mother physically active -18.56 -20.37  66.98 -17.58 -19.64  64.36 

Teenager’s father physically active -12.07 -13.27  43.61 -10.94 -12.17  39.96 

Activity-day variables        

Friday - - -    4.82    3.32 -14.09 

Physical environment  variables       

Winter  11.73  13.21 -42.92  14.01   15.76 -51.48 

Accessibility to schools  -3.37    2.39    2.14  -3.39    2.32    1.90 

Presence of physically active recreation 
centers  -2.64   -2.93    9.58  -6.87  -7.74  25.28 

Presence of out-of-home recreational 
activity centers - - -  10.47   9.14 -33.93 

Bicycle facility density (miles of bike 
lanes per square mile)    0.87   -1.02    0.32    0.89  -0.97   0.12 

Number of zones connected by transit 
within 30 minutes   -0.50    0.78   -0.52  -0.74    1.17  -0.72 

Logarithm of household population 
density in zone  17.72 -11.17 -10.47  12.19 -27.82 -26.70 

Urban  35.89 -22.58  35.89  36.37 -24.22 -22.55 
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TABLE 3 Aggregate-level Elasticity Effects of the Aspatial IMNL and Spatial GGMNL Model 
  

 Aspatial IMNL Model  Spatial GGMNL Model 

 
Social Inactive 

Recreation
Active 

Recreation Social Inactive 
Recreation

Active 
RecreationVariable 

Individual characteristics       

Female  25.88   -4.87 -35.29  25.08  -5.16 -34.72 

Hispanic  19.01 -29.74  19.77  24.26 -38.22  23.61 

Asian  27.85 -17.53 -16.52  38.18 -21.46 -19.00 

Part-time student -52.27  33.26  30.37 -61.89  41.62  35.95 

Licensed driver  37.80 -23.82 -22.36  31.85 -21.33 -18.65 

Household characteristics       

Nuclear family -17.46  11.03  10.30 -14.55  15.84  -1.96 

Household income greater than 90K    8.27    9.22 -30.10    6.83    7.70 -25.13 

Number of household vehicles -1.93    3.01   -1.99  -2.28    4.46  -2.76 

Teenager’s mother physically active -18.56 -20.37  66.98 -17.58 -19.64  64.36 

Teenager’s father physically active -12.07 -13.27  43.61 -10.94 -12.17  39.96 

Activity-day variables        

Friday - - -    4.82    3.32 -14.09 

Physical environment  variables       

Winter  11.73  13.21 -42.92  14.01   15.76 -51.48 

Accessibility to schools  -3.37    2.39    2.14  -3.39    2.32    1.90 

Presence of physically active recreation 
centers  -2.64   -2.93    9.58  -6.87  -7.74  25.28 

Presence of out-of-home recreational 
activity centers - - -  10.47   9.14 -33.93 

Bicycle facility density (miles of bike 
lanes per square mile)    0.87   -1.02    0.32    0.89  -0.97   0.12 

Number of zones connected by transit 
within 30 minutes   -0.50    0.78   -0.52  -0.74    1.17  -0.72 

Logarithm of household population 
density in zone  17.72 -11.17 -10.47  12.19 -27.82 -26.70 

Urban  35.89 -22.58  35.89  36.37 -24.22 -22.55 
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