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ABSTRACT 

This paper formulates a generalized heterogeneous data model (GHDM) that jointly handles 

mixed types of dependent variables—including multiple nominal outcomes, multiple ordinal 

variables, and multiple count variables, as well as multiple continuous variables—by 

representing the covariance relationships among them through a reduced number of latent 

factors. Sufficiency conditions for identification of the GHDM parameters are presented. The 

maximum approximate composite marginal likelihood (MACML) method is proposed to 

estimate this jointly mixed model system. This estimation method provides computational time 

advantages since the dimensionality of integration in the likelihood function is independent of 

the number of latent factors. The study undertakes a simulation experiment within the virtual 

context of integrating residential location choice and travel behavior to evaluate the ability of the 

MACML approach to recover parameters. The simulation results show that the MACML 

approach effectively recovers underlying parameters, and also that ignoring the multi-

dimensional nature of the relationship among mixed types of dependent variables can lead not 

only to inconsistent parameter estimation, but also have important implications for policy 

analysis.  

 

Keywords: Latent factors, big data analytics, high dimensional data, MACML estimation 

approach, mixed dependent variables, structural equations models, integrated land use-

transportation modeling, factor analysis. 
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1. INTRODUCTION 

The joint modeling of data with mixed types of dependent variables (including ordered-response 

or ordinal variables, unordered-response or nominal variables, count variables, and continuous 

variables) is of interest in several fields, including biology, developmental toxicology, finance, 

economics, epidemiology, social science, and transportation (see a good synthesis of applications 

in De Leon and Chough, 2013). For instance, in the clinical biology field, alternative treatments 

for a specific condition are assessed based on binary, ordered, and continuous indicators of the 

treatment’s after-effects; this approach has been used to assess the effectiveness of depression 

medication in reducing the occurrence, frequency, and intensity of depression (such as in 

Gueorguieva and Sanacora, 2006). In the health field, in addition to binary, count, and 

continuous variables related to the occurrence, frequency, and intensity, respectively, of specific 

health problems, it is not uncommon to obtain ordinal information on quality of life 

outcomes/perceptions. In the toxicology field, the focus is on regulating the use of chemical and 

pharmaceutial drugs (Sutton et al., 2000). Typically, varying quantities of a drug are 

administered to mice; the effects on their offspring are studied in terms of combinations of 

discrete outcomes (such as the presence of congenital deformations) and continuous outcomes 

(such as birth weight). In the transportation field, households that are not auto-oriented are likely 

to locate in transit- and pedestrian-friendly neighborhoods that are characterized by mixed and 

high-density land use; pedestrian-oriented design in such communities may also further 

structurally reduce motorized vehicle miles of travel. If that is the case, then it is likely that the 

choices of residential location (nominal variable), vehicle ownership (count), and vehicle miles 

of travel (continuous) are being made jointly as a bundle (see, for example, Bhat et al., 2014a).  

The interest in mixed model systems has been spurred particularly by the recent 

availability of high-dimensional heterogeneous data with complex dependence structures, thanks 

to technology that allows the collection and archival of voluminous amounts of data (“big data”). 

Unlike standard correlated linear data that can be analyzed using traditional multivariate linear 

regression models, the presence of non-commensurate outcomes creates difficulty because of the 

absence of a convenient multivariate distribution to jointly (and directly) represent the 

relationship between discrete and continuous outcomes. Several approaches have been developed 

to handle such situations. The first and simplest is, of course, to simply ignore the dependence 

and estimate separate models. However, such an approach is inefficient in estimating covariate 
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effects for each outcome because it fails to borrow information on other outcomes, and is 

limiting in its ability to answer intrinsically multivariate questions such as the effect of a 

covariate on a multidimensional outcome (Teixeira-Pinto and Harezlak, 2013). Besides, joint 

analysis of mixed outcomes obviates the need for multiple tests and facilitates global tests, 

offering superior power in testing and better control of type I error rates (De Leon and Zhu, 

2008). But, more importantly, if some endogenous outcomes are used to explain other 

endogenous outcomes (such as examining the effect of density of residence on auto-ownership 

model), and if the outcomes are not modeled jointly to recognize the presence of unobserved 

exogenous variable effects, the result is inconsistent estimation of the effects of one endogenous 

outcome on another (see Bhat and Guo, 2007, and Mokhtarian and Cao, 2008). A second 

common approach to joint mixed outcome modeling originates in the general location model 

(GLOM), which assumes an arbitrary marginal distribution for the discrete outcomes and a 

conditional (on the discrete component) normality assumption for the continuous outcomes (De 

Leon and Chough, 2013). However, the GLOM is not suitable for ordinal outcome variables and 

does not accommodate dependence between nominal and ordinal outcomes. A third “reverse-

factorization” approach is to employ a latent variable representation for binary/ordinal outcomes, 

and assume a multivariate normal (MVN) distribution for the continuous outcomes and the latent 

variables underlying the binary/ordinal outcomes. Then, the joint distribution is derived using a 

marginal distribution of the continuous outcomes and the conditional distribution of the latent 

variables (given the continuous variables) underlying the binary/ordinal outcomes. This approach 

is referred to as the conditional grouped continuous model (CGCM) by De Leon and Chough 

(2013). However, this approach cannot be directly extended to the case of nominal outcomes, 

since nominal outcomes do not arise from the partitioning of a single latent variable using 

thresholds (as is the case for binary/ordinal outcomes). So, De Leon and Carriere (2007) and De 

Leon et al. (2011) proposed an extended factorization approach, which they label as the general 

mixed data model (GMDM), to accommodate nominal outcomes. They use a GLOM for the joint 

distribution of the nominal and continuous outcomes, and a CGCM for the joint distribution of 

the ordinal and continuous outcomes. Specifically, the GMDM uses a multinomial distribution 

for the marginal distribution of the possible multidimensional discrete states obtained from the 

combinatorics of a set of nominal outcomes, followed by a conditional MVN distribution for the 

latent variables (underlying the ordinal outcomes) and the continuous outcomes. The mean 
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vector for this latter conditional MVN distribution is specified to be a function of the 

multidimensional discrete state, engendering an association between the nominal discrete 

outcomes and the ordinal/continuous outcomes. However, the covariance matrix of the 

conditional MVN distribution is constant across the nominal discrete states. A further problem 

with the GMDM is that the number of multidimensional discrete states explodes as the number 

of nominal discrete outcomes increases, and as the number of elemental categories within each 

nominal discrete outcome increases. Besides, the GMDM (like the GLOM) resorts to a 

factorization approach in which an artificial hierarchy is implicitly assumed. In this hierarchy, 

the multidimensional discrete outcomes are intermediate responses and the ordinal/continuous 

outcomes are the ultimate responses (see Wu et al., 2013).  

Independent from the work discussed above, a fourth approach originates in the 

economics and transportation fields, wherein mixed models with nominal outcomes are based on 

latent variable representations of nominal outcomes. Surprisingly, such studies are rarely 

mentioned in papers in the statistical field that deal with mixed outcomes. The studies in this 

strand may be viewed as extensions of the CGCM approach to the case of nominal outcomes, 

except that each nominal outcome is represented by a series of latent variables. An early example 

of such a multivariate model may be found in Keane (1992), who considered one nominal 

variable and one continuous variable. However, only relatively recently has this methodology 

been extended to include mixed nominal, binary, ordinal, count, and continuous variables (for 

example, see Paleti et. al., 2013 and Bhat et al., 2014a). The resulting mixed models may be 

viewed as an alternative to the GMDM, and have the advantage that all outcomes are tied based 

on their latent or observed continuous variable representations (rather than using different types 

of linkages for different types of outcomes, as in the GMDM). Further, these models treat the 

mixed outcomes symmetrically rather than imposing any form of hierarchy. The models 

typically assume an MVN distribution over the entire set of latent and observed continuous 

variables characterizing the many types of outcomes. A variant of this methodology uses a 

Gaussian copula function to tie the latent and observed continuous variables if the variables have 

different marginal distributions, though this approach has been confined to scenarios without a 

nominal outcome (see, for example, Wu et al., 2013). Another variant introduces random error 

terms linearly in the latent and observed continuous variable equations associated with the 

discrete outcomes and continuous outcomes, respectively. The underlying continuous variables 
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are considered to be independent, conditional on these random error terms. Then, if these random 

error terms are common or correlated, the result is an association structure among the mixed 

outcomes. Such a specification falls under the label of a multivariate generalized linear latent and 

mixed model (GLLAMM), and is particularly helpful when considering clustering effects (due to 

multiple observations from the same person or due to spatial dependency) in addition to 

correlation across mixed outcomes (see, for example, Faes et al., 2009 and Bhat et al., 2014a) . 

An extension of this approach that accommodates clustering as well as an association structure 

among mixed outcomes (that is, mixed outcomes are independent, conditional on appropriately 

specified latent variables) is referred to as the item response theory (IRT) model in the literature 

(see Bartholomew et al., 2011 and Feddag, 2013). However, again, these GLLAMM and IRT 

models have been predominantly used for cases with no nominal variables, though similar 

approaches can be used to generate dependence between a nominal variable and other kinds of 

variables too (see, for example, Bhat and Guo, 2007 and Pinjari et al., 2008).  

A fifth approach, originating from the social sciences, implicitly generates dependence 

among mixed outcomes by writing the latent and observed continuous variables as a function of 

unobserved psychological constructs. These relationships are characterized as measurement 

equations, in that the psychological constructs are manifested in the larger combination of mixed 

outcomes. The constructs themselves are related to exogenous variables and may be correlated 

with one another in a structural relationship. In this approach, the unobserved psychological 

constructs serve as latent factors that provide a structure to the dependence among the many 

mixed indicator variables. Seen from this perspective, the approach can also be viewed as a 

parsimonious attempt to explain the covariance relationship among a large set of mixed 

outcomes through a much smaller number of unobservable latent factors. Sometimes referred to 

as factor analysis, the approach represents a powerful dimension-reduction technique to analyze 

high-dimensional heterogeneous outcome data by representing the covariance relationship 

among the data through a smaller number of unobservable latent factors. An entire field of 

structural equations modeling (SEM) has been developed around this psychological construct-

based dependence modeling, originating in some of the early works of Jöreskog (1977). 

However, the SEM field has focused almost exclusively on non-nominal outcome analysis (see 

Gates et al., 2011 and Hoshino and Bentler, 2013). Indeed, traditional SEM software (such as 

LISREL, MPLUS, and EQS) is either not capable of handling nominal indicators or at least are 
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not readily suited to handle nominal indicators (see Temme et al., 2008). But when this approach 

is extended to include a nominal indicator, it essentially takes the form of an integrated choice 

and latent variable (ICLV) model (Ben-Akiva et al., 2002, and Bolduc et al., 2005). Also, while 

traditional SEM techniques typically adopt normally distributed latent factors along with 

normally distributed measurement error terms (leading to probit models in the presence of 

binary/ordered outcomes), ICLV models tend to use normally distributed latent factors mixed 

with logistically distributed errors in the measurement equations for ordinal variables and type-1 

extreme value errors in the nominal outcome utility functions (leading to a probability expression 

that involves a multivariate integral over the product of logit-type probabilities for the 

outcomes). In both the SEM and ICLV cases, the standard estimation methodology is the method 

of maximum likelihood estimation. When there are many binary/ordered-response outcomes 

(indicators) and/or a nominal variable, the integrals in the overall probability expression are 

computed using simulation techniques. As indicated by Hoshino and Bentler (2013), this can “be 

difficult to impossible when the model is complex or the number of variables is large.” This is 

particularly the case with the traditional mixture formulation of ICLV models in general, and 

particularly when there are several latent factors (see Daziano and Bolduc, 2013).  

Recently, Bhat and Dubey (2014) proposed a different way of formulating ICLV models, 

in which they use a SEM-like probit approach while also accommodating a single nominal 

variable. Essentially, this approach combines the power and parsimony of the dimension-

reduction factor analysis structure of SEMs (as just discussed above) with the extended CGCM 

approach that uses a symmetric, latent continuous variable representation for all non-continuous 

outcomes (as in Paleti et al., 2013 and Bhat et al., 2014a). In this paper, we generalize Bhat and 

Dubey’s approach to the case of multiple nominal outcomes, multiple ordinal variables, multiple 

count variables, and multiple continuous variables. The resulting model, which we label simply 

as the generalized heterogeneous data model (GHDM), is general enough to accommodate other 

models in the literature as special cases. Straightforward extensions of the model are available to 

accommodate longitudinal and spatial clustering, though we focus on the non-clustered mixed 

outcome model in the current paper. We propose the estimation of the GHDM using Bhat’s 

maximum approximate composite marginal likelihood (MACML) inference approach. In 

particular, in our approach, the dimensionality of integration in the composite marginal 

likelihood (CML) function that needs to be maximized to obtain a consistent estimator (under 
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standard regularity conditions) for the GHDM parameters is independent of the number of latent 

factors and easily accommodates general covariance structures for the structural equation and for 

the utilities of the discrete alternatives for each nominal outcome. Further, the use of the analytic 

approximation in the MACML approach to evaluate the multivariate cumulative normal 

distribution (MVNCD) function in the CML function simplifies the estimation procedure even 

further so that the proposed MACML procedure requires the maximization of a function that has 

no more than bivariate normal cumulative distribution functions to be evaluated.  

 

2. THE GHDM FORMULATION  

There are two components to the model: (1) the latent variable SEM, and (2) the latent variable 

measurement equation model. These components are discussed in turn below. In the following 

presentation, for ease in notation, we will consider a cross-sectional model. As appropriate and 

convenient, we will suppress the index q for decision-makers (q=1,2,…,Q) in parts of the 

presentation, and assume that all error terms are independent and identically distributed across 

decision-makers. Table 1 summarizes all matrix notations and corresponding matrix dimensions 

used below in the GHDM formulation. 

   

2.1. Latent Variable SEM 

Let l be an index for latent variables (l=1,2,…,L). Consider the latent variable *
lz  and write it as a 

linear function of covariates: 

,*
llz  wαl                                                                                                                           (1) 

where w is a )1
~

( D  vector of observed covariates (excluding a constant), lα  is a corresponding 

)1
~

( D  vector of coefficients, and l  is a random error term assumed to be standard normally 

distributed for identification purposes (see Stapleton, 1978).1 Next, define the )
~

( DL matrix 

),...,,( 21  Lαααα , and the )1( L vectors ) ,...,,( **
2

*
1  Lzzz*z  and )'.,,,,( 321 L η  Unlike 

much of the earlier research in ICLV modeling, we allow an MVN correlation structure for η  to 

accommodate interactions among the unobserved latent variables: ],[~ Γ0η LLMVN , where L0  

                                                 
1 The reason for excluding the constant in the covariate vector w will become clear in Section 3. 
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is an )1( L  column vector of zeros, and Γ  is )( LL  correlation matrix. In matrix form, we 

may write Equation (1) as: 

η αwz* .                                                                                                                             (2) 

It is not uncommon in the SEM literature to have latent variables affecting each other in 

the SEM. However, it may also not be easy to justify a priori inter-relationships between 

unobserved variables, and so we prefer a general covariance structure for the latent variables as 

in Equation (2). However, in some cases, it may indeed be appropriate to allow inter-

relationships between the latent variables. Section 3.1 discusses the identification considerations 

in this case. Note also that our model formulation and estimation technique are readily applicable 

to this case of inter-related latent constructs too as long as the identification considerations in 

Section 3.1 are met. 

   

2.2. Latent Variable Measurement Equation Model Components 

We will consider a combination of continuous, ordinal, count, and nominal outcomes (indicators) 

of the underlying latent variable vector *z . However, these outcomes may be a function of a set 

of exogenous variables too.  

Let there be H continuous outcomes ) ..., , ,( 21 Hyyy  with an associated index h 

) ..., ,2 ,1( Hh  . Let hhhy  *
h zdxγ

 
in the usual linear regression fashion, where x  is an 

)1( A  vector of exogenous variables (including a constant) as well as possibly the observed 

values of other endogenous continuous variables, other endogenous ordinal variables, other 

endogenous count variables, and other endogenous nominal variables (introduced as dummy 

variables). hγ  is a corresponding compatible coefficient vector.2 hd  is an )1( L vector of latent 

variable loadings on the hth continuous outcome, and h  is a normally distributed measurement 

                                                 
2 In joint limited-dependent variable systems in which one or more dependent variables are not observed on a 
continuous scale, such as the joint system considered in the current paper that has discrete dependent and count 
variables (which we will more generally refer to as limited-dependent variables), the structural effects of one 
limited-dependent variable on another can only be in a single direction. That is, it is not possible to have correlated 
unobserved effects underlying the propensities determining two limited-dependent variables, as well as have the 
observed limited-dependent variables themselves structurally affect each other in a bi-directional fashion. This 
creates a logical inconsistency problem (see Maddala, 1983, page 119 for a good discussion). It is critical to note 
that, regardless of which directionality of structural effects among the endogenous variables is specified (or even if 
no relationships are specified), the system is a joint bundled system because of the correlation in unobserved factors 
impacting the underlying propensities.  
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error term. Stack the H continuous outcomes into an )1( H vector y, and the H error terms into 

another )1( H  vector ) ..., , ,( 21  Hε . Also, let Σ  be the covariance matrix of ε , which is 

restricted to be diagonal. This helps identification because there is already an unobserved latent 

variable vector *z  that serves as a vehicle to generate covariance between the outcome variables 

(as we discuss in the next section). Define the )( AH   matrix ),...,( 21  Hγ  and the )( LH   

matrix of latent variable loadings   .,...,,  Hdddd 21 Then, one may write, in matrix form, the 

following measurement equation for the continuous outcomes: 

εdzγxy *  .                                                                                                                     (3) 

Next, consider N ordinal outcomes (indicator variables) for the individual, and let n be 

the index for the ordinal outcomes ) ..., ,2 ,1( Nn  . Also, let nJ  be the number of categories for 

the nth ordinal outcome )2( nJ  and let the corresponding index be nj ) ..., ,2 ,1( nn Jj  . Let *~
ny  

be the latent underlying variable whose horizontal partitioning leads to the observed outcome for 

the nth ordinal variable. Assume that the individual under consideration chooses the th
na  ordinal 

category. Then, in the usual ordered response formulation, for the individual, we may write: 

,~~~and,~~~~
,

*
1,

*

nn annannnn yy   
*

n zdxγ                                                                        (4) 

where x  is a vector of exogenous and possibly endogenous variables as defined earlier, nγ
~

 is a 

corresponding vector of coefficients to be estimated, nd
~

 is an )1( L vector of latent variable 

loadings on the nth continuous outcome, the ~  terms represent thresholds, and n~  is the standard 

normal random error for the nth ordinal outcome. For each ordinal outcome, 

nn JnJnnnn ,1,2,1,0,
~~...~~~    ; 0,

~
n , 0~

1, n , and 
nJn,

~ . For later use, let 

)~...,~,~(~
1,3,2,  nJnnn nψ  and .)~,...,~,~(~  Nψψψψ 21  Stack the N underlying continuous 

variables *~
ny  into an )1( N vector *y~ , and the N error terms n~  into another )1( N vector ε~ .  

Define )~,...,~,~(~
21  Hγγγγ  [ )( AN   matrix] and  N, dddd

~
,...,

~
,

~~
21  [ )( LN   matrix], and let 

NIDEN  be the identity matrix of dimension N representing the correlation matrix of ε~  (so, 

 NIDEN0 ,~~
NNMVNε ; again, this is for identification purposes, given the presence of the 

unobserved *z  vector to generate covariance. Finally, stack the lower thresholds for the decision-
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maker  Nn
nan  ..., ,2 ,1~

1, 
 
into an )1( N  vector lowψ~  and the upper thresholds 

 Nn
nan  ..., ,2 ,1~

,   into another vector .~
upψ  Then, in matrix form, the measurement equation for 

the ordinal outcomes (indicators) for the decision-maker may be written as: 

up
*

low
** ψyψεzdxγy ~~~ ,~~~~  .                                                                                        (5) 

Let there be C count variables for a household, and let c be the index for the count 

variables ) ..., ,2 ,1( Cc  . Let the count index be ck )..., ,2 ,1 ,0( ck  and let cr be the actual 

observed count value for the household. Then, following the recasting of a count model in a 

generalized ordered-response probit formulation (see Castro, Paleti, and Bhat, or CPB, 2012 and 

Bhat et al., 2014b), a generalized version of the negative binomial count model may be written 

as:  

,, ,
*

1,
*

cc rccrccc yy    
*

c zd                                                                                            (6) 

   
c

cl

c rc

r

t

t
c

c

c

c
rc t

tΓ

Γ ,
0

1
, !

)(

)(

1 




















 
 




, 

cc

c
c 




 , and xγc


ec .                    (7) 

In the above equation, *
cy


 is a latent continuous stochastic propensity variable associated 

with the count variable  c  that maps into the observed count cr  
through the cψ


vector (which is 

a vertically stacked column vector of thresholds .),... ,,,( 2,1,0,1,  cccc  
 cd


 is an )1( L vector 

of latent variable loadings on the cth count outcome, and c


 is a standard normal random error 

term. cγ


 is a column vector corresponding to the vector x . 1  in the threshold function of 

Equation (7) is the inverse function of the univariate cumulative standard normal. c  is a 

parameter that provides flexibility to the count formulation, and is related to the dispersion 

parameter in a traditional negative binomial model )0( cc  . )( cΓ   is the traditional gamma 

function; 





0~

~1 ~~)(
t

t
c tdetΓ c . The threshold terms in the cψ


vector satisfy the ordering 

condition (i.e., )....2,1,0,1, ccccc   
 as long as .....2,1,0,1,  cccc   

The presence of the c  
terms in the thresholds provides substantial flexibility to accommodate 

high or low probability masses for specific count outcomes without the need for cumbersome 

traditional treatments using zero-inflated or related mechanisms in multi-dimensional model 
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systems (see Castro et al., 2011 for a detailed discussion). For identification, we set 1,c  

and 00, c for all count variables c. In addition, we identify a count value *
ce  

......}),2 ,1 ,0{( * ce  above which ......}),2 ,1{(, ckc k
c

 is held fixed at *, cec
 ; that is, *,,

cc eckc    

if ,*
cc ek   where the value of *

ce  can be based on empirical testing. Doing so is the key to 

allowing the count model to predict beyond the range available in the estimation sample. For 

later use, let ),,( *,2,1, 
cecccc   1( * ce  vector) (assuming , )0* ce   
















  vector1  ),,,( *
21

c
cC e  , and  vector1 C ),,( 21  C θ . Also, stack the 

C latent variables *
cy


 into a )1( C vector
 

*y


, and the C error terms c


 into another )1( C

vector
 
ε


. Let  CIDEN0 ,~ CCMVNε


 from identification considerations, and stack the lower 

thresholds of the individual  Cc
crc  ..., ,2 ,11, 

 
into a )1( C  vector lowψ


, and the upper 

thresholds  Cc
crc  ..., ,2 ,1,   into another )1( C vector upψ


. Define ),...,,( 21  Cγγγγ


)[( AC  

matrix] and   Cdddd


,...,, 21 )[( LC  matrix]. With these definitions, the latent propensity 

underlying the count outcomes may be written in matrix form as:  

up
*

low
** ψyψ εzdy

  , .                                                                         (8) 

Note also that the interpretation of the generalized ordered-response recasting is that 

consumers have a latent “long-term” propensity *
cy


 associated with the demand for each 

product/service represented by the count c, which is a linear function of the latent variable vector 

*z  (see CPB for a discussion of the interpretation of the generalized ordered-response recasting 

of count models). Such a specification enables covariance across the count outcomes (through 

the propensity variables *
cy


) and between the count outcomes and other mixed outcomes. On the 

other hand, there may be some specific consumer contexts and characteristics (embedded in x ) 

that may dictate how the long-term propensity is manifested in a count demand at any given 

instant of time. Our implicit assumption is that the latent variable vector *z  affects the “long-

term” latent demand propensity *
cy


, but does not play a role in the instantaneous translation of 

propensity to actual manifested count demand. This allows us to easily incorporate count 
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outcomes within a mixed outcome model, and estimate the resulting model using Bhat (2011) 

MACML approach. Similarly, an implicit assumption in Equation (8) is that the 

factors/constraints that are responsible for the instantaneous translation of propensity to 

manifested count demand (that is, the elements of the x  vector) do not affect the “long-term” 

demand propensity, though this is being imposed purely for parsimony purposes. Relaxing this 

assumption does not complicate the model system or the estimation process in any way. 

Finally, let there be G nominal (unordered-response) variables for an individual, and let g 

be the index for the nominal variables ),...,3 ,2 ,1( Gg  . Also, let Ig be the number of alternatives 

corresponding to the gth nominal variable (Ig  3) and let gi be the corresponding index 

) ,...,3 ,2 ,1( gg Ii  . Consider the gth nominal variable and assume that the individual under 

consideration chooses the alternative gm . Also, assume the usual random utility structure for 

each alternative gi .  

,)(
ggggg gigigigigiU  *zβxb                                                                            (9) 

where x  is as defined earlier, 
ggib  is an )1( A  column vector of corresponding coefficients, and 

ggi is a normal error term. 
ggiβ  is an )( LN

ggi  -matrix of variables interacting with latent 

variables to influence the utility of alternative gi , and 
ggi  is an )1( 

ggiN -column vector of 

coefficients capturing the effects of latent variables and their interaction effects with other 

exogenous variables. If each of the latent variables impacts the utility of the alternatives for each 

nominal variable purely through a constant shift in the utility function, 
ggiβ will be an identity 

matrix of size L, and each element of 
ggi  will capture the effect of a latent variable on the 

constant specific to alternative gi  of nominal variable g.  Let ),...,( 21 
ggIgg g   1( gI  

vector), and ),(~ gΛ0
gIMVNg . Taking the difference with respect to the first alternative, the 

only estimable elements are found in the covariance matrix gΛ


 of the error differences, 

),...,,( 32 ggIgg   g  (where )1,1  iggigi  . 3  Further, the variance term at the top left 

                                                 
3 Also, in multinomial probit models, identification is tenuous when only individual-specific covariates are used in 
the vector x (see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion restrictions are needed in the 
form of at least one individual characteristic being excluded from each alternative’s utility in addition to being 
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diagonal of gΛ


 ),...,2 ,1( Gg   is set to 1 to account for scale invariance. gΛ  is constructed from 

gΛ


 by adding a row on top and a column to the left. All elements of this additional row and 

column are filled with values of zero. In addition, the usual identification restriction is imposed 

such that one of the alternatives serves as the base when introducing alternative-specific 

constants and variables that do not vary across alternatives (that is, whenever an element of x  is 

individual-specific and not alternative-specific, the corresponding element in 
ggib is set to zero 

for at least one alternative ).gi  To proceed, define ),...,,( 21 
ggIggg UUUU  1( gI  vector), 

),...,,,( 321 
gIg gggg bbbbb  AI g (  matrix), and ),...,, 21 

ggIggg ββββ  













LN
g

g

g

I

i
gi

1

 matrix. 

Also, define the 













g

g

g

I

i
gig NI

1

matrix g , which is initially filled with all zero values. Then, 

position the )1( 1gN  row vector 1g  in the first row to occupy columns 1 to 1gN  , position the 

)1( 2gN  row vector 2g  in the second row to occupy columns 1gN +1 to ,21 gg NN   and so on 

until the )1(
ggIN  row vector 

ggI  is appropriately positioned.  Further, define )( ggg β 

LI g (  matrix), 



G

g
gIG

1


, 




G

g
gIG

1

),1(
~   GUUUU , ... ,, 21   1( G


 vector), 

),...,( 21  G 1( G


vector), ),...,,( 21  Gbbbb AG 


( matrix), ),...,,( 21  G LG 


(

matrix), and ),...,,(Vech 21 G   (that is,   is a column vector that includes all elements of 

the matrices G ,...,, 21 ). Then, in matrix form, we may write Equation (9) as: 

,  *zbxU                                                                              (10) 

where ),(~ Λ0
GG

MVN  .  As earlier, to ensure identification, we specify Λ  as follows: 

                                                                                                                                                             
excluded from a base alternative (but appearing in some other utilities). But these exclusion restrictions are not 
needed when there are alternative-specific variables.  
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).matrix(3

2

1

GG

G







































Λ0000

00Λ00

000Λ0

0000Λ

Λ                                                          (11) 

In the general case, this allows the estimation of 












G

g

gg II

1

1
2

)1(*
 terms across all the G 

nominal variables, as originating from 










1

2

)1(* gg II
 terms embedded in each gΛ


matrix; 

(g=1,2,…,G) . 

 

3. THE MODEL SYSTEM IDENTIFICATION AND ESTIMATION 

Let )( CNHE  . Define     ],vector1[,~, ** 







  Eyyyy


) ,~,(  ACγγγ 0


[E × A matrix],  

matrix],[),
~

,( LE  dddd


 and ),~,(  εεεε


 vector),1( E  where AC0  is a matrix of zeros 

of dimension . CA Let δ  be the collection of parameters to be estimated:

, ])Vech(, ),Vech( ,  ,  ),Vech(),Vech(),Vech(),Vech(),Vech([ ΛΣδ bθφγdγα


 where the 

operator )"(Vech" .  vectorizes all the non-zero elements of the matrix/vector on which it 

operates. We will assume that the error vectors τ , ε , ξ , and ς  are independent of each other. 

While this assumption is not strictly necessary (and can be relaxed in a very straightforward 

manner within the estimation framework of our model system as long as the resulting model is 

identified), the assumption aids in developing general sufficiency conditions for identification of 

parameters in a mixed model when the latent variable vector *z  already provides a mechanism to 

generate covariance among the mixed outcomes.  

With the matrix definitions above, the continuous components of the model system may 

be written compactly as: 

η αwz* ,                                                                                                            (12) 

εzdxγy * 
 , )matrix()(Var with EE 


















C

N

IDEN00

0IDEN0

00Σ

Σ


ε  ,               (13) 
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ςzbxU *   .                                                                                                                (14) 

To develop the reduced form equations, replace the right side of Equation (12) for *z in 

Equations (13) and (14) to obtain the following system: 

εηdαwdxγεηαwdxγεzdxγy * 
 )( ,                                                    (15)                         

ςηαwbxςηαwbxςzbxU *   )( .   

Now, consider the )]1)[( GE


 vector   UyyU ,


. Define 























αwbx

αwdxγ

B

B
B

2

1





  and  


















 


ΛΓΓ

ΓΣΓ

ΩΩ

ΩΩ
Ω

212

121




d

ddd




.                         (16) 

Then ).,( ΩBMVN ~yU
GE



   

          

3.1. Model Identification 

The question of identification relates to whether all the elements of δ are estimable from the 

elements of B  and Ω  (that is, from ).,,,, 122121 ΩΩΩ BB  A simple approach would be to 

develop easy-to-apply sufficiency conditions for identification (even if they may lead to over-

identification and may be more restrictive than needed). A starting point for this is O’Brien 

(1994) and Reilly and O’Brien (1996), who develop sufficiency conditions for multiple-indicator 

multiple-cause (MIMIC) models, and whose discussion is applicable to SEM-based models with 

no nominal variables. Conforming with the setup of earlier MIMIC models, we will assume in 

our mixed model that the number of measurement equations with non-nominal variables exceeds 

the number of latent factors (this will typically be the case, and indeed forms the backbone of 

modeling a high-dimensional mixed data model through a lower dimensional factor analytic 

structure). That is, we will assume that .LE  We will also assume the presence of more than 

one latent variable, as is quite common in MIMIC models (L>1). However, in constrast to earlier 

MIMIC studies, we allow nominal dependent variables, allow the variable vector x  to appear in 

the measurement equations, and allow the observed endogenous variables to be inter-related. In 

this situation, we can develop sufficiency conditions in five steps as follows.  

(1) First, if the exogenous covariates do not appear in the measurement equations, one can use 

O’Brien’s (1994) exposition for MIMIC models with no nominal variables (that is, for the 
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sub-model given by Equations (12) and (13) with 0γ


) to show that the elements of this 

sub-model (i.e., α , Γ , d


, and Σ


) are all identifiable as long as: 

(a) Γ  in the structural equation is specified to be a correlation matrix, with each latent 

variable correlated with at least one other latent variable,  

(b) diagonality is maintained across the elements of the error term vector ε


 (that is, Σ


 is 

diagonal),  

(c) for each latent variable, there are at least two non-nominal outcome variables that load 

only on that latent variable and no other latent variable (that is, there are at least two 

factor complexity one outcome variables for each latent variable) (see Reilly and 

O’Brien, 1996).  

The first two of these conditions have already been imposed in the development of our mixed 

model formulation (the specification that the covariance matrices of ε~  and ε
  are identity 

matrices is a result of imposing diagonality combined with a scaling restriction for ordinal 

and count outcomes). Intuitively speaking, the reason for the first condition is that only the 

entire diagonal terms of the covariance matrix elements of the non-nominal outcomes in the 

reduced form Equation (16) are identified: that is, only the diagonal terms of  ΣΓ


dd  as a 

whole are identified. Thus, as long as there are diagonal variance terms to be estimated in Σ


 

(subject to identification considerations as discussed in the previous section), it immediately 

implies that diagonal terms in Γ  cannot be identified solely from the estimated diagonal 

entries of  ΣΓ


dd  (and so the diagonal terms of Γ  are normalized to one, leading to the 

correlation matrix for Γ ). The second sufficiency condition is related to the off-diagonal 

terms in ΣΓ


dd . If we allow Σ


 to have a full set of off-diagonal elements, it immediately 

implies that the off-diagonal elements of Γ  are not identified. That is, one can ignore the 

correlations (the off-diagonals) in Γ  (set these to zero), and estimate all the off-diagonal 

elements of Σ


. The problem with this though is that it leads to an explosion in the number of 

covariance parameters to be estimated. Thus, if there are a total of six ordinal/count/ 

continuous dependent variables, the number of off-diagonal parameters in a fully specified Σ


 

matrix is 15. With 10 ordinal/count/continuous dependent variables, the number of off-

diagonal parameters in a fully specified Σ


 matrix is 45. On the other hand, the value of the 

latent factor approach arises through the effective dimensionality reduction that accrues from 
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having all off-diagonal elements in a full covariance matrix for Γ , but no off-diagonal 

elements in Σ


. Doing so essentially places a factor-analytic structure for the covariances 

among the ordinal/count/continuous dependent variables, with this structure being 

represented by the off-diagonal elements of dd 


Γ . Thus, if there are three latent variables 

that underlie the 10 ordinal/count/continuous variables, there are effectively only three off-

diagonal elements in Γ  to be estimated to characterize the 45 off-diagonal entries for the 

covariance elements among the ordinal/count/continuous dependent variables. Of course, one 

can keep all the off-diagonal elements of Γ  and introduce additional off-diagonal elements 

very selectively in Σ


 to still achieve theoretical identification, but this can become ad hoc 

and will require examination for each specific case to ensure identification. Overall, keeping 

Σ


 diagonal and allowing Γ  to have all off-diagonal elements ensures identification, while 

also being the vehicle to reduce high-dimensional problems through a factor-analytic 

structure. This increases econometric efficiency, and allows the estimation of high-

dimensional models with the order of sample sizes typically available for model estimation. 

Note, however, that our estimation procedure itself is agnostic to the number of parameters to 

be estimated in terms of computational ability. The third condition can be imposed through 

the empirical specification based on theoretical/intuitive considerations. This condition, 

referred to as the two indicator rule (see, Bollen, 1989, page 244), essentially allows 

identification of the matrices ,  , αd


 and covariance matrix Γ  of the structural matrix errors.  

(2) Next, we consider the result from the first step, but now relax the constraint that 0γ


, and 

allow some exogenous variables to influence the non-nominal variables. In this situation, 

there is an identification problem in Equation (13) if the same exogenous variable is allowed 

to have a direct impact through the x  vector as well as an indirect impact through a latent 

variable. That is, in general, it is not possible to disentangle the separate effects of the same 

variable through the direct γ


 effect and through the indirect d


 effect. A sufficient 

identification condition is then to ensure that the element corresponding to the effect of each 

exogenous variable is zero in either the γ


 vector or the α  vector (this is also the reason that 

we include a constant in the x  vector, but not in the w  vector). In other words, a sufficient 

condition for identification of the parameters in the structural equation and the measurement 

equations for non-nominal outcomes (that is, α , Γ , γ


, d


, and Σ


) is:  
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(a) the three conditions from the first step hold, plus  

(b) the condition holds that each element of y


 in Equation (13) is either  

(i) directly related to an exogenous variable without being a function of any latent 

variable that itself has the exogenous variable as a covariate in the structural 

equation, or  

(ii) loaded onto latent variables, but then not directly related to any exogenous variable 

that itself impacts any of the latent variables on which the outcome variable loads.  

That is, an exogenous variable, as a sufficiency condition for identification, should not 

impact an element of y


both directly and indirectly.  

(3) Third, we proceed to the choice model components. Following Bhat and Dubey (2014), we 

ignore the information available from the covariance matrix d 


ΓΩ12  . While one can 

effectively use this covariance matrix to identify parameters in specific situations, we 

develop a simpler (albeit more restrictive than needed) and general sufficiency condition for 

identification of the measurement equation parameters corresponding to the nominal 

outcomes based only on the mean element of the utilities αwbxB 2  (but we retain a 

general covariance matrix gΛ  across alternative utilities for each nominal outcome g). 

Specifically, all the parameters in the nominal measurement equation part in Equation (14) 

(that is, elements of b, the elements of g  (g=1,2,…,G) embedded in  , and Λ ) are 

estimable if all latent variables appear only as interactions and not as direct shifters of utility. 

In this case, there are effectively no common exogenous variables in the x  effect and the w  

effect, and so identification of the elements of gb  and g  is immediate for each nominal 

variable g through estimation of the mean 2B . But identification becomes more challenging 

in the case when the latent variables appear by themselves in the choice models (with or 

without additional interaction effects of the latent variables). In this case, if an element of 

ggib  corresponding to a specific variable in the vector x  is non-zero, a sufficient condition 

for identification is that the utility of alternative gi  not depend on any latent variable that 

contains that specific variable as a covariate in the structural equation system. This is the 

most common way that identification has been achieved in most earlier ICLV studies. In fact, 

most ICLV studies do not even seem to discuss this identification issue. Alternatively, one 
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may include common elements (including alternative-specific attributes in the utilities of the 

alternatives of nominal variables and those same variables in the structural model for latent 

variables that impact the utilities), but appropriate restrictions have to be imposed (for 

example, a latent variable may affect the utility of one of three alternatives for a nominal 

variable, and a covariate affecting that latent variable may also impact the utility of the same 

alternative but the coefficient on the covariate may be constrained to be the same as a 

covariate appearing in the utility of one of the other two alternatives). However, given the 

sheer number of such specific situations, we leave an in-depth study of identification issues 

in the context of the overlapping explanatory variables in the structural equation and in the 

utilities of nominal variables for a later date.  

(4) Fourth, as indicated in footnote 2, endogenous variable effects can be specified only in a 

single direction. In addition, when a continuous observed endogenous variable (say variable 

A) appears as a right side variable in the regression for another continous observed 

endogenous variable, or as a right side variable in the latent regression underlying another 

count or ordinal endogenous variable, each latent variable appearing in the regression/latent 

regression for the other endogenous continous/count/ordinal variable (say variable B) should 

have two factor complexity one outcome variables after excluding the equation for variable 

B. Essentially, this sufficiency condition ensures that part c of the first step continues to hold.  

This latter condition is not needed when a non-continuous observed endogenous variable 

appears as a right side variable in the regression of any other observed endogenous variable 

because of the non-linear nature of the relationship between the latent regressions and the 

observed non-continuous endogenous variables.  

(5) Finally, moving to the structural equation system, in this paper we use a reduced form system 

as shown in Equation (2). In this case, only the above four sufficiency conditions are needed 

for identification. However, as discussed under Equation (2), there may be instances when 

the analyst wants to allow direct inter-relationships between the latent constructs or variables. 

In this situation, identification is still possible if a recursive relationship is used so that some 

latent variables appear as right side variables in the equations for other latent variables in a 

recursive fashion. But one of two conditions for identification should hold even in this 

recursive case. The first is that the error terms of the latent variables in the structural form are 

uncorrelated (though, in reduced form each latent variable should be correlated with at least 
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another latent variable; that is, one must ensure that each latent variable, excepting the first 

one in the recursive structure, is directly related to at least one other upstream latent variable 

in this uncorrelated case for the sufficiency conditions discussed in the first four steps above 

to hold). Alternatively, a second condition that also allows identification is that there should 

be at least one exogenous variable in each upstream latent variable equation that does not 

appear in each downstream latent variable equation that has the upstream latent variable as an 

explanatory variable (please see the online supplement to this paper at 

http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/GHDM/Online_supp_GHDM.pdf for a 

discussion of these indentification conditions).   

  

3.2. Model Estimation 

To estimate the model, note that, under the utility maximization paradigm, 
gg gmgi UU  must be 

less than zero for all gg mi   corresponding to the gth nominal variable, since the individual 

chose alternative gm . Let )( gggmgimgi miUUu
gggg

 ,  and stack the latent utility differentials 

into a vector   



 


 ggmgImgmg miuuu

gggg
;,...,, 21gu .  Also, define      








 

 Guuuu ,...,, 21 . We 

now need to develop the distribution of the vector   uyyu ,


from that of   UyyU ,


. To 

do so, define a matrix M of size    GEGE


 ~
. Fill this matrix with values of zero. Then, 

insert an identity matrix of size E into the first E rows and E columns of the matrix M. Next, 

consider the rows from 1to1 1  IEE , and columns from .to1 1IEE   These rows and 

columns correspond to the first nominal variable. Insert an identity matrix of size )1( 1 I  after 

supplementing with a column of ‘-1’ values in the column corresponding to the chosen 

alternative. Next, rows 1IE   through 221  IIE  and columns 11  IE  through

21 IIE  correspond to the second nominal variable. Again position an identity matrix of size 

)1( 2 I  after supplementing with a column of ‘-1’ values in the column corresponding to the 

chosen alternative for the second nominal variable. Continue this procedure for all G nominal 

variables. With the matrix M as defined, we can write ),
~

,
~

(~ Ω BMVN ~yu
GE

 where BB M~
 

and MMΩΩ 
~

. Next, partition the vector B
~

 into components that correspond to the mean of 
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the vectors y  (for the continuous variables),     ],vector1)[(,~ ** 







 

 CNyyy


  (for the 

ordinal and count outcomes), and u  (for the nominal outcomes),  and the matrix Ω
~

 into the 

corresponding variances and covariances: 

1)
~

(
~

~

~

~ 
















 GE

u

y

y

B

B

B

B  vector and )
~

()
~

(
~~~

~~~

~~~

~

    

      

      

GEGE

uu

uy

uy





















uyy

yyy

yyy

ΩΩΩ

ΩΩΩ

ΩΩΩ

Ω







matrix.  (17) 

Define   uyu ' ,~  , so that  .)~,(  uyyu  Re-partition B
~

 and Ω
~

 in a different way such that: 

1)
~

(~

~
~

where,~

~
~

~

~


















 GCN

u

y
u

u

y

B

B
B

B

B
B   vector,   and                                                (18) 










































  

  
  ~

    

    
  ~

  ~  ~

  ~  
~

~
~

and),
~
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vector), where 
G
~  is a 1

~ G -column vector of negative infinities, and G
~0  is 

another 1
~ G -column vector of zeros. Then the likelihood function may be written as: 
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  is simply the multivariate region of the 

elements of the u~  vector determined by the observed ordinal indicator outcomes, and the range 
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  for the utility differences is taken with respect to the utility of the observed choice 
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sample of Q decision-makers is obtained as the product of the individual-level likelihood 

functions.  

The above likelihood function involves the evaluation of an GCN
~ -dimensional 

rectangular integral for each decision-maker, which can be computationally expensive. Thus, the 

MACML approach of Bhat (2011) is used.  

 

3.3. The Joint Mixed Model System and the MACML Estimation Approach 

Consider the following (pairwise) composite marginal likelihood (CML) function formed by 

taking the products (across the N ordinal variables, the C count variables, and G nominal 

variables) of the joint pairwise probability of the chosen alternatives for a decision-maker, and 

computed using the analytic approximation of the multivariate normal cumulative distribution 

(MVNCD) function. 
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In the above CML approach, the MVNCD function appearing in the CML function is of 

dimension equal to (1) two for the second component (corresponding to each pair of observed 

ordinal outcomes), (2) two for the third component (corresponding to each pair of count 

outcomes), (3) two for the fourth component (corresponding to each pair of an ordinal outcome 

and a count outcome), (4) gI for the fifth component (corresponding to each pair of a nominal 

variable and an ordinal variable), (5) gI  for the sixth component (corresponding to a nominal 

variable and a count variable), and (6) 2 gg II  for the seventh component (corresponding to a 

pair of nominal outcomes g and ).g   The net result is that the pairwise likelihood function now 

only needs the evaluation of a cumulative normal distribution function of dimension that is 

utmost equal to the sum of the alternatives associated with the pair of nominal variables with the 

two highest number of alternatives.  
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To explicitly write out the CML function in terms of the standard and bivariate standard 

normal density and cumulative distribution function, define ω  as the diagonal matrix of 

standard deviations of matrix Δ , using );(. *ΔR  for the multivariate standard normal density 

function of dimension R and correlation matrix *Δ  ( 11* 



 ωΔωΔ ), and );(. *ΔE  for the 

multivariate standard normal cumulative distribution function of dimension E and correlation 

matrix *Δ . Define a set of two selection matrices as follows: (1) vgD  is an )
~

( GCNI g 

selection matrix with an entry of ‘1’ in the first row and the thv column, an identity matrix of size 
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(and similarly for other vectors), and   vv  ~uΩ


represents the thvv   element of the matrix  ~uΩ

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Then,  
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where  






  ,,,~

~
G
lowlowlow ψψψ


 . 

In Equation (21), the first component corresponds to the marginal likelihood of the 

continuous outcomes, the second component corresponds to the likelihood of pairs of outcomes 

across all ordinal and count outcomes (essentially this combines the second, third, and fourth 

components of Equation (20)), the third component corresponds to the pairwise likelihood for 

ordinal/count outcomes and nominal outcomes (this combines the fifth and sixth components of 

Equation (20)), and the last component corresponds to the pairwise likelihood for the nominal 

outcomes (this is also the last component of expression (20)). In the MACML approach, all 

MVNVD function evaluations greater than two dimensions are evaluated using an analytic 

approximation method rather than a simulation method. This combination of the CML with an 

analytic approximation for the MVNCD function is effective because the analytic approximation 

involves only univariate and bivariate cumulative normal distribution function evaluations. The 

MVNCD analytic approximation method used here is based on linearization with binary 

variables (see Bhat, 2011). As has been demonstrated by Bhat and Sidharthan (2011), the 

MACML method has the virtue of computational robustness in that the approximate CML 

surface is smoother and easier to maximize than are traditional simulation-based likelihood 

surfaces. We can write the resulting equivalent of Equation (21) computed using the analytic 

approximation for the MVNCD function as )(, δqMACMLL , after introducing the index q for 

individuals. The MACML estimator is then obtained by maximizing the following function:  

log .)(log)(
1

,



Q

q
qMACMLMACML LL δδ                                                                          (22) 
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The covariance matrix of the parameters δ  may be estimated by the inverse of 

Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005; Bhat, 2014).  
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An alternative estimator for Ĥ  may be obtained by computing the quantity below for each 

decision-maker, and averaging across decision-makers:
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An important part of optimizing any such function is the generation of good start values. In our 

procedure, we came up with good start values in two steps as follows: (1) First, the reduced form 

Equation (15) is estimated ignoring the latent variables; that is, setting all elements of d


 and   

to zero, and setting the elements of α  to zero and setting Γ  to be a unit diagonal matrix, (2) 

Next, all the estimated parameters from step 1 are fixed, and the matrices/vectors α , d


 ,  , and 
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Γ  are estimated. This produces initial estimates of all the relevant parameters, which is used to 

begin the iterations to maximize Equation (22). The optimization was undertaken using the 

GAUSS programming language, and we did not encounter any convergence issues during the 

optimization procedure.  

 

3.4. Positive Definiteness 

The matrix Ω~  for each household has to be positive definite (that is, all the eigenvalues of the 

matrix should be positive, or, equivalently, the determinant of the entire matrix and every 

principal submatrix of Ω~  should be positive). The simplest way to guarantee this in our mixed 

model system is to ensure that the )( LL  correlation matrix Γ  is positive definite, and each 

matrix gΛ


(g=1,2,…,G) is also positive definite. An easy way to ensure the positive-definiteness 

of these matrices is to use a Cholesky decomposition and parameterize the CML function in 

terms of the Cholesky parameters. Then, we use the Cholesky-decomposed parameters as the 

ones to be estimated. That is, the Cholesky of an initial positive-definite specification of the 

correlation matrix Γ  and the covariance matrices gΛ


 (g=1,2,…,G) is taken before starting the 

optimization routine to maximize the CML function. Then, within the optimization procedure, 

one can construct the Ω~  matrix, and then pick off the appropriate elements of this matrix to 

obtain the CML function at each iteration. Further, because the matrix Γ  is a correlation matrix, 

we write each diagonal element (say the aath element) of the lower triangular Cholesky matrix of 

Γ  as 





1

1

21
a

j
ajp , where the ajp  elements are the Cholesky factors that are to be estimated. In 

addition, note that the top diagonal element of each gΛ


 matrix has to be normalized to one (as 

discussed in Section 2.2), which implies that the first element of the Cholesky matrix of each gΛ


 

is fixed to the value of one.  

 

4. SIMULATION EXPERIMENT 

In this section, we present the design of, and results from, a simulation experiment to evaluate 

the performance of the MACML approach to recover parameters in a GHDM system from 

different finite sample sizes. For ease in interpretation and understanding, the simulation design 
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is motivated from an integrated land use-transportation context. Specifically, consider the 

situation where an analyst wants to examine residential location choices and travel choices of an 

individual using a cross-sectional data set, with a specific interest on whether (and how much) a 

neo-urbanist design (compact built environment design, high bicycle lane and roadway street 

density, good land-use mix, and good transit and non-motorized mode accessibility/facilities) 

would help in reducing motorized auto ownership of the household of which the individual is a 

part, and in influencing the individual’s commute mode in a way that reduces solo auto mode 

use.  In doing so, the analyst should consider what is commonly labeled as residential self-

selection; that is, cross-sectional data reflect residential location preferences co-mingled with the 

travel preferences of individuals. For example, individuals who have an overall travel freedom 

and privacy orientation (typically associated with auto inclination) may locate themselves in 

suburban/rural neighborhoods (low population density, low bicycle lane and roadway street 

density, primarily single use residential land use, and auto-dependent urban design), own many 

motorized autos, and favor driving alone to work and other activities. On the other hand, a 

household whose members have a green and active lifestyle propensity may seek out urban 

neighborhoods so they can pursue their activities using non-motorized and transit modes of 

travel. If such self-selection effects in residence choices are ignored, when actually present, the 

result can be a “spurious” causal effect of neighborhood attributes on auto ownership and travel, 

and potentially misinformed BE design policies (see a detailed discussion in Bhat et al., 2014a) . 

But the self-selection may not be based solely on residential choice, and can also be based on 

auto ownership choice. Thus, individuals with a travel freedom and privacy orientation may both 

prefer more autos as well as be predisposed to traveling in motorized vehicles to work and other 

activities. As a consequence, any effect of the number of motorized vehicles on auto travel will 

be moderated by the travel freedom and privacy orientation of the individual.  

The potential self-selection effects above can be acknowledged by considering workers’ 

decisions associated with residential location, auto ownership, commute travel mode choice, and 

some quantification of non-commute travel as a multi-dimensional bundle. It is in this context 

that our simulation design is set. Residential location choice is represented as a nominal discrete 

choice among a multinomial set of three different types of BE designs as captured by 

designations as urban, suburban, and rural neighborhoods (these designations can be 

combinations of housing density and employment density; see Kim and Brownstone, 2013, Paleti 
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et al., 2013, Cao and Fan, 2012, and Bhat et al., 2014a, who all use such a density-based 

classification scheme as a representation of residential location choice as this simplifies the 

representation of residential choice alternatives and also alleviates the problem of strong multi-

collinearity of density with other built environment attributes). In addition, we also use a second 

continuous outcome, the (logarithm of) commute distance for the individual, to characterize 

residential location choice. This is because it has been well established in the literature that 

commute distance is one of the most important determinants of residential location (see, for 

example, Clark et al., 2003, Rashidi et al., 2012).4 Auto ownership is a count outcome, while 

commute travel mode choice is represented as a second nominal choice in the system from 

among three different modes of transportation – non-motorized transportation (NM), public 

transportation (PT), and motorized (private) transportation or MT (either as a driver or a 

passenger). Non-commute travel is quantified as a multi-dimensional bundle of three ordinal 

variables that relate to intensities (occurrences) of weekly non-commute travel by NM, by PT, 

and by MT. However, since most household travel surveys capture only daily travel, we suppose 

that use of alternative modes over longer periods of time (as would be important particularly for 

NM and PT use) is obtained through an ordinal categorical indicator response from among three 

possibilities: (1) Never or about once a week, (2) about 2-3 times a week, and (3) four or more 

times in a week (see Sener et al., 2009 for a survey that captures non-commute travel in such 

ordinal categories). In all, our system has seven endogenous outcomes/indicators, with one 

continuous outcome (commute distance), three ordinal indicators (non-commute travel 

occurrences by NM, PT, and MT), one count outcome (auto ownership), and two nominal 

outcomes (residential choice location based on density categorization and commute mode 

choice). While modeling all of these as a joint bundle, we also accommodate structural 

relationships among the endogenous outcomes/indicators. In particular, we specify that commute 

distance and auto ownership will affect commute mode choice, and the geographic area of 

residential location (urban, suburban, or rural) will affect auto ownership, commute distance, and 

non-commute travel occurrences by NM and PT. 

  

                                                 
4 The implicit assumption here is that work location choices precede residential choice. While it is certainly possible 
that residential moves may motivate job moves, earlier research using panel data suggests that a vast majority (85% 
or more) of residential relocations follow a job move (see Rashidi et al., 2012). 
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4.1. Experimental Design 

Consider a multi-dimensional choice bundle of residential location and activity-travel behavior, 

as dicussed in the previous section. In previous studies on the integration of land-use patterns and 

activity-travel behavior, such as Pinjari et al. (2011) and Bhat et al. (2014a), correlated 

unobserved effects among multiple (but limited) choice dimensions were captured through the 

error terms of the many individual dimensions, resulting in a relatively large dimensional 

covariance matrix. The difference between these earlier studies and this simulation study is that, 

as discussed in Section 1, the covariance in a large number of choice dimensions is captured in a 

parsimonious manner through a factor-analytic structure where the choice dimensions are a 

function of a smaller dimension of correlated latent constructs. In addition, such a specification 

provides structure to the jointness among the choice dimensions by appealing to theoretical 

psychological constructs. 

 

4.2. The Structural Equation System  

Two latent variables associated with lifestyle and attitudes are employed as psychological 

constructs impacting the multi-dimensional choice bundle of residential location and activity-

travel behavior.  The latent variables are shown in Figure 1, where the ovals represent the latent 

constructs, while rectangles represent observed explanatory variables. The first latent factor is 

green lifestyle propensity )( *
1z  or the individual’s level of environmental consciousness, which is 

specified to be a function of whether the individual has a Bachelor’s degree or higher 

1;( 11 ww if individual has a Bachelor’s degree or higher and 0 otherwise) and whether the 

individual is male or female 1;( 22 ww if individual is male and 0 otherwise). These reflect the 

finding from earlier studies that individuals with a Bachelor’s degree or higher tend to be more 

active proponents and followers of ecologically friendly lifestyles (Paleti et al., 2013), as do 

women compared to men (see, for example, Liu et al., 2014 and Gifford and Nilsson, 2014). The 

specified values of these effects (embedded within the 1α vector) are 0.8 (for the education 

effect) and -0.3 (for the male gender effect). The second factor is travel freedom/privacy affinity 

)( *
2z , generally associated with travel comfort/convenience and a sense of control over the travel 

experience. This latent variable is specified to be associated with men 1;( 22 ww if individual is 

male and 0 otherwise), and high income individuals 1;( 33 ww  if individual earns a high 
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income and zero otherwise). Earlier studies, including  Schwanen and Mokhtarian (2007), 

Jansen, 2012, Shiftan et al., 2008, and Day, 2000, have indicated that men and high income 

earners generally value travel freedom/privacy more than women and low income earners, 

respectively. The design values of these effects in the simulation (as embedded within the 2α  

vector) are 0.2 and 0.5, respectively. In the vector notation of Equation (2), the effects in Figure 

1 may be written as follows: 

,

notor  income High

notor  Male

notor higher ordegreesBachelor'

5.02.00.0

0.03.08.0

TFA

GLP

2

1
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2
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*
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*
1
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z
 

where GLP is green lifestyle propensity and TFA is travel freedom/privacy affinity. The 

parameters in the matrix α  to be estimated can be stacked into a vector ,8.0[)(Vech 11  α

,3.012  ,2.022  ].5.033    The correlation matrix of the error vector η  is specified as 

follows: 








 























8.00.0

6.00.1

8.06.0

0.00.1

0.16.0

6.00.1
)(Var ΓΓLLΓη . 

In the matrix above, we allow a correlation (entry of -0.6) between the two latent propensity 

constructs of GLP and TFA to reflect the existence of the unobserved underlying value of 

individuality that affects both of these personality constructs. To ensure the positive definiteness 

of Γ , a Cholesky decomposition is conducted. In our specification, a single element is to be 

estimated in the matrix Γ : 6.0Γl . 

 

4.3. The Measurement  Equation System  

The measurement equation system includes the non-nominal equation system εzdxγy * 
  

(Equation (13) earlier) as well as the nominal equation system ςzbxU *    (Equation (14) 

earlier). Within each of these systems, there are exogenous and endogenous outcome effects 

(embedded in γ


 and γ


 for the non-nominal system and in b for the nominal system), as well as 

latent construct effects (embedded in d


 and  ). The simulation design effects specified for the 

non-nominal equation system (including both the exogenous and latent construct effects) are 

presented in Figure 2a, while the corresponding effects for the nominal equation system are 
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presented in Figure 2b. Finally, the endogenous variable effects (that is, the inter-relationships 

between the endogenous outcomes/indicators, which can only be recursive as discussed in 

Section 2.2), are presented in Figure 2c. Each of these effects is discussed in turn in the 

subsequent sections, while Section 4.3.4 brings all parameters to be estimated together in the 

measurement equation system. Note that the design considers four exogenous variables: (1) 

whether the individual is an immigrant or not (a dummy variable “immigrant” taking the value of 

1 if the individual is born in the US and 0 otherwise), (2) whether the individual owns or rents 

her/his household (a dummy variable “owns hh” taking the value of 1 if the individual owns 

her/his household and 0 otherwise), (3) number of children less than 11 years of age, and (4) 

number of young active adults (to represent the presence of the so-called millenials born between 

1981 and 1996).  

 

4.3.1. Non-Nominal Equation System with Exogenous and Latent Construct Effects 

This system is shown diagrammtically in Figure 2a. Immigrant status positively influences (log) 

commute distance, as it has been observed that immigrants have longer commutes than do non-

immigrants (see Paleti et al., 2013). Further, individuals with young children are less likely to 

travel by non-motorized modes and more likely to travel by motorized vehicles (as they 

undertake pick up/drop off activities; see Sener et al., 2009). Also, in the simulation design, we 

specify the number of young active adults in the individual’s household to negatively influence 

travel by motorized vehicles, as households with millenials tend to undertake their out-of-home 

activities less using private vehicles (see Bhat et al., 2014a). A total of four exogenous variable 

effects are specified above. However, there are also constants to be specified in the (log) 

commute distance equation, and for the latent propensities for the ordinal indicators. The 

constant in the (log) commute disance equation as well as the constant effects for all the ordinal 

indicators are set to the value of 1.0.  

A total of five latent construct effects are also specified (see toward the right of Figure 

2a).  As expected, a green lifestyle propensity (GLP) increases non-commute travel occurrences 

by non-motorized (NM) modes as well as increases non-commute travel occurrences by public 

transit (PT) modes. These effects satisfy the two-indicator rule for the GLP latent construct. 

Similarly, we expect travel freedom/privacy affinity (TFA) to be positively related to commute 

distance (see, for example, Schwanen and Mokhtarian, 2007) and non-commute travel 
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occurrences by motorized transport (MT) modes. These effects satisfy the two-indicator rule for 

the TFA latent construct. Finally, both GLP and TFA are specified to impact auto ownership, 

with the former having a negative effect and the latter a positive effect.  

As presented in Equation (13), the covariance matrix Σ


 of random error 

ε for non-

nominal indicators is restricted to be diagonal, with elements corresponding to ordinal and count 

indicators being normalized to 1. This leaves the variance component for the continuous outcome 

(logarirthm of commute distance), which is specified to be 1.25 in the simulation design. Thus, 

the one element to be estimated in the matrix Σ


 is 1.25, which we write as .25.1
Σ
l   

There are three ordinal outcomes (non-commute travel occurrences by NM, PT, and MT), 

in the simulation design, which leads to the need to specify 2,
~

n  for each ordinal outcome n  

( 1,  2,  3)n   (see discussion in Section 2.2). All of these threshold values are set to 1.5. In 

addition, we need to specify the parameters in the threshold function for the count outcome 

(corresponding to auto ownership). This refers to the coefficient vector 

γ , the flexibility 

parameter vector ,),,( *,2,1, 
cecccc    and the dispersion parameter vector .),,( 21  C θ  

For the 

γ coefficient vector, we include only a constant effect and another endogenous effect 

(the latter is discussed in the next section). The coefficient on the constant is specified to be 1.0. 

For the flexibility vector, we will drop the index c since we have only one count outcome in the 

simulation design. We also specifiy a single flexibility parameter .75.01   For the dispersion 

parameter vector (which collapses to a scalar because there is only a single count outcome), we 

specify .0.2   

 

4.3.2. Nominal Equation System with Exogenous and Latent Construct Effects 

Five exogenous effects and four latent construct effects are specified here (see Figure 2b). All of 

the exogenous effects specified have been reasonably well established in earlier studies. 

Immigrants tend to cluster in urban neighborhoods (see Bhat et al., 2013), while those who own 

households are less likely to reside in urban neighborhoods. There is also evidence that 

individuals with children tend to favor suburban neighorhoods due to the open spaces and good 

quality schools (Aditjandra et al., 2012), as do households with many young active adults 

(Brownstone and Golob, 2009). Further, as has been found in many earlier studies, immigrants, 

more so than US-born individuals, tend to use public transportation for their commute. In 
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addition to the variable effects above, we also allow constants in two of the utilities for 

residential location and two of the utilities for commute mode. Specifically, we use a constant 

effect of 0.2 in the urban location utility and 0.3 in the suburban location utility (with the rural 

constant specified to be zero for identification). Also, we use a constant effect of -0.5 for the PT 

mode, and -0.2 for the NM mode (with the MT mode constant specified to be zero).  

The latent construct effects specified are rather intuitive. These are specified to shift the 

utility of specific alternatives of the nominal variables. Essentially, then, in the notation of 

Section 2.2, gg   , because gβ is an identity matrix. Thus, for convenience, we will refer to 

the parameters to be estimated as being elements of g , which are the same as the elements of 

.g  For the residential location nominal outcome, individuals with a green lifestyle propensity 

tend to reside in urban neighborhoods, so that they can pursue their desired lifestyles due to 

greater opportunities to pursue city life while adopting green modes of transportation (Schwanen 

and Mokhtarian, 2007). For the commute mode nominal outcome, green lifestyle propensity is 

specified to positively affect the use of PT and NM modes, while travel freedom/privacy affinity 

increases the propensity to use the MT mode.  

The covariance matrix of ς is specified as follows.  
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)(Var

ΛΛLL

Λς

 (30)  

In the matrix Λ, four elements are to be estimated 

).36.1,60.0,49.1,70.0(  Λ66Λ65Λ33Λ32 llll   
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4.3.3. Endogenous Outcome Effects  

These effects correspond to recursive effects among the endogenous outcomes, as discussed just 

before Section 4.1. These are parts of the 

γ matrix (for the continuous/ordinal outcomes), the γ



matrix (for the count outcomes), and the b matrix (for the nominal outcomes). The important 

point is that these are “cleansed” effects after accommodating unobserved covariance effects 

among the endogenous outcomes engendered by the presence of latent constructs, as discussed in 

the previous two sections. Figure 2c provides a pictorial representation for these endogenous 

effects. For the continuous/ordinal outcomes, we specify that urban dwelling leads to a shorter 

commute distance, and more non-commute travel occurrences by the NM and PT modes (see 

Paleti et al., 2013). For the auto count variable, several earlier studies have established that urban 

dwellers tend to own fewer vehicles even after accounting for any residential self-selection 

effects (see, for example, Bhat and Guo, 2007). This effect is specified through the threshold in 

the count model; that is, in the x  vector with a corresponding coefficient vector γ


 (the γ


 

matrix becomes a vector in our simulation design because there is only one count variable). In 

particular, in our formulation of the count model, a positive coefficient element in γ


 implies that 

an increase in the corresponding element of x  shifts all the thresholds toward the left of the auto 

ownership propensity scale (see Castro et al., 2011), which has the effect of reducing the 

probability of zero cars, while a negative coefficient in γ


 implies that an increase in the 

corresponding element of x  shifts all the thresholds toward the right of the auto ownership 

propensity scale, which has the effect of increasing  the probability of zero cars. In our 

simulation design, we impose a negative coefficient of -0.5.  

For the nominal variables, our design specifies a positive effect of urban dwelling on the 

propensity to use PT as the commute mode, and a negative effect of car ownership and commute 

distance on the use of the NM mode for the commute. 

 

4.3.4. Overall Measurement Equation System 

The overall measurement equation for the vector   UyyU ,


 takes the following 

mathematical form: 
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Based on the above, and using the notations employed in Section 2.2., the parameters to be 

estimated in the measurement equation above include the following: 

Vech( )

γ  = [ 11 = 1, 12 = 0.5, 18 = -0.3, 11

~ = 1, 14
~ = -0.2, 18

~ = 0.6, 21
~ = 1, 28

~ = 0.2, 31
~ = 1, 

34
~ = 0.4, 35

~ = -0.3], 

]5.0,1[)(Vech 1811   
1γ (this is the vector corresponding to the coefficients on the 

constant and the urban dwelling variable embedded in the threshold in the auto ownership count 

model), 

,5.0,3.0,2.0,5.0,5.0,4.0,2.0[)Vech( 221125124121113112111  bbbbbbbb

],4.0,6.0,2.0,2.0,3.0 237236231228222  bbbbb  

]5.0,5.0,3.0
~

,2.0
~

,6.0
~

,2.0[)Vech( 121132211112  dddddd


d  , and 

,4.0,2.0,4.0[Vech( 221212111  ) ]6.0231  . 
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In addition, we have the variance component for the continuous outcome .25.1
Σ
l  the 

flexibility parameter 75.01   and the dispersion parameter vector 0.2  for the auto 

ownership count outcome, the single element )6.0( Γl  in the covariance matrix of the error 

terms in the structural equation system, and the parameters for the covariance matrix of the 

nominal outcomes: .36.1,60.0,49.1,70.0  Λ66Λ65Λ33Λ32 llll  

 

4.4. Data Generation Process  

To generate the simulated dataset, the first step is to develop values for the exogenous variables 

in the vectors w  and x . There are six dummy variables in these two vectors, corresponding to 

bachelor’s degree or higher )( 1w , person lives alone )( 2w , male ),( 3w high income ),( 4w  

immigrant )( 1x , and own household ).( 2x  To construct these dummy variables, independent 

values were  drawn from the standard uniform distribution. If the value drawn was less than 0.5, 

the value of ‘0’ was assigned for the dummy variable. Otherwise, the value of ‘1’ was assigned. 

For the two count exogenous variables corresponding to the number of children less than 11 

years of age and the number of young active adults, a maximum value for each variable was first 

assigned (three for the first, and five for the second). Then, the range of the uniform distribution 

(0 to 1) was divided into as many equal ranges as the maximum value for the count plus one. 

Independent draws for the two count variables were made from the uniform distribution, and the 

value assigned of the count was based on the range in which a draw fell. For example, for the 

“number of children less than 11 years” variable,  four equal intervals were created: [0.00, 0.25), 

[0.25, 0.50), [0.50, 0.75), or [0.75, 1.00]. If a draw was between 0.00 and 0.25 (but not including 

0.25 exactly), a value of 0 was assigned for the variable; if a draw was between 0.25 and 0.5 (but 

not including 0.50 exactly), a value of 1 was assigned and so on. 

The procedure above is used to construct a synthetic sample of Q=1000, 2000, and 3000 

realizations of the exogenous variables. We consider different samples sizes to assess the 

accuracy and appropriateness of the asymptotic properties of the MACML estimator for finite 

sample sizes. Once drawn, the exogenous variables are held fixed for the rest of the simulation 

exercise. In the rest of this section, we will discuss the procedure to generate the data set 

assuming Q=1000 observations (the same procedure may be applied for Q=2000 and Q=3000 

observations). For each of the 1000 observations, a specific realization of the vector ),(  ςε

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)]1)[( GE


 is drawn from the multivariate distribution with mean 110  (a column vector of zero 

values of dimension 11) and covariance structure given by Ω  in Equation (16). The sub-vector 

of the mean vector 2B  that corresponds to the utilities of the three residential choice alternatives 

is also computed using the expression in Equation (16). Then, the realization corresponding to 

),,( 1312111  ςςςς (the error terms drawn for the three residential choice alternatives) is added to 

the mean vector for the three residential choice alternatives to obtain the realization of 

),,( ,1,1,11  ruralsuburbanurban UUUU for each observation. The alternative with the highest utility 

value is then picked, and identified as the chosen residential choice alternative for each 

observation. Next, the continuous outcome 1y  is generated based on the exogenous variables, the 

design parameters, and the realization of the value of 1  from earlier. Similarly, the latent 

continuous values for the ordinal indicators are also generated, and then translated into ordinal 

outcomes based on comparison with the corresponding design thresholds. For the auto ownership 

count outcome, the latent continuous value is generated exactly as for the ordinal indicators. 

However, the thresholds also need to be computed based on the design parameters as well as the 

realized actual value of the urban residential choice outcome. Then, the latent continuous value 

for the count outcome is translated into an actual count outcomes based on a comparison with the 

computed thresholds. Finally, the utilities for the commute mode choice alternatives are 

computed based on exogenous variables, all realized values of the other endogenous outcomes, 

as well as the realization corresponding to ),,( 2322212  ςςςς  from earlier (the error terms drawn 

for the three commute mode choice alternatives). 

The above data generation process is undertaken 200 times with different realizations of 

the random errom components to generate 200 datasets for each sample size. The MACML 

estimator is applied to each dataset to estimate the 57 underlying parameters. A single random 

permutation is generated for each individual (the random permutation varies across individuals, 

but is the same across iterations for a given individual) to decompose the MVNCD function into 

a product sequence of marginal and conditional probabilities (see Section 2.1 of Bhat, 2011)5. In 

order to obtain a sense of the approximation error (explained in the following subsection), 10 

                                                 
 5 Technically, the MVNCD approximation should improve with a higher number of permutations in the MACML 
approach. However, when we investigated the effect of different numbers of random permutations per individual, we 
noticed little difference in the estimation results between using a single permutation and higher numbers of 
permutations, and hence we settled with a single permutation per individual. 
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datasets are randomly selected from the 200 datasets for each sample size (i.e., N=1000, 2000, 

and 3000). Then the estimator is applied to each dataset 10 times with different permutations. 

Based on the 100 estimations (10 datasets × 10 runs with different permutations per dataset) for 

each sample size, the estimates of approximation error are derived. 

 

4.5. Performance Evaluation 

The performance of the MACML inference approach in estimating the parameters of the GHDM 

and the corresponding standard errors is evaluated as follows (the discussion below is for a 

specific sample size; the same procedure is applied for evaluating performance with the different 

sample sizes of 1000, 2000, and 3000. 

(1) Estimate the MACML parameters for the 200 datasets. Estimate the standard errors using the 

Godambe (sandwich) estimator.  

(2) Compute the mean for each model parameter across the 200 datasets to obtain a mean 

estimate. Compute the absolute percentage (finite sample) bias (APB) of the estimator as: 

100
 valuetrue

 valuetrue-estimatemean 
APB                                                                         (31) 

(3) Compute the standard deviation of the mean estimate across the 200 datasets, and label this 

as the finite sample standard deviation or FSSD (essentially, this is the empirical standard 

error). 

(4) Compute the mean standard error for each model parameter across the 200 datasets, and label 

this as the asymptotic standard error or ASE (essentially this is the standard error of the 

distribution of the estimator as the sample size gets large). Compute the ASE as a percentage 

of the mean estimate.  

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed using 

the MACML inference approach for the finite sample size used, compute the absolute 

percentage bias of the asymptotic standard error (APBASE) for each parameter relative 

to the corresponding finite sample standard deviation. 

100
FSSD

FSSD-ASE
APBASE   

(6) For each of the randomly selected 10 datasets (out of the 200 datasets), compute the mean 

estimate (10ME) for each model parameter across the 10 random permutations used for that 
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dataset (to evaluate the MVNCD function). Then, for each of the 10 datasets, compute the 

standard deviation of the parameter values (across permutations) around the 10ME value. 

Take the mean of the standard deviation value across all the 10 datasets, and label this as the 

approximation error (APERR). 

    

4.6. Simulation Results  

The simulation results for Q=1000, 2000, and 3000 are presented in Tables 2, 3, and 4, 

respectively. The tables provide the true value of the parameters (second column), followed by 

the parameter estimate results and the standard error estimate results.  

A number of observations may be made from the tables. First, the ability of the MACML 

approach to recover the parameters underlying the GHDM model is pretty good, as may be 

observed from the magnitude of the absolute percentage bias (APB) values. In particular, the 

mean APB value (see the bottom row of the third column under “Parameter Estimates”) is 9.28% 

with 1000 observations, reducing to 8.39% with 2000 observations and further to 6.29% with 

3000 observations. Overall, the difference between 1000 and 2000 observations in more 

accurately recovering parameters is moderate. But there is a larger difference in the APB values 

appears when moving from 2000 observations to 3000 observations, suggesting that there are 

critical thresholds in the number of observations in terms of recovering parameters well. Second, 

the parameters corresponding to the effects of exogenous variables on the latent variables (that 

is, the elements of )(Vech α ), the effects of the latent variables on the non-nominal outcomes 

(that is, the elements of Vech( )

d ), and the effects of the latent variables on the nominal 

outcomes (that is, the elements of )(Vech  ) are generally relatively more difficult to accurately 

estimate compared to other parameters. Thus, for the case of Q=1000 observations, the APB 

value for the )(Vech α elements range from 1.006% to 28.663% with a mean APB of 14.34), the 

APB value for the Vech( )

d  elements range between 6.261% and 47.373% (with a mean APB of 

21.16%), and the APB values for the )(Vech  elements range from 1.429% to 33.50% (with a 

mean of 12.43%). For datasets with 1000, 2000, and 3000 observations, the mean APB values 

for (a) the )(Vech α  elements are 14.34%, 14.79%, and 7.42%, respectively, (b) the Vech( )

d  

elements are 21.16%, 20.27%, and 15.34%, respectively, and (c) for the )(Vech  elements are 

12.43%, 7.03%, and 10.87%, respectively. The relatively less accurate recovery of these sets of 
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parameters is intuitive. As one can notice from Equations (15) and (16), the only way to 

disentangle the effects of the d


 matrix and the α  matrix in the first (non-nominal) part of 

Equation (15) is through the identification of the d


 matrix elements from the covariance matrix 

Ω . Similarly, the only way to disentangle the effects of the   matrix and the α  matrix in the 

second (nominal) part of Equation (15) is through the identification of the   matrix elements 

from the covariance matrix Ω . As such, the d


 matrix elements and the   matrix elements enter 

into the covariance matrix Ω  in a non-linear fashion (see Equation 16), and Ω  itself enters into 

the composite likelihood function (Equation 21) in a complex manner. It is also interesting to 

note that the improvement in the accuracy of recovery is substantial for the )(Vech α  and 

Vech( )

d parameters as one goes from 2000 to 3000 observations, which is essentially driving the 

substantially overall improved performance with 3000 observations relative to 2000 observations 

as pointed out earlier. An additional point to note here is that, while there are some variations in 

the ability to recover the latent variable loadings on different kinds of variables (continuous, 

ordinal, count, and nominal variables), there were no clear systematic patterns in the level of 

accuracy in estimating the latent factor loadings for different types of dependent variables. Third, 

the effects of exogenous and endogenous variables on the different kinds of variables 

(corresponding to Vech( γ


), Vech( γ


), and Vech(b)) are accurately recovered. In general, it 

appears that these effects are less accurately recovered for the continuous dependent variable, 

relative to other types of variables (see the higher APB value for the 11 , 12 , and 18  elements 

relative to other  and b parameters in the tables). Fourth, and moving on to the standard error 

estimates, the entries in the “finite sample standard error (FSSE)” column indicate that the 

empirical ability of the MACML estimator to pin down parameters (that is, the precision of 

parameter recovery) is quite good. In particular, as a percentage of the true values, the mean 

FSSE values across all parameters are 34.09, 22.54, and 18.97 for 1000, 2000, and 3000 

observations, respectively (see the last row of the sub-column entitled “% of true value” under 

the FSSE column).  However, once again, and for the same reason that it is difficult to accurately 

recover the parameters of )(Vech α , )(Vech d


, and )(Vech  , the FSSE values are relatively 

higher for these sets of parameters than for all parameters as a whole. For datasets with 1000, 

2000, and 3000 observations, the FSSE values as a percentage of the true values for (a) the 
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)(Vech α  elements are 40%, 29%, and 20.6%, respectively, (b) the Vech( )

d  elements are 40.9%, 

25.1%, and 23.4%, respectively, and (c) for the )(Vech   elements are 41.8%, 33.6%, and 

29.2%, respectively. Overall, it is difficult to both accurately and precisely recover the effects of 

exogenous variables on the latent variables (in the structural equation system) as well as the 

effects of the latent variables on the outcomes (in the measurement equation system). The 

suggestion is the exercise of caution when GHDM models are being estimated with few 

observations. Our results suggest that there may be a need for 3000 observations or so for good 

accuracy and precision in the estimated coefficients. Of course, the situation is likely to be 

context-specific, but our simulation analysis does provide some guidance. Interestingly, the 

FSSE values as a percentage of true values are also rather high for the effects of the exogenous 

and non-nominal endogenous variables on the utility functions of the nominal variables (that is, 

the elements of the b matrix). The FSSE values are 45.4%, 30.5%, and 30.7% for the 1000, 2000, 

and 3000 observation cases, respectively. This is a case where the APB is very low (accuracy is 

high) for the elements of the b matrix, but the precision of estimates is not very good. The 

relatively poor precision of estimates in the nominal variable equation is not all that surprising, 

given that multiple latent variables (corresponding to the utilities of alternatives) are used to 

characterize a nominal outcome, unlike the case of the non-nominal outcomes where a single 

underlying (observed or latent) variable is used to characterize the observed outcomes. Fifth, the 

asymptotic formula of the CML approach performs reasonably well in estimating the FSSEs, 

based on the APBASE values. The mean APBASE values are 25.02%, 16.20%, and 22.69%. 

While these may not seem small, one should keep in mind that the FSSE values themselves are 

quite small, leading to rather high APBASE values even if the ASE value is close to the FSSE 

value in actual magnitude. Further, the APBASE value does not show a decrease as the number 

of observations increases because the FSSE value itself keeps decreasing as the number of 

observations increase. In general, the FSSE and the ASE values are not too different from one 

another regardless of sample size, indicating that the asymptotic formula is performing quite well 

in estimating the finite sample standard error even for a sample size of the order of 1000. Finally, 

the APERR in the last column of all three tables indicates that even a single permutation (for 

each observation) of the approximation approach used to evaluate the MVNCD function 

provides adequate precision. For the case with 1000 observations, the values of the APERR 

range between 0.00007 and 0.00721, and the mean APERR is 0.00124. At Q=2000, the 
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minimum and maximum APERR values are 0.00010 and 0.00604, respectively, with the mean 

APERR decreasing to 0.00083. When Q=3000, the minimum and maximum APERR values are 

0.00004 and 0.00150, respectively, with the mean APERR decreasing further to 0.00032. More 

importantly, the approximation error (as a percentage of the FSSE), averaged across all the 

parameters, is of the order of 0.73%, 0.75%, and 0.37% for 1000, 2000, and 3000 observations, 

respectively. This is clear evidence that the convergent values are about the same for a given data 

set regardless of the permutation used for the decomposition of the multivariate probability 

expression. 

 

4.6.1 Effects of Ignoring Latent Construct Effects 

This section presents the results of the estimation when the latent variables are ignored, and the 

resulting dependencies among the multidimensional outcomes are not considered. As discussed 

earlier in the first part of Section 4, this is equivalent to ignoring all potential self-selection 

effects, which then should corrupt all endogenous variable effects discussed in Section 4.3.3, and 

lead to inaccurate and inefficient estimation of other parameters as well. Ignoring the presence of 

latent variables is tantamount to the restriction in the GHDM model that all elements of the d


matrix and the   matrix in Equation (15) are zero (no effects of latent variables on any (and all) 

outcome(s)). But doing so immediately renders all elements of α  and Γ  unidentifiable, because 

the only way these elements are identified is by the relationship between the latent variable 

vector *z  and the observed outcomes. Thus, we also essentially are setting all elements of α  and 

Γ  to zero in the restricted model. The resulting equivalent of Equation (15), which we will refer 

to as the independent model for ease, can be compared with the GHDM model using the adjusted 

composite log-likelihood ratio test (ADCLRT) value (see Pace et al., 2011 and Bhat, 2011 for 

more details on the ADCLRT statistic, which is the equivalent of the log-likelihood ratio test 

statistic when a composite marginal likelihood inference approach is used; this statistic has an 

approximate chi-squared asymptotic distribution).  

For the comparison of the GHDM and independent model coefficient estimates (vis-à-vis 

the true values of the experimental design), we estimate the independent model on the same 200 

datasets as we estimated the GHDM model on earlier. Based on the results for the GHDM 

model, we decided to undertake this comparison only for the case of Q=3000 observations. For 

each of the 200 data sets, we use the same set of permutations for the joint model and the 
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independent model, so that we are able to appropriately compare the ability to recover 

parameters from the two models.  We made this comparison between the two models only for 

those coefficients estimated in the independent model. The GHDM model mean APB is 4.19 

relative to the independent model mean APB of 16.03 (the complete table results are available 

from the author). In addition to an APB comparison between the joint model and the independent 

model, we also compare the performance of the two models using the ADCLRT test. The 

ADCLRT statistic for the test between the two models has an approximate chi-squared 

distribution with 15 degrees of freedom. The corresponding table value for the chi-squared 

distribution is 32.8 at the 0.5% level of significance. In this paper, we identify the number of 

times (corresponding to the 200 data sets) that the ADCLRT value rejects the independent model 

in favor of the joint model. The result indicates that the joint model rejects the independent 

model in all the 200 data sets, further reinforcing the need to consider the GHDM model. 

 

4.7. Procedure for Treatment Effects Based on Residential Choice 

The estimation results from the simulation experiment may be used to examine the differences 

between the GHDM and independent models as they relate to the implied effects of one outcome 

variable on another. To demonstrate the potential problems of ignoring latent variables, we 

examine the impact of residential location choice on auto ownership (other outcome effects may 

also be computed, but, because this is only a simulation effort, we focus on one effect to 

demonstrate the potential biases accruing from ignoring jointness). This is helpful to obtain 

insights regarding whether, and how much, an independent model can bias the influence of an 

urban-like high density design on travel-related behaviors. An important approach to do so is the 

Average Treatment Effect (ATE) (see Heckman and Vytlacil, 2000 and Heckman et al., 2001).  

In the context of motorized vehicle ownership, the ATE measure provides the expected 

difference in motorized vehicle ownership for a random individual if s/he were located in a 

specific density configuration i as opposed to another density configuration ii  . The measure is 

estimated as follows: 
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where qia is the dummy variable for the density category i for the individual q, and 1qk is an index 

for auto ownership ),...,2 ,1 ,0( 11 qq kk  (the subscript ‘1’, consistent with the notation used 

earlier, indicates that auto ownership is the first count variable in the model system). Although 

the summation in the equation above extends until infinity, we consider counts only up to 1qk = 

10. This should not affect the computations because the probabilities associated with higher 

motorized vehicle ownership levels are very close to zero.  

The analyst can compute the ATE measures for all the pairwise combinations of 

residential density category relocations. Here, we focus on the case when an individual in a rural 

location is transplanted to an urban location. The standard error of the ATE measure is obtained 

using bootstraps from the sampling distributions of the estimated parameters. The GHDM model 

estimates an ATE of -0.178 (standard error of 0.013), which implies that a random household 

that is shifted from a rural location to an urban location will, on average, reduce its motorized 

vehicle ownership level by 0.178 vehicles. The corresponding independent model estimate is 

much higher with an ATE of -0.338 (standard error of 0.011), which indicates a much higher 

reduction in auto ownership because of a household move from a rural area to an urban area. 

This overestimation in the independent model is because the probability of residing in an urban 

area and the propensity to own autos are negatively correlated because of the latent green 

lifestyle propensity (GLP) latent construct (note that, in Figure 2b, GLP has a positive effect on 

the utility of residing in an urban area, and, in Figure 2a, GLP has a negative effect on auto 

ownership propensity). If this GLP construct is ignored (as in the independent model), the result 

is a transfer of the negative covariance due to the GLP construct to a much higher negative (and 

biased) ATE of urban dwelling on auto ownership count. Thus, accounting for endogeneity 

effects is not simply of academic interest, but can have substantial real implications for variable 

effects and subsequent policy analysis. 

 

5. CONCLUSIONS  

This paper proposes a new model formulation, the generalized heterogeneous data model 

(GHDM), to jointly model data containing mixed types of dependent variables, including 

multiple continuous variables, multiple ordinal variables, multiple count variables, and multiple 

nominal variables. Within this integrated model system, the covariance relationships among 
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high-dimensional heterogeneous outcomes are explained by a much smaller number of latent 

continuous factors. The paper proposes and develops a comprehensive blueprint for estimating 

the GHDM model using Bhat’s maximum approximate composite marginal likelihood 

(MACML) approach. With this approach, the dimensionality of integration in the function that 

needs to be maximized to obtain a consistent estimator (under standard regularity conditions) is 

independent of the number of latent factors and easily accommodates general covariance 

structures for the structural equation and for the utilities of the discrete alternatives for each 

nominal outcome. Further, the use of the analytic approximation in the MACML approach to 

evaluate the multivariate cumulative normal distribution (MVNCD) function in the CML 

function simplifies the estimation procedure even further, so that the proposed MACML 

procedure requires the maximization of a function that has no more than bivariate normal 

cumulative distribution functions to be evaluated. 

A simulation experiment within the virtual context of the integrated modeling of 

residential location choice and travel behavior is undertaken to evaluate the ability of the 

MACML approach to recover parameters in the GHDM from finite samples. The simulation 

results show that the MACML estimation approach does reasonably well in recovering the 

parameters, regardless of the sample size (N=1000, 2000, and 3000) used in estimation. The 

MACML estimator exhibits good empirical efficiency since the asymptotic standard errors 

(ASEs) (and the finite sample standard errors, or FSSEs) are only a small proportion of the true 

values, and the ASEs (derived based on the inverse of the Godambe information matrix) perform 

well in estimating the FSSEs. Further, it is remarkable that the approximation error due to the use 

of only a single permutation for approximating the MVNCD function is extremely small. 

However, the results also indicate that it is relatively more difficult to both accurately and 

precisely recover the effects of exogenous variables on the latent variables (in the structural 

equation system) as well as the effects of the latent variables on the outcomes (in the 

measurement equation system), relative to effects of exogenous variables on the outcomes in the 

measurement equation system and the inter-relationships between the endogenous variables. The 

suggestion is the exercise of caution when GHDM models with latent variables are being 

estimated with few observations. Our results suggest that there may be a need for 3000 

observations or so for good accuracy and precision in the estimated coefficients. 
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The simulation experiment also examines the implications of ignoring the presence of 

latent variables, so that the unobserved covariance among the multidimensional outcomes are not 

considered. In the virtual integrated land use-transportation modeling context used in the 

simulation, this is equivalent to ignoring all potential self-selection effects, which then should 

corrupt the endogenous variable effects, and lead to inaccurate and inefficient estimation of other 

parameters as well. The results indeed reveal a substantial degradation of parameter recovery 

across the board if the latent constructs are ignored away, and especially those associated with 

the endogenous variable effects (see Figure 2c). In addition, land use effects (residential built 

environment in the current paper) on travel choices can be substantially biased if the multi-

dimensional bundled nature of residential and travel-related choices is not considered, which can 

lead to potentially inappropriate policy decisions regarding infrastructure investment. Overall, 

the simulation design and results do emphasize the fact that integrated land use-transportation 

(LU-T) modeling is not simply of academic interest, but can have substantial real implications 

for variable effects and subsequent policy analysis. The GHDM model proposed and used in the 

current paper can serve as a valuable tool for such integrated LU-T modeling efforts. More 

generally, the GHDM model should be widely applicable in numerous empirical contexts due to 

its ability to accommodate data with mixed types of dependent variables, including multiple 

ordinal variables, multiple continuous variables, multiple count variables, and multiple nominal 

variables. One extension to consider for the future is to formulate the proposed model 

accommodating non-normal error terms, one way of doing so efficiently being to allow non-

normality in the structural error terms that then permeates into non-normality of all the outcome 

variables.  
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Figure 1: Diagrammatic representation of the structural equation 
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Figure 2a: Diagrammatic representation of the measurement equation for the non-nominal variables 
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Figure 2b: Diagrammatic representation of the measurement equation for the nominal variables 
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Figure 2c: Endogeneous effects 
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Table 1: Matrix Notation, Description, and Dimension 
 

Symbol Represents… 

L  Number of latent variables 

D
~

 Total number of exogenous variables in the structural equation system 

H  Number of continuous outcomes in the measurement equation system 

N  Number of ordinal outcomes in the measurement equation system 

C  Number of count outcomes in the measurement equation system 

A  
Total number of exogenous and endogenous variables in the measurement 
equation system 

G


 
Total number of alternatives across all nominal variables in the choice 
model component of the measurement equation system 

Equation Notation Represents… Dimension 

Structural Equation 
(Equation 12 in text)       

*z  Vector of latent variables 1L  

α  Matrix of exogenous variable loadings 
on *z  

DL
~  

 w  Vector of exogenous variables 
affecting *z  

1
~ D  

 η  Vector of errors in structural equation 1L  
 

 Γ  Correlation matrix of error vector η  in 
latent variable structural equation 

LL  

Measurement Equation 
(Equation 13 in text; 
γ


 originates from 
Equation 7)       

y


 Vector of observed latent measurement 
equation dependent variables 

1)(  CNH  

γ


 Matrix of coefficients representing the 
effect of exogenous and possible 
endogenous variables 

ACNH  )(  

 d


 Matrix of coefficients representing the 
effect of latent variables on 
measurement equation dependent 
variables 

LCNH  )(  
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Table 1(Cont.): Matrix Notation, Description, and Dimension 
 

Equation Notation Represents… Dimension 

Measurement 
Equation 

ε


 Vector of errors in measurement 
equation 

1)(  CNH  

 Σ


 Covariance matrix of  ε


 (assumed 
diagonal for identification) 

)()( CNHCNH   

 γ


 Matrix of coefficients representing the 
effect of exogenous and possible 
endogenous variables on the count 
outcome 

AC   

Choice Model 
(Equation 14 in text; 
see text above 
Equation 10 for β  

and  )       

U  Vector of alternative utilities 1G


 

b  Matrix of exogenous and possible 
endogenous variable effects on U  

AG 


 

 x  Vector of exogenous variables in 
choice model 

1A  

 β  Matrix of coefficients capturing effects 
of latent variables and their 
interactions with exogenous variables 

LN
g

g
g

I

i
gi 





1

                          

(Please see text for construction) 
   Matrix of variables interacting with 

latent variables 



 



g

g
g

I

i
giNG

1


 

(Please see text for construction) 
 ς  Utility error vector 1G


 

 Λ  Covariance matrix of ς  GG


  
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Table 2: Simulation Results for the 1000-Observations Case with 200 Datasets  

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR 
Value 

% of true 
value 

Value 
% of true 

value 

   11α    0.80 0.790 0.010  1.263 0.160 20.000 0.142 17.750 11.250 0.00082 

12α    -0.30   -0.297 0.003  1.006 0.135 45.000 0.094 31.333 30.370 0.00091 

   22α    0.20 0.147 0.053 26.418 0.126 63.000 0.094 47.000 25.397 0.00074 

   23α    0.50 0.357 0.143 28.663 0.158 31.600 0.104 20.800 34.177 0.00088 

Γl    -0.60   -0.517 0.083 13.833 0.322 53.667 0.218 36.333 32.298 0.00150 

11γ  1.00 1.059 0.059  5.900 0.063  6.300 0.116 11.600 84.127 0.00014 

12γ  0.50 0.411 0.089 17.742 0.067 13.400 0.118 23.600 76.119 0.00022 

18γ   -0.30 -0.244 0.056 18.505 0.061 20.333 0.052 17.333 14.754 0.00019 

11
~γ    1.00 0.865 0.135 13.500 0.121 12.100 0.101 10.100 16.529 0.00035 

14
~γ   -0.20 -0.201 0.001  0.587 0.035 17.500 0.040 20.000 14.286 0.00016 

18
~γ    0.60 0.606 0.006  1.069 0.102 17.000 0.095 15.833   6.863 0.00041 

21
~γ    1.00 0.836 0.164 16.400 0.064   6.400 0.039   3.900 39.063 0.00014 

28
~γ    0.20 0.197 0.003   1.721 0.069 34.500 0.072 36.000   4.348 0.00017 

31
~γ    1.00 0.847 0.153 15.300 0.112 11.200 0.100 10.000 10.714 0.00010 

34
~γ  0.40 0.423 0.023  5.650 0.050 12.500 0.043 10.750 14.000 0.00015 

35
~γ   -0.30 -0.315 0.015  4.868 0.043 14.333 0.039 13.000   9.302 0.00007 

11γ


   1.00 0.875 0.125 12.500 0.136 13.600 0.093   9.300 31.618 0.00043 

18γ


  -0.50 -0.535 0.035 7.099 0.090 18.000 0.067 13.400 25.556 0.00033 

111b  0.20 0.197 0.003 1.438 0.153 76.500 0.115 57.500 24.837 0.00160 

112b  0.40 0.398 0.002 0.395 0.125 31.250 0.101 25.250 19.200 0.00098 

113b   -0.50 -0.491 0.009  1.700 0.134 26.800 0.112 22.400 16.418 0.00127 

121b  0.30 0.320 0.020  6.664 0.172 57.333 0.134 44.667 22.093 0.00074 

124b  0.20 0.190 0.010  5.242 0.069 34.500 0.063 31.500   8.696 0.00036 

125b  0.30 0.291 0.009  3.034 0.107 35.667 0.090 30.000 15.888 0.00044 

221b   -0.50 -0.513 0.013  2.575 0.123 24.600 0.090 18.000 26.829 0.00057 

222b  0.30 0.300 0.000  0.105 0.097 32.333 0.075 25.000 22.680 0.00086 

228b  0.20 0.215 0.015  7.303 0.100 50.000 0.071 35.500 29.000 0.00071 

231b   -0.20 -0.197 0.003  1.595 0.160 80.000 0.134 67.000 16.250 0.00414 
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Table 2 (Cont.): Simulation Results for the 1000-Observations Case with 200 Datasets 

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR 
Value 

% of true 
value 

Value 
% of true 

value 

236b   -0.60 -0.591 0.009  1.481 0.287 47.833 0.345 57.500 20.209 0.00201

237b   -0.40 -0.405 0.005  1.329 0.193 48.250 0.240 60.000 24.352 0.00157

12d  0.20  0.173 0.027 13.280 0.061 30.500 0.043 21.500 29.508 0.00058

11

~
d  0.60  0.639 0.039 6.544 0.187 31.167 0.147 24.500 21.390 0.00093

21

~
d  0.20  0.213 0.013 6.261 0.070 35.000 0.078 39.000 11.429 0.00226

32

~
d  0.30  0.442 0.142 47.373 0.173 57.667 0.127 42.333 26.590 0.00083

11d


  -0.50 -0.435 0.065 12.970 0.133 26.600 0.096 19.200 27.820 0.00078

12d


 0.50  0.703 0.203 40.513 0.322 64.400 0.191 38.200 40.683 0.00059

111  0.40  0.406 0.006 1.429 0.120 30.000 0.134 33.500 11.667 0.00428

212    0.20  0.267 0.067 33.500 0.169 84.500 0.096 48.000 43.195 0.00115

221    0.40 0.424 0.024 5.899 0.129 32.250 0.120 30.000  6.977 0.00262

231  0.60 0.653 0.053 8.900 0.301 50.167 0.325 54.167  7.973 0.00263

Σl  1.25 1.049 0.201 16.080 0.042   3.360 0.047   3.760   11.905 0.00040

12ψ  1.50 1.472 0.028 1.894 0.158 10.533 0.119   7.933 24.684 0.00075

22ψ  1.50 1.453 0.047 3.119 0.064   4.267 0.038   2.533  40.625 0.00089

32ψ  1.50 1.524 0.024 1.631 0.152 10.133 0.102   6.800   32.895 0.00035

1φ  0.75 0.703 0.047 6.202 0.161 21.467 0.087 11.600   45.963 0.00026

θ 2.00 1.680 0.320 16.000 0.719 35.950 0.347 17.350   51.739 0.00062

32Λl  0.70 0.715 0.015 2.213 0.302 43.143 0.231 33.000   23.510 0.00235

33Λl  1.49 1.577 0.087 5.871 1.003 67.315 0.505 33.893   49.651 0.00549

65Λl  0.60 0.604 0.004 0.632 0.417 69.500 0.380 63.333     8.873 0.00721

66Λl  1.36 1.481 0.121 8.894 1.046 76.912 0.976 71.765     6.692 0.00392

Overall mean value across 
parameters 

0.056  9.28 0.187  34.09 0.148  28.49     25.02 0.00124 
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Table 3: Simulation Results for the 2000-Observations Case with 200 Datasets  

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR 
Value 

% of true 
value 

Value 
% of true 

value 

   11α  0.80   0.859 0.059  7.417 0.132 16.500 0.121 15.125   8.333 0.00060

12α    -0.30  -0.303 0.003  1.135 0.105 35.000 0.072 24.000 31.429 0.00060

   22α  0.20   0.160 0.040 19.908 0.083 41.500 0.064 32.000 22.892 0.00030

   23α  0.50   0.347 0.153 30.681 0.116 23.200 0.070 14.000 39.655 0.00037

Γl    -0.60 -0.552 0.048  8.000 0.234 39.000 0.182 30.333 22.222 0.00060

11γ  1.00   1.066 0.066  6.600 0.048 4.800 0.042  4.200 12.500 0.00039

12γ  0.50   0.407 0.093 18.571 0.047 9.400 0.043  8.600   8.511 0.00043

18γ    -0.30 -0.255 0.045 14.998 0.048 16.000 0.044    14.667   8.333 0.00021

11
~γ     1.00 0.851 0.149 14.900 0.083 8.300 0.069      6.900 16.867 0.00028

14
~γ    -0.20 -0.192 0.008  4.002 0.027 13.500 0.016      8.000 40.741 0.00016

18
~γ     0.60 0.572 0.028  4.608 0.070 11.667 0.063    10.500 10.000 0.00032

21
~γ     1.00 0.876 0.124 12.400 0.045 4.500 0.028 2.800 37.778 0.00012

28
~γ     0.20 0.191 0.009  4.429 0.049 24.500 0.051    25.500   4.082 0.00011

31
~γ     1.00 0.856 0.144 14.400 0.073 7.300 0.068 6.800   6.849 0.00011

34
~γ  0.40 0.407 0.007  1.713 0.029 7.250 0.028 7.000   3.448 0.00011

35
~γ    -0.30 -0.306 0.006  1.944 0.027 9.000 0.026 8.667   3.704 0.00010

11γ


    1.00  0.852 0.148 14.800 0.093 9.300 0.065 6.500 30.108 0.00026

18γ


   -0.50 -0.528 0.028  5.560 0.069 13.800 0.046 9.200 33.333 0.00016

111b  0.20  0.193 0.007  3.699 0.142 71.000 0.135    67.500   4.930 0.00099

112b  0.40  0.394 0.006  1.518 0.083 20.750 0.070    17.500 15.663 0.00081

113b    -0.50 -0.497 0.003  0.546 0.090 18.000 0.078    15.600 13.333 0.00079

121b  0.30  0.305 0.005  1.548 0.105 35.000 0.093    31.000 11.429 0.00074

124b  0.20  0.195 0.005  2.424 0.043 21.500 0.044    22.000  2.326 0.00036

125b  0.30  0.301 0.001  0.406 0.059 19.667 0.064    21.333  8.475 0.00035

221b    -0.50 -0.517 0.017  3.445 0.081 16.200 0.061    12.200 24.691 0.00091

222b  0.30  0.297 0.003  0.849 0.059 19.667 0.052    17.333 11.864 0.00042

228b  0.20  0.201 0.001  0.524 0.059 29.500 0.049    24.500 16.949 0.00043

231b    -0.20 -0.223 0.023 11.265 0.139 69.500 0.142    71.000  2.158 0.00145
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Table 3 (Cont.): Simulation Results for the 2000-Observations Case with 200 Datasets 

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR
Value 

% of true 
value 

Value 
% of true 

value 

236b   -0.60 -0.612 0.012  2.011 0.141 23.500 0.148 24.667   4.965 0.00158

237b   -0.40 -0.408 0.008  1.983 0.085 21.250 0.099 24.750   16.471 0.00132

12d  0.20  0.164 0.036 18.018 0.036 18.000 0.029 14.500 19.444 0.00027

11

~
d  0.60  0.565 0.035  5.802 0.130 21.667 0.100 16.667 23.077 0.00089

21

~
d  0.20  0.192 0.008  4.200 0.057 28.500 0.053 26.500   7.018 0.00123

32

~
d  0.30  0.419 0.119 39.685 0.088 29.333 0.084 28.000   4.545 0.00068

11d


  -0.50  -0.394 0.106 21.157 0.079 15.800 0.063 12.600  20.253 0.00046

12d


 0.50 0.664 0.164 32.737 0.187 37.400 0.129 25.800 31.016 0.00062

111  0.40 0.396 0.004   0.947 0.084 21.000 0.092 23.000  9.524 0.00213

212    0.20 0.245 0.045 22.500 0.134 67.000 0.118 59.000   11.940 0.00153

221    0.40 0.386 0.014  3.470 0.083 20.750 0.081 20.250 2.410 0.00218

231  0.60 0.593 0.007  1.222 0.152    25.333 0.123 20.500   19.079 0.00168

Σl  1.25 1.099 0.151 12.080 0.028  2.240 0.033  2.640   17.857 0.00012

12ψ  1.50 1.415 0.085  5.680 0.098  6.533 0.076  5.067   22.449 0.00064

22ψ  1.50 1.447 0.053  3.535 0.042  2.800 0.043  2.867 2.381 0.00040

32ψ  1.50 1.501 0.001  0.055 0.067  4.467 0.065  4.333 2.985 0.00038

1φ  0.75 0.697 0.053  7.117 0.092    12.267 0.057 7.600  38.043 0.00017

θ 2.00 1.764 0.236 11.800 0.398    19.900 0.167 8.350   58.040 0.00055

32Λl  0.70 0.704 0.004 0.546 0.159    22.714 0.158    22.571  0.629 0.00120

33Λl  1.49 1.512 0.022 1.458 0.486    32.617 0.564   37.852   16.049 0.00313

65Λl  0.60 0.621 0.021 3.429 0.227    37.833 0.248   41.333 9.251 0.00186

66Λl  1.36 1.468 0.108 7.945 0.555    40.809 0.665   48.897   19.820 0.00604

Overall mean value across 
parameters 

0.050 8.39 0.113      22.54 0.102      20.25     16.20 0.00083 
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Table 4: Simulation Results for the 3000-Observations Case with 200 Datasets  

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR
Value 

% of true 
value 

Value 
% of true 

value 

   11α  0.80 0.763 0.037  4.641 0.081     10.125 0.071   8.875   12.346 0.00027

12α    -0.30 -0.275 0.025  8.452 0.071     23.667 0.050 16.667 29.577 0.00027

   22α  0.20 0.194 0.006  3.000 0.061     30.500 0.048 24.000 21.311 0.00017

   23α  0.50 0.432 0.068 13.600 0.090     18.000 0.052 10.400 42.222 0.00013

Γl    -0.60 -0.583 0.017  2.833 0.087     14.500 0.115 19.167 32.184 0.00037

11γ  1.00 1.068 0.068  6.800 0.036       3.600 0.033  3.300     8.333 0.00004

12γ  0.50 0.406 0.094 18.792 0.036       7.200 0.035  7.000     2.778 0.00005

18γ    -0.30 -0.249 0.051 16.857 0.039     13.000 0.036     12.000     7.692 0.00006

11
~γ     1.00 0.957 0.043 4.300 0.067       6.700 0.059  5.900   11.940 0.00015

14
~γ    -0.20 -0.200 0.000 0.057 0.023     11.500 0.014  7.000   39.130 0.00010

18
~γ     0.60 0.606 0.006 1.008 0.068     11.333 0.055  9.167   19.118 0.00017

21
~γ     1.00 0.963 0.037 3.700 0.040       4.000 0.037  3.700 7.500 0.00005

28
~γ     0.20 0.201 0.001 0.332 0.040     20.000 0.042     21.000 5.000 0.00004

31
~γ     1.00 0.965 0.035 3.500 0.059       5.900 0.055 5.500 6.780 0.00005

34
~γ  0.40 0.412 0.012 3.114 0.024       6.000 0.014      3.500   41.667 0.00004

35
~γ    -0.30 -0.310 0.010 3.392 0.022       7.333 0.013      4.333   40.909 0.00004

11γ


    1.00 0.956 0.044 4.400 0.090       9.000 0.055      5.500   38.889 0.00013

18γ


   -0.50 -0.527 0.027 5.323 0.058     11.600 0.038      7.600   34.483 0.00010

111b  0.20 0.211 0.011 5.429 0.145     72.500 0.110    55.000   24.138 0.00030

112b  0.40 0.394 0.006 1.576 0.075     18.750 0.058    14.500   22.667 0.00034

113b    -0.50 -0.495 0.005 0.914 0.084     16.800 0.065    13.000   22.619 0.00044

121b  0.30 0.317 0.017 5.553 0.101     33.667 0.075    25.000   25.743 0.00020

124b  0.20 0.194 0.006 3.239 0.047     23.500 0.037    18.500   21.277 0.00014

125b  0.30 0.294 0.006 2.053 0.065     21.667 0.052    17.333   20.000 0.00016

221b    -0.50 -0.512 0.012 2.379 0.066     13.200 0.049      9.800   25.758 0.00035

222b  0.30 0.297 0.003 1.094 0.051     17.000 0.043    14.333   15.686 0.00015

228b  0.20 0.205 0.005 2.471 0.052     26.000 0.040    20.000   23.077 0.00022

231b    -0.20 -0.206 0.006 3.011 0.146     73.000 0.188    94.000   28.767 0.00038
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Table 4 (Cont.): Simulation Results for the 3000-Observations Case with 200 Datasets 

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR
Value 

% of true 
value 

Value 
% of true 

value 

236b   -0.60  -0.609 0.009  1.537 0.159 26.500 0.201 33.500 26.415 0.00037

237b   -0.40  -0.413 0.013  3.272 0.105 26.250 0.137 34.250 30.476 0.00041

12d  0.20   0.155 0.045 22.334 0.036 18.000 0.023 11.500 36.111 0.00018

11

~
d  0.60   0.668 0.068 11.286 0.119 19.833 0.087 14.500 26.891 0.00060

21

~
d  0.20   0.221 0.021 10.576 0.047 23.500 0.027 13.500 42.553 0.00052

32

~
d  0.30   0.352 0.052 17.333 0.078 26.000 0.064 21.333 17.949 0.00035

11d


  -0.50  -0.426 0.074 14.881 0.071 14.200 0.052 10.400 26.761 0.00022

12d


 0.50   0.578 0.078 15.600 0.196 39.200 0.117 23.400 40.306 0.00018

111  0.40   0.423 0.023 5.775 0.083 20.750 0.077    19.250  7.229 0.00090

212    0.20   0.164 0.036 18.000 0.110 55.000 0.100    50.000  9.091 0.00051

221    0.40   0.436 0.036 9.100 0.067 16.750 0.068    17.000  1.493 0.00086

231  0.60   0.664 0.064 10.593 0.145 24.167 0.107    17.833   26.207 0.00100

Σl  1.25   1.119 0.131 10.480 0.025  2.000 0.027      2.160 8.000 0.00007

12ψ  1.50   1.481 0.019 1.253 0.090  6.000 0.071  4.733   21.111 0.00038

22ψ  1.50   1.450 0.050 3.307 0.032  2.133 0.036  2.400   12.500 0.00018

32ψ  1.50   1.511 0.011 0.748 0.063  4.200 0.057  3.800 9.524 0.00015

1φ  0.75   0.703 0.047 6.275 0.088    11.733 0.050  6.667   43.182 0.00008

θ 2.00   1.855 0.145 7.250 0.173 8.650 0.142  7.100   17.919 0.00017

32Λl  0.70   0.718 0.018 2.528 0.165    23.571 0.128    18.286   22.424 0.00064

33Λl  1.49   1.503 0.013 0.894 0.191    12.819 0.125 8.389   34.555 0.00143

65Λl  0.60   0.612 0.012 2.038 0.116    19.333 0.081    13.500   30.172 0.00055

66Λl  1.36   1.465 0.105 7.711 0.242    17.794 0.271    19.926   11.983 0.00150

Overall mean value across 
parameters 

0.035   6.29 0.085      18.97 0.072   16.19     22.69 0.00032 

 
 
 
 


