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ABSTRACT  
Empirical research studies regularly encounter sampling-related challenges that can impact the 
validity and reliability of model estimation results. This paper presents a comprehensive 
examination of the implications of nonrandom sampling for estimator bias and appropriate 
modeling techniques to achieve unbiased results. Through theoretical and simulation-backed 
support, we underscore the importance of adopting appropriate sampling and estimation methods 
in two broad scenarios. First, we demonstrate that achieving range variation in exogenous 
variables, rather than strict population representativeness, is crucial for estimating individual-level 
causal relationships when sampling is based only on observed exogenous variables. Second, we 
investigate the efficacy of weighting approaches when sampling is endogenous and use a joint 
modeling approach to accommodate unobserved self-selection effects where traditional weighting 
approaches prove inadequate. Our proposed approach accommodates unobserved correlations and 
successfully recovers true population parameters when the joint distribution of exogenous 
variables in the population is known. The methodology also shows improved performance 
compared to existing methods even when only the population marginal distribution of exogenous 
variables is available. Notably, our simulation experiments extend beyond the conventional linear 
regression framework to include binary outcomes, providing crucial insights for nonlinear choice 
modeling applications. The findings underscore the importance of carefully considering sampling 
mechanisms and their implications for model estimation, while offering practical guidance for 
researchers facing various sampling-related challenges in empirical studies. 
 
Keywords: Sample Selection, Selection Bias, Weighting, Survey Methods, Nonresponse, Joint 
Modeling 
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1. INTRODUCTION 
Empirical research studies across multiple fields, including the transportation field, employ data 
from large surveys for their analysis. In doing so, studies must address such sampling-related 
issues as non-response, missing data, unequal sampling, and other survey biases (Hudson et al., 
2004; Couper, 2017; Alhassan et al., 2024). The voluntary nature of most surveys means that, in 
many empirical applications, data are not randomly selected from the population. Instead, 
researchers only observe the responses of those who choose to respond to the survey, potentially 
resulting in sample selection biases (see, for example, Wittwer et al., 2024). In this context, there 
has been widespread debate about the ways that sampling considerations impact modeling results 
as well as the best approaches to achieve unbiased and consistent results (Winship and Radbill, 
1994; Elwert and Winship, 2014; Solon et al., 2015). At the same time, unequal sampling does not 
always result in estimation biases. Instead, specific sampling techniques may result in more 
efficient model estimation (more certainty in model results) without any loss of consistency. 
Specifically, in the transportation sector, it is critical to develop appropriate survey sampling 
techniques that capture sufficient data from population groups that have small shares in the 
population (see, for example, Liévanos et al., 2019). This often necessitates the use of sampling 
approaches that do not capture truly representative samples but instead emphasize good range and 
coverage of exogenous variables. 

Beyond the sample selection mechanisms themselves, a variety of modeling approaches 
have been proposed to accommodate the aforementioned selection biases. Specifically, sampling 
weights have long been considered essential when undertaking descriptive statistical analysis (such 
as determining population averages) on data with unequal sampling probabilities (Kish and 
Frankel, 1974; Pfeffermann, 1993). However, there has been much more debate about the 
appropriate circumstances to use sampling weights for causal effects modeling (see Solon et al., 
2015; Bollen et al., 2016). The question of whether survey weights should be applied in different 
contexts has been discussed in a wide range of fields, such as statistics (Bollen et al., 2016; F. 
Wang et al., 2023), economics (Nguyen and Murphy, 2015; Gluschenko, 2018), sociology 
(Winship and Radbill, 1994; Becker and Ismail, 2016), epidemiology and medicine (Frohlich et 
al., 2001; Tchetgen et al., 2012; Howe et al., 2016; Avery et al., 2019), and transportation 
(Pendyala et al., 1991; Thill and Horowitz, 1997; Boto-García, 2023). There is general consensus 
that, if individuals have nearly equal sampling selection probabilities given their values of 
exogenous variables, then both weighted and unweighted estimators are consistent, and the lower 
variance of the unweighted estimator is preferred. But, when the probability of selection differs 
significantly among individuals due to a selection mechanism that is endogenous (that is, the 
probability of selection is not completely explainable based on exogenous variables), using 
sampling weights (representing the inverse probability of sample selection) can yield consistent 
estimates of population parameters, while unweighted estimators are generally inconsistent (see 
Manski and McFadden, 1981; Hausman and Wise, 1981; Wooldridge, 1999, 2001; Gelman, 2007; 
Solon et al., 2015; F. Wang et al., 2023). For instance, see the two sampling mechanisms 
considered for the same population shown in Figure 1, in the context of a simple linear regression. 
The graph on the left shows an exogenous sampling procedure (that is, the sample includes only 
those for whom the independent variable, x , is greater than or equal to 4), demonstrating that 
selection based on the exogenous variable does not worsen the estimated relationship between the 
variables even without the use of sampling weights. However, the endogenous selection procedure 
shown in the graph on the right demonstrates that sampling based on the endogenous outcome 
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(that is, the sample includes only those for whom the dependent variable, y , is greater than or 
equal to 3) biases the unweighted estimation results. 

A critical issue, however, is that the true probability of selection is generally unknown in 
cases of nonresponse (Gelman, 2007). In these cases, weights are not based on the true probability 
of selection. Instead, they are estimated using post-data collection comparisons with population 
statistics to match the proportion of respondents in each demographic group with their population 
proportions in an external independent control (such as census data) (Biemer and Christ, 2008; 
Gary et al., 2023). The basic idea is that, by employing such weighting, one essentially gets back 
to the case of an equal probability sample with exogenous sampling, which takes care of any 
endogeneity in selection into the sample. However, unobserved factors may also play a significant 
role in response decisions (and thus, sampling probabilities), and such unobserved factors may 
also be correlated with the main outcome of interest. Such situations cannot be addressed through 
post-data collection weights, which rely on the assumption that selection is based solely on 
observed characteristics (Wooldridge, 2007; Brewer and Carlson, 2024). For instance, those with 
intrinsic existing knowledge or intrinsic interest in transportation technologies (“intrinsic” here 
means over and beyond the knowledge/interest in transportation technologies that can be captured 
by the exogenous variables collected) may be more likely to respond to a survey about electric 
vehicles, while those who have less intrinsic interest may be less likely to respond. Here, 
developing sampling weights based on other observed variables (such as demographics) as they 
relate to knowledge/interest in transportation technologies, or based on independent controls (such 
as census data), would not be adequate for consistent parameter estimation. 

Further, in situations of truncation on the dependent outcome of interest (such as the sample 
shown on the right side of Figure 1), it is unclear how sampling weights could be developed at all. 
In these cases, whether for descriptive statistical analysis or for model estimation, the probability 
for selection given some values of the outcome is zero, and weights cannot be developed to 
accommodate these sampling mechanisms. Instead, model-based approaches offer mechanisms to 
account for truncation by conditioning on additional variables that may underly the truncation 
mechanism, as well as accommodating unobserved effects. Relatedly, while descriptive statistics 
are often considered separately from model-based approaches, since weights are needed even when 
sampling is based only on exogenous variables using standard formulas for descriptive statistics 
(see Solon et al., 2015), these same statistics can be calculated using model-based approaches that 
condition on exogenous variables. For example, consider a stratified sampling scheme that 
oversamples low-income individuals to get a sample (but still retains a good spread of income 
values), which is then used to estimate the average commute distance for individuals in the 
population. Given the general relationship between income and commute distance (that is, lower 
income individuals commute shorter distances; see Bhat, 2015; Bogomolov et al., 2021) we would 
expect that the standard unweighted sample mean would underestimate the average commute 
distance. To accommodate this sampling bias using a weight-based approach, the population mean 
(or the population variance or any other population parameter) could be estimated using sampling 
weights developed based on the probability of selection into the sample given a respondent’s 
income. Alternatively, assuming the relationship between the commute distance and income is 
linear, the same population mean (or the population variance or other population parameters) could 
be predicted by estimating a linear regression of commute distance on income (at the individual 
level and using the exogenous-sampling based stratified sample) and then applying the overall 
population distribution of incomes along with the estimated coefficients to calculate predicted 
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commute distances.1 That is, calculating the mean and variance of the predicted individual-level 
outcomes for the population data (from the estimated relationship using the stratified sample) 
would produce unbiased population estimates (in the case of variance, adding the appropriate error 
variance based on the residuals in the sample would also be needed for this approach). In fact, 
more generally, the use of sampling weights based on exogenous variables yields identical results 
to conditioning on all the variables used for weighting (and their interactions) in the model-based 
approach. This is because the exogenous sampling effectively renders the stratified sample-based 
regression estimator unbiased for the population regression (as depicted on the left side graph of 
Figure 1). But, while either approach (the weighting or the model-based approach) yields an 
unbiased result when sampling is based only on exogenous variables (as in the example above), 
the traditional weight-based approach cannot accommodate unobserved self-selection effects, 
while the model-based approach offers the flexibility to accommodate these unobserved selection 
effects as well, as discussed in more detail in Section 4. The same holds for the estimation of 
descriptive statistics based on other types of dependent variables, such as the use of a discrete 
choice modeling approach to predict population shares in each of many discrete categories (as we 
will empirically demonstrate in Sections 4.1 and 4.2). 

Motivated by the discussion above, in this paper, we consider the ways that appropriate 
sampling strategies and modeling techniques can be used to improve estimation results when the 
collection of a representative sample is unnecessary or impractical. We focus on two broad types 
of sampling techniques, each of which carry different implications for the biases present in the 
resulting sample and require different modeling approaches. These approaches are visually 
depicted in Figure 2 (the annotations by the boxes and equations near the top of the figure refer to 
the sampling definitions used in the next section). First, exogenous sampling (shown on the left 
side of the figure) includes all cases where the probability of an individual being included in the 
sample is equal to the probability of being included conditional only on the values of the exogenous 
variables. Exogenous sampling includes many stratified sampling techniques as well as simple 
random sampling. It also includes cases of non-response and missing data, but when the non-
response and “missingness” is completely determined by the exogenous variables. Second, 
endogenous sampling (shown on the right side of the figure) includes situations when sampling is 
dependent on unobserved variables (alone or in addition to observed variables) that impact or are 
correlated with the outcome of interest. Endogenous sampling encompasses cases of nonresponse 
and missing data, when unobserved characteristics influence an individual’s decision of whether 
to respond to the survey. Since these variables are not observed, they cannot be accounted for by 
traditional weighting methods, which rely on the assumption that selection is based on observed 
characteristics (see Brewer and Carlson, 2024). Finally, choice-based sampling (where sampling 
is directly dependent on the outcome, or alternative that is selected), is another form of an 
endogenous sampling approach, because the probability of an individual being included in the 
sample is not equal to the probability of being included conditional on exogenous variables 
(Manski and Lerman, 1977). However, it is distinct from other forms of endogenous sampling 
discussed here because the relationship between selection probability and the outcome is direct 

 
1 Of course, non-linear relationships may exist between commute distance and income, but as long as the relationship 
is correctly specified in this instance through an appropriate non-linear regression relationship, using weights or using 
the non-linear relationship (applied to the overall population distribution) would essentially provide the same 
population-level results. Of course, this requires that the individual-level relationship be specified correctly, which is 
anyway the hallmark of any data analysis exercise. In the rest of this paper, we will assume that the analyst has done 
all due diligence in developing a good model specification.  



4 

and observed rather than being dependent on unobserved variables. Thus, in contrast to the form 
of endogenous sampling discussed above (and discussed in more detail in Section 4) where 
sampling is based on unobserved variables, weights can be developed to represent the inverse 
probability of selection and essentially gets back to the case of an equal probability sample with 
exogenous sampling.  

In this research, through theoretical and simulation-backed support, we underscore the 
importance of adopting appropriate sampling and estimation methods in each of these situations. 
We contribute to the existing literature in several ways. First, we explicate, rigorously and 
comprehensively, why the unweighted approach is to be preferred over the weighted approach in 
the case of exogenous sampling in discrete choice models. We then use simulations to demonstrate 
that range variation in exogenous variables needs to be the key in survey designs (not necessarily 
population representativeness) to estimate individual-level causal relationships. Second, we 
demonstrate that weighting approaches are unable to accommodate endogenous selection, when 
sampling is based on unobserved variables (see also Brewer and Carlson, 2024). Instead, we 
propose a joint modeling approach to accommodate these unobserved sampling biases. We show 
that this approach of jointly modeling sample selection along with the outcome of interest can 
accommodate unobserved correlations and recover the true population parameters when the joint 
distribution of exogenous variables in the population is known. We also demonstrate that this 
method can be used to improve upon existing methods that do not account for endogenous 
selection even when only the population marginal distribution of exogenous variables is known. 
This would be the case, for instance, when using an address-based sampling frame to recruit 
participants (such that not all exogenous variable data is known in advance for all participants) and 
using the population marginal distribution of exogenous variables (such as Census data for the 
target population) to accommodate endogenous selection (in this case, nonresponse from some 
portion of the targeted random sample). Finally, while most existing simulation studies exclusively 
consider the case of linear regression (including Brewer and Carlson, 2024), we use binary 
outcomes in each of the simulations. This is a critical extension given the widespread use of 
nonlinear choice models and the fact that some techniques to deal with sample selection in the case 
of linear regression (such as the use of a Heckman two-stage formulation) do not extend to the 
nonlinear setting (see Greene, 2003; Galimard et al., 2018). Our analysis should be of interest to 
all empirical researchers working in the area of survey research and associated data modeling.  
 
2. SAMPLE SELECTION PROPERTIES 
Let W represent the population of interest and let qw  be a random draw from the population (where 
every individual has the same chance of being selected). If the analyst uses (“considers”) say Q  
random draws from the population, that corresponds to the case of a random sample of size Q . 
Now consider the case of estimation of a binary choice model with this random sample (extension 
to the case of a multinomial choice model is straightforward and does not present any additional 
complications). Assume the usual underlying utility structure for each alternative, such that the 
latent propensity *

qy  of individual q (corresponding to a draw from the population) selecting the 
first alternative may be written as the difference between the utilities of the two alternatives: 

0 1
*

qqq q qy U U ε′= − = +β x   (1) 
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where qx  is an ( 1)A×  vector of exogenous variables (including a constant), β is an ( 1)A×  column 
vector of corresponding coefficients to be estimated, and qε  is a random normal error term. Then, 

each individual is assumed to select alternative q qy m=  ( {0,1}qm ∈ ) if *1 ,q q
q

m myθ θ− < <  for 
1θ − = −∞ , 0 0θ = , and 1θ = ∞ . Of course, all that is observed by the researcher is the actual chosen 

binary outcome qm  rather than the underlying propensity. Then, according to the usual binary 
probit model, the likelihood function for the individual can be written as: 

( , ) Pr( ) ( 1  | , )
qr

q q q q q
D

L m y m f r dr′= = = ∫β β x   (2) 

where the integration domain 1{ : }q qm m
qrD r rθ θ−= < <  is simply the region of *

qy  truncated by 

the appropriate upper and lower thresholds. ( | ,1)qf r ′β x  is the univariate normal density function 

with a mean of q′β x and a variance of one. Collect the elements qy  and qm  into vectors y and m, 
respectively. Then, the likelihood function of the sample (assuming independence across 
individuals) is given by: 

1

( , ) ( , )
Q

q q
q

L L m
=

=∏β m β   (3) 

Under usual regularity conditions needed for likelihood objects, the logarithm of the likelihood 
function can be maximized through solving the corresponding first-order (score) equations (see 
Molenberghs and Verbeke, 2005, p. 191). These score equations can be shown to be unbiased since 
they are linear combinations of individual likelihood score functions based on the choice 
probabilities for each individual. That is, the estimation of the maximum likelihood model is 
achieved by solving the score equations given by: 

1
( , ) log ( , ) ( , ) ,

Q

q q
q

L m
=

= ∇ = =∑s sβ m β m β 0   (4) 

where 
log ( , )

( , ) qq
q q

L m
m

∂
=

∂
s

β
β

β
. Then, to prove unbiasedness, we can show that 

[ ]
1 1 1

1 {0,1} 1 {0,1}

1 {0,1}

log ( , )
( , ) ( , ) ( , )

log ( , ) log ( , )
( ) ( , )

( , ) ( ,1 ( , )
( , )

q q

q

q

q q
q q q

q q

Q Q Q
q

q q q q
q q q

Q Q
q q

q
q m q m

Q
q q

q
q m

q
qq

L m
E E m E m E

L m L m
P y m L m

L m L m
L m

L m

= = =

= ∈ = ∈

= ∈

∂   
 = = =     ∂  

∂ ∂
= = =

∂ ∂

∂ ∂
= =

∂

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

s s s
β

β m β β
β

β β
β

β β

β β
β

β β 1 {0,1}

1 {0,1} 1 {0,1} 1 1

)

( , ) ( (1) .)

q

q q

Q

q m

Q Q Q Q

q
q m q m q q

q q qL m P y m

= ∈

= ∈ = ∈ = =

∂

∂ ∂ ∂
= == = = =

∂ ∂
=

∂

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

β

β 0 0
β β β

 (5) 
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Since the expectation of the score equations are all equal to zero, the estimator is unbiased. For the 
asymptotic properties, let 0β  be the true unknown parameter vector in the population. Then, each 
random draw ( qw ) from the population amounts to drawing a value 0( , )q qms β  from a distribution 
in the population with a zero mean and variance: 

0 0
0

0 0

log ( , ) log ( , )
[ ( , )] qq q

q q
qL m L m

VAR m E
 ∂ ∂  

= =    ′∂ ∂   
s

β β
J β

β β
 (6) 

Then, using the Central Limit Theorem, we get: 

0
1 ( , ) ( , )A

d MVN
Q

→s β m 0 J   (7) 

where ( )AMVN ⋅  is the multivariate normal distribution function with A  dimensions and 

0 0
1

( , ) ( , )
Q

q q
q

m
=

=∑s sβ m β  (see also, Yi et al., 2011; Bhat, 2014). Then, for the estimator β̂ , we can 

write a Taylor Series expansion of the score function for the estimator around the score function 
for the true population parameters 0β  to get 

1
0 0 0

ˆ( ) [ ( , )] ( , )−− = −∇s sβ β β m β m .  (8) 

Using the Law of Large Numbers, we also know that 0
1 ( , )
Q
∇s β m  converges to the population 

expected value since it is a sample mean of 0( , )q qm∇s β . So, 

2
0

0 0
0 0

log ( , )1 1( , ) [ ( , )] qd qL m
E E

Q Q
 −∂

− ∇ → − ∇ = =  ′∂ ∂  
s s

β
β m β m H

β β
. (9) 

Combining Equation (6) through Equation (9), and applying Slutsky’s Theorem, we get the 
asymptotic distribution: 

1 1
0 ( , )ˆ( ) d

AQ MVN − −− →β 0 JHβ H ,  (10) 

where the quantity 1−HJ H  represents the well-known Godambe (1960) information matrix. 
Additionally, in the case of random sampling, the asymptotic variance simplifies to 

12
01 1 1

0
0 0

log ( , )
( ) q qL m

E
−

− − −  −∂
= − = =  ′∂ ∂  

β
Ι β J H

β β
  (11) 

where 0( )Ι β  represents the Fisher (1922) information matrix for the sample. Thus, the estimator 

β̂  converges in probability to 0β  as Q →∞  leading to the consistency of the estimator. 
 Finally, while descriptive statistics in this case of random sampling can be computed 
directly from the sample using standard formulas, the model estimates themselves can be used to 
calculate unbiased descriptive statistics (in this case, for the binary probit model considered, the 
population shares predicted to select each alternative for the outcome). Specifically, the overall 
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probability that some randomly selected individual from the population would select alternative 

1y =  is simply the average over 
1

1Pr( 1) ( ,1)
Q

q
q

y L
Q =

= = ∑ β . 

The analyst, however, may not always “consider” each random draw to include for 
analysis. Let qω  be an indicator of whether the analyst “considers” draw qw  or not ( 1qω =  if the 
analyst “considers” the draw and 0qω =  otherwise) and let the actual observed sample (the subset 

of the random sample Q  where 1qω = ) be Q . Then, the case of non-random, but exogenous, 
sampling corresponds to the assumption that the probability of selection into the actual observed 
sample ( ( 1)qP ω = ) does not depend on the outcome, conditional on the exogenous variables: 

( 1| , ) ( 1| )q q q q qP y Pω ω= = =x x .  (12) 

Estimation issues for this case are discussed in Section 3. Next, the second case of endogenous 
sampling corresponds to situations where selection is informative of the outcome, even after 
conditioning on all the observed exogenous variables qx : 

( 1| , ) ( 1| )q q q q qP y Pω ω= ≠ =x x .  (13) 

Estimation issues for this case are discussed in Section 4. 
 
3. EXOGENOUS SELECTION 
Two estimators can be considered in the situation of exogenous sampling. First, the usual 
unweighted estimator for a sample of decision-makers is simply determined using the product of 
the individual likelihoods for those individuals in the observed sample Q . Equivalently, the 
likelihood function for the sample can be written as a function of all the individuals in the 
underlying random sample Q  as: 

1

( , ) ( , ) q
Q

q q
q

uL L m ω

=

=∏β m β   (14) 

where the product is over all individuals in the underlying random sample of Q  draws, but the 
selection indicator qω  means that only those individuals considered by the researcher influence 
the likelihood function. We can then show that the unweighted estimator is unbiased under 
exogenous sampling because the expected value of the score function (label the score function for 
the unweighted estimator as ( , )us β m ) again converges to zero. Using the Law of Iterated 
Expectations, we can show the following: 

{ } { } { }

{ }

1 1

1 1

1 1

( , ) ( , ) ( , )

( , ) | | ( , ) |

( 1| ) ( , ) | ( 1| )

Q Q

q q q q q

q
q

u

q

q
q q

Q Q

q q q q q q
q

Q Q

q q q q q qq
q

q

q

E E m E m

E E m E E E m

E P E m E P

ω ω

ω ω

ω ω

= =

= =

= =

 
   = =    

 

   = =   

   = = = = =  

∑ ∑

∑ ∑

∑ ∑

s s s

s s

s

β m β β

β x x β x

x β x x 0 0

 (15) 
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which holds because of the assumption that the probability of selection does not depend on the 
outcome, conditional on the exogenous variables ( ( 1| , ) ( 1| )q q q q qP y Pω ω= = =x x ) and the 

expected value of the score function conditional on exogenous variables ( { }( , ) | qq qE ms β x ) is 
equal to zero (following the same steps shown in Equation (5)). Similarly, following the logic from 
the previous section, the asymptotic properties of the unweighted estimator can be derived. For the 
unweighted estimator, we get the asymptotic distribution 

1 1
0 ( , )ˆ( )u A u

d
u uQ MVN − −− → 0 H J Hβ β   (16) 

where  
2

0

0 0

log ( , )
u q

qqL m
E ω
 −∂

=  ′∂ ∂  

β
H

β β
 and 0 0

0 0

log ( , ) log ( , )qq q q
u q

L m L m
E ω
 ∂ ∂  

=    ′∂ ∂   

β β
J

β β
. 

Further, the law of iterated expectations can be applied again to simplify this expression for the 
asymptotic variance. Specifically, we can condition on qx  in the expressions for both uH  and .uJ  

Then, since 
2

0 0 0

0 0 0 0

log ( , ) log ( , ) log ( , )
| |q q qq q q

q q

L m L m L m
E E
   −∂ ∂ ∂  

=     ′ ′∂ ∂ ∂ ∂      

β β β
x x

β β β β
, it holds 

that 1
u u
− = −H J  and the asymptotic variance simplifies to a weighted version of the Fisher 

Information, without the need to compute the full robust “sandwich” variance estimator (Greene, 
2018; Wooldridge, 2002):  

12
01 1 1 1

0

1
0

0

lo (
(

g
)

, )q
u q

q
u u u u u

L m
E ω

−

− − − −−
 −∂

= = =  ′∂ ∂
=


−

 
H J H I

β
β

β HJ
β

. (17) 

Since the unweighted estimator still converges to the true population value, the estimator is 
consistent. However, the variance of the estimator is increased relative to that of the estimator with 
the larger random sample, as the size of the actual observed sample is reduced (because not all 
individuals from the underlying random sample are observed). 

An alternative to the unweighted estimator is the inverse probability weighed estimator, 
which includes a weight that is defined to be equal to the inverse of the probability of selection. 
Define the weight as 1/ ( 1| )qq qv P ω= = x , which depends on an individual’s values of exogenous 
variables qx . For a stratified sampling technique these weights can be estimated based on the 
selection probabilities in the sampling design, while techniques such as raking or iterative 
proportional fitting (IPF) can be used to generate weights based on the population marginal 
distributions of exogenous variables when sampling probabilities are unknown (if we continue to 
assume that sampling is based only on these exogenous variables, then these techniques 
approximate inverse probability weights; see Biemer and Christ, 2008). Then, the weighted 
likelihood function for a sample of decision-makers is given by: 

1

( , ) ( , ) qq
Q

v
w q q

q

L L m ω

=

=∏β m β   (18) 

where the estimator is again based on the same underlying sample of random draws ( qw ), but only 
individuals with 1qω =  contribute to the overall log-likelihood function, with their contributions 
dependent on their weight qv . Following the same logic as the proof for the unweighted estimator, 
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the weighted estimator can be shown to be unbiased because the expected value of the score 
function (label the score function for the weighted estimator as ( , )ws β m ) again converges to zero: 
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 (19) 

The above holds because of the definition of the sampling weight as 1/ ( 1| )qq qv P ω= = x , and the 
assumption that both weights and selection are based only on exogenous variables 

( 1| , ) ( 1| )q q q q qP y Pω ω= = =x x  (see Equation (5) for proof that the individual score functions 
converge to zero). Therefore, in the case of exogenous sampling, both the unweighted and 
weighted estimators are unbiased. Further, the asymptotic distribution of the weighted estimator 
is given by: 

1 1
0 ( , )ˆ( ) A

d
w w wwQ MVN − −− → 0 H J Hβ β ,  (20) 

where 
2

0

0 0

log ( , )q
w q

q
q

L m
E vω

∂ −
=  ′∂ ∂  

β
H

β β
 and 0 0

0 0

2 log log( , ) ( , )
.qq q

w
q

q q

L Lm m
E vω

∂ ∂   
=    ′∂ ∂   

J
β β

β β
 

In the case of the weighted estimator, the full robust “sandwich” variance estimator is needed 
because there is no cancellation between the wH  and wJ  matrices (see Murphy and Topel, 2002; 
Wooldridge, 2007). Therefore, both the weighted and unweighted estimators are also consistent 
under exogenous sampling and converge to the true population values. However, by comparing 
the asymptotic variances of the two estimators, we can show that the unweighted estimator is more 
efficient than the weighted estimator, making it a more appropriate choice for small-sample 
estimation. Specifically, if the difference 1 1 1 1

w w u uw u
− − − −−H J H H J H  is positive semi-definite then the 

asymptotic variance of the unweighted estimator will be less than that of the weighted estimator. 
This will hold if: 

2
01 1

0 0

12 2 2
0 0 0

0 0 0 0 0 0
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log ( , ) g
            

lo ( , ) log (
 1   
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 ′∂ ∂  
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J H H J H
β

β β

β β β
β β β β β

 (21) 

is positive semi-definite. Then, since the expression in Equation (21) can be rewritten in the form 

[ ] [ ] [ ] [ ]1E E E E−′ ′ ′ ′−A A A B B B B A   (22) 
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where 
1/22

0

0 0

log ( , )q q
q

L m
ω
 ∂

=   ′∂ ∂ 

β
A

β β
and 

1/22
0

0 0

log ( , )1 q q

q

L m
ω
 ∂

=   ′∂ ∂ 

β
B

β β
, it follows from the Cauchy-

Schwarz Inequality that the expression is positive semi-definite (Tripathi, 1999). Therefore, since 
both estimators are unbiased and consistent, and the unweighted estimator is more efficient, the 
unweighted estimator is preferred under exogenous sampling. 

Beyond the choice of a specific estimator, the asymptotic properties of the unweighted 
estimator reveal implications from a data collection standpoint. While the collection of a 
representative sample is often a stated goal of many large-scale survey efforts, this is not necessary 
for the estimation of a causal effects model. Based on the result that exogenous sampling 
techniques produce consistent and unbiased results without the need for weighting, many 
exogenous sampling techniques can be considered as alternatives to random selection. Comparing 
the efficiency of the estimators, random selection is only the best sampling approach when it results 
in a more efficient estimator than other exogenous selection schemes. 

Using the asymptotic variance of the unweighted estimator, we can assess the impact of 
specific exogenous sampling schemes on estimator efficiency. Specifically, the asymptotic 
variance of the unweighted estimator can be rewritten as: 

112
01 1

0
0 0

log ( , )
( ( 1| ) ( | ))

q

q
u u

q
u q q q q qq

L m
g P dE ω ω

−−

− −
  ∂  = =   ′∂ ∂      

= ∫
x

H
β

x x Ι β x
β

H x
β

J  (23) 

 
where )( qg x  represents the distribution of exogenous variables present in the population and  

2
0

0
0 0

log ( , )
( | ) | q

q q
q

L m
E
 ∂

=  ′∂ ∂  

β
Ι β x x

β β
 is the expected Fisher information matrix for an individual 

with an exogenous variable vector qx . Using this expression, it is apparent that the variance of the 
estimator is directly dependent on the relationship between the distribution of qx  in the sample 
and the Fisher information. Notably, the distribution of qx  influencing the variance of the 
estimator (accounting for both )( qg x  and ( 1| )qqP ω = x ) is that of the sample, not the population, 
implying that researchers can select the best exogenous sampling scheme to minimize the 
asymptotic variance of the unweighted estimator. While the effects of the distribution of 
exogenous variables on the variance of the estimator depend on the specific form of the likelihood 
function, we can show that maximizing the variance of the exogenous distribution in the sample 
minimizes the variance of the estimator in the case of the binary probit model of interest here. 
Specifically, the Fisher information of an individual for the binary probit model is given by:  

0
0

0 0

(0 | ,1)
( | )

( | ,1) 1 ( | ,1)
qr qr

q
q q q

q
D

q
D

f

f r dr f r dr

′
′=

 
 ′ ′−
 
 

∫ ∫

β x
Ι β x x x

β x β x

 (24) 

where ( | ,1)qf r ′β x  is again the univariate normal density function with a mean of q′β x and a 
variance of one and the expression does not depend on the chosen outcome qm  (see also, 
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Demidenko, 2001). The initial ratio in this expression takes its maximum value when 0 0q′ =β x , 
suggesting that choice occasions where both alternatives are well represented in terms of choice 
provide more information. Although an intuitive result, this has important implications for stated 
preference survey design, indicating that designing choice scenarios with realistic alternatives can 
help improve estimator efficiency (see also, Terawaki et al., 2003; Rose and Bliemer, 2013). More 
generally, however, the sum over the outer product ,q q′x x  in Equation (24), indicates that a greater 
variance in the distribution for qx  present in the sample (as a combination of the underlying 
distribution in the population )( qg x  and the sampling  probabilities ( 1| )qqP ω = x ) also serves to 
increase the total information in the sample, and thereby reduces the variance of the estimator. 
Thus, selecting a specific sampling scheme that provides greater exogenous variation will result 
in an improved estimator efficiency compared with simply collecting a random representative 
sample (assuming that these samples are of the same size). Therefore, when estimating individual-
level causal relationships is the main objective, one need not get too fixated about 
representativeness; rather, good range and coverage of the exogenous variables is important.  
 For a simple textbook example of this issue using a linear regression, see Figure 3. In the 
figure, two samples are drawn from the same population with different distributions of exogenous 
variables (values of the exogenous variable x  are drawn from a normal distribution with mean 3 
and standard deviation 1 for the “high variance sample” and from a normal distribution with mean 
3 and standard deviation 0.2 for the “low variance sample”). Based on the discussion above, both 
sampling techniques are consistent (with either sampling technique, generating a larger sample 
will lead each estimated linear regression to converge towards the black population line). However, 
for this fixed number of draws, the sample with the greater variance of the exogenous variable 
performs better than the one with the smaller variance. This issue is further explored in the 
following simulation in the context of the binary probit model. 
  
3.1 Exogenous Selection Simulation Design 
To compare and evaluate the effects of sampling different exogenous populations at different rates, 
we undertake a simulation exercise based on the binary probit choice system described in the 
previous section. The design of this simulation is shown visually in Figure 4. For the simulation, 
four “populations” of 100,000 individuals each are generated with values of two exogenous 
dummy (binary) variables (drawn from underlying standard normal distributions with specific 
correlations between the two underlying continuous variables of {0.00,0.25,0.50,0.75}σ = ; see 
the top section of Figure 4 labeled “Generate Population Exogenous Data”). We consider 
populations with different levels of correlation between the exogenous variables because the 
presence of correlations (which are often present in realistic empirical applications) leads to higher 
standard errors and may mask or amplify sampling biases. Then, appropriate thresholds are applied 
such that there is a 5% chance that 1 1x =  and 50% chance that 2 1x = . For the outcome (see the 
second section of Figure 4 labeled “Generate Outcome Data”), each individual’s latent propensity 

*
qy  is calculated based on Equation (1) using the coefficients 0 0.75β = −  (for the constant), 

1 0.50β =  (corresponding to 1x ), and 2 0.50β = −  (corresponding to 2x ) along with a random 
normal error qε  drawn from an independent standard normal distribution. Finally, the outcome qy  
for each individual is determined using the appropriate thresholds. 

Then, given each fixed population, a binary probit model is used to generate a set of true 
coefficient values using the full population data. Next, five sampling strategies are used to generate 
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datasets of 500 individuals each (see the third section of the figure labeled “Sample Data”) within 
each of the four populations (each population refers to individuals with a given correlation value). 
First, samples are drawn such that the percentage of cases with 1 1x =  in the sample matches that 
of the population (5%), essentially ensuring that all individuals in the population have the same 
probability of selection. Second, four additional sets of samples involve oversampling individuals 
with 1 1x =  such that they appear at a higher rate in each sample than they do in the population 
(and thus individuals with 1 0x =  have a lower probability of selection). Individuals with 1 1x =  
make up 7.5%, 10%, 12.5%, and 15% of the sample, respectively, for the final four sets of samples. 
1,000 samples (each of 500 individuals) are generated from each population with each of the 
aforementioned five sampling strategies.  

For each sample, an unweighted binary probit model is run (see the fourth section of the 
figure labeled “Run Binary Probit Models”), and the results are stored to evaluate the performance 
of each strategy. For each coefficient, the following results are reported: (1) the mean coefficient 
value across the 1,000 runs, (2) the average percentage error (APE) compared with the coefficient 
value calculated for the population, (3) the standard deviation of the coefficient values calculated 
across the 1,000 runs, and (4) the mean standard error (this is done for each set of 1,000 samples, 
shown in the bottom section of Figure 4 labeled “Evaluate Performance”). Finally, in addition to 
the model estimates themselves, the estimates are used to predict the share of the population 
selecting 1y =  (this is again done using each sampling method for each of the four populations, 
although this step is not shown in the figure). To do so, the estimated parameters are applied to 
calculate the probability of each individual in the population (not the estimation sample) predicted 
to select the outcome 1y = . The average across these individual probabilities then represents the 
predicted population share selecting the outcome 1y = .   
 
3.2 Exogenous Selection Simulation Results 
Table 1 presents an overall summary of the performance of the unweighted estimator under each 
sampling procedure. In the table, each column-panel represents a population with the specified 
correlation between the two exogenous variables, while each row-panel indicates a set of samples 
selected from that population to include the specified proportion of individuals with 1 1x = . Within 
each panel, the performance metrics are shown for each of the three coefficients. The mean 
coefficient values consistently converge to the true population values (shown at the top of each 
column), confirming the consistency of the unweighted estimator under each of these exogenous 
sampling mechanisms. However, the mean standard errors, which represent the efficiency of the 
estimator, are significantly influenced by the sampling procedure. For the population with no 
correlation between the exogenous variables, the standard error for 1β  (corresponding to the 
exogenous variable with highly unequal proportions in the population) is reduced by more than 
40% (from a standard error of 0.28 to a standard error of 0.17) when its representation in the sample 
is increased from the population level of 5% to a level of 15% in the sample. This dramatic 
improvement in estimator efficiency highlights the benefits of considering the distribution of 
exogenous variables in the sample, as relatively small changes in representation in the sample may 
allow statistical inferences to be made about small population segments that may not be 
sufficiently represented in a random sample.  

The effects discussed above are even stronger when correlations are present between the 
exogenous variables, as the standard errors increase as correlations are introduced (in each row the 
mean standard error increases moving to the right). Similar results can be observed by comparing 
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the average percentage errors (APEs) of the coefficients compared with the true population values. 
The APEs are reduced significantly when individuals with 1 1x =  are oversampled compared to 
when they are sampled to maintain their highly skewed population proportions, demonstrating the 
importance of considering these impacts for small sample estimation. 

The results of this simulation confirm that maintaining a representative sample of the 
population should not always be the goal when sampling. In fact, in all four of the populations, the 
sample that is selected to be representative of the population yields the worst results in our 
simulations. Instead, ensuring that there is enough variation in the exogenous variables in the 
collected sample, and particularly that there is sufficient representation from minority population 
groups, is critical to ensuring the accuracy of small sample estimation results. In practice, these 
results mean that (a) samples that are not representative of the population in terms of the 
distribution of exogenous variables should not be a concern for researchers if the goal is the 
estimation of a causal effects model, (b) researchers can intentionally target surveys to 
underrepresented population groups to ensure that there is sufficient exogenous variation and 
reduce the necessary sample size to estimate effects for these groups, and (c) these strategies 
become particularly important when researchers have interest in untangling the effects of multiple 
correlated exogenous variables that may otherwise pose greater efficiency challenges.  

In addition to the model estimates presented in Table 1, Table 2 presents the population 
share predictions using the estimated coefficients from each model. In the table, each column again 
represents a population with the specified correlation between the two exogenous variables, while 
each row-panel indicates a set of samples selected from that population to include the specified 
proportion of individuals with 1 1x = . Within each row-panel four values are shown. First, the 
predicted population share is calculated for each sample based on the application of the estimated 
parameters (using each sampling strategy for each sample) to calculate the probability that each 
individual in the population (not the estimation sample) is predicted to select the outcome 1y = . 
The average across these individual probabilities then represents the predicted population share 
for the sample (and the average predicted population share across the 1,000 samples is reported in 
the table). Second, the APE shown below the predicted population share is the average percentage 
error of the predicted population share compared with the true population share (shown at the top 
of the table). Third, the in-sample share is simply the average (across the 1,000 samples) of the 
proportion of individuals in the sample who selected the outcome 1y = . Finally, the last value is 
the average percentage error between the in-sample share and the true population share.  

As mentioned in Section 1, the theoretical results apply to descriptive statistics as well as 
model coefficients themselves. Since the population shares can be predicted using the estimated 
coefficients applied to exogenous variable data from the overall population, the predicted shares 
will be unbiased for all sampling approaches because selection variables are controlled for in the 
model. This is evidenced in Table 1 in that the population share predictions (see the first row within 
each row-panel in the table) yield unbiased results regardless of the extent of oversampling or the 
correlation between the exogenous variables. As also may be observed in the table, the in-sample 
share is an unbiased estimate of the true population value when the sample is selected to maintain 
the population proportions of exogenous variables (see the first row-panel of Table 2). As before, 
this initial case does not include any selection bias, so the basic in-sample share effectively predicts 
the true population values. However, as oversampling is introduced in the lower rows, the in-
sample shares (or equivalently, the model estimates applied within the sample to make predication) 
become increasingly poor estimates of the true population shares, particularly in the population 
without any correlation between the exogenous variables. The implication is that, for model 
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estimation of individual relationships with exogenous sampling, the sampling strategy should 
focus on obtaining a good range of the exogenous variables (not necessarily representativeness), 
though to make any population share predictions or to compute average treatment effects of 
variables in the population on the outcome of interest, the estimated relationship needs to be 
applied to a sample that reasonably represents the population distribution of exogenous variables.  
 
4. ENDOGENOUS SELECTION  
In contrast to the assumptions of the previous sections, most researchers do not have full control 
over sample selection and may not observe all variables relevant to selection. Specifically, while 
researchers can work toward administering surveys to a representative sample of the population 
based on known exogenous variables, unobserved self-selection effects are still likely to impact 
responses. For instance, online opinion panels provide platforms to get high response rates and 
allow some control over representation of respondents in terms of a subset of observed control 
variables (sociodemographic variables), but opinion panel respondents have been shown to have 
different attitudes and characteristics than the broader population (Wang et al., 2023). Therefore, 
while much of the existing literature relies on the assumption that selection is based on observed 
characteristics, it is increasingly important to develop methods that accommodate unobserved 
selection effects.  

As before, we begin by considering the properties of the unweighted estimator, which can 
be defined in the same way as Equation (14). However, since the sample selection is informative 
of the outcome, even after conditioning on exogenous variables, the unweighted estimator will no 
longer be unbiased. To show this, we will define a ( 1)B×  vector of variables qz  that impact 
selection, are correlated with the outcome ,qy  but are not observed by the researcher. Then, as 
defined in Section 2, we assume that selection is informative of the outcome, even after 
conditioning on all the observed exogenous variables qx ( ( 1| , ) ( 1| )q q q q qP y Pω ω= ≠ =x x ), but 
we can assume that the probability of selection does not depend on the outcome after also 
conditioning on qz  ( ( 1| , , ) ( 1| , )q q q q q q qP y Pω ω= = =x z x z ). Following the same steps as above, 
we can show that 

{ } { } { }

{ }

1 1

1 1

1

( , ) ( , ) ( , )

( , ) | , | , ( , ) | ,

( 1| , ) ( , ) | , .

q q q q q q q

Q Q
u

q q q q q q
q q

Q Q

q q q q q q
q q

Q

q q qq q
q

q q

E E m E m

E E m E E v E m

E P E m

ω ω

ω ω

ω

= =

= =

=

 
   = =    

 

   = =   

 = = 

∑ ∑

∑ ∑

∑

s s s

s s

s

β m β β

β x z x z β x z

x z β x z

 (25) 

However, we cannot show that { }( , ) | ,q q qqE m =s β x z 0  because the underlying probability of the 

random outcome is only conditional on the explanatory variables qx , not the endogenous selection 
variables qz  which are unobserved. Therefore, conditioning the expectation of the score function 

on qz  introduces a bias such that ( , )uE   ≠ s β m 0 . 



15 

For the asymptotic properties, while draws of qw  in the underlying random sample of 
individuals in Q  yield ( , )q qms β  which are normally distributed with mean zero, this same result 
does not hold for the unweighted estimator under endogenous sampling. Instead, since 

( , )uE   ≠ s β m 0  (since sampling in informative on the outcome, as shown above) the limiting 

distribution of 0( , )q
u

q ms β  does not have a mean of zero. Instead, as Q →∞ , the unweighted 

estimator will converge to a value ( *β ) different from the true population value based on the 
selection probabilities given the endogenous selection variable *

0( ( 1| , ))q q qP ω = ≠x zβ β . 
Weighting approaches would seem to offer a solution since, as discussed in the previous 

section, inverse probability weights cancel with the expected value of the selection indicator. Thus, 
for weights defined as 1/ ( 1| , )q qqqv P ω= = x z  to represent the true probability of selection, the 
weighted estimator remains unbiased:  
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As shown above, the weighted estimator remains unbiased when the weights can be appropriately 
calculated to represent the true probability of selection, even in cases when the unweighted 
estimator is biased. The asymptotic properties, likewise, follow from the steps shown in the 
previous section, with the asymptotic distribution of the weighted estimator identical to that of 
Equation (20), where wH  and wJ  likewise take the same form, with the updated weights 

1/ ( 1| , )q qqqv P ω= = x z  to accommodate endogenous selection.  
 This result indicates that when weights can be developed to represent the true inverse 
probability of selection, the weighted estimator can be used to estimate unbiased parameters 
(Manski and Lerman, 1977; Cosslett, 1981; Wooldridge, 1999; Solon et al., 2015). For instance, 
as mentioned in Section 1, choice-based sampling is a specific form of endogenous sampling 
method where sampling is based directly on the outcome qy  such that specific alternatives are 
over- or under-sampled. In this case, if the population proportions of individuals selecting each 
alternative are known, then weights can be developed to accommodate this sampling approach, 
and the weighted estimator will yield unbiased results. For instance, a destination choice model 
based on a sampling strategy that recruits individuals at specific destinations would be a choice-
based sample, and appropriate weights could be developed if the population proportions of 
individuals selecting each destination were known. In this scenario, the weighted estimator could 
be used to estimate the model and achieve unbiased results (in this case, the population shares 
would be needed in advance to develop weights for model estimation rather than being predicted 
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using the estimated model parameters, but these results could still be applied for additional 
unbiased predictions, such as calculating treatment effects).  

However, as several authors have discussed, weights used in practice are not always based 
on the true inverse probability of selection. Rather, in the more general case, selection may be 
based on observed and unobserved variables rather than directly on observed choice values, and 
weights are often estimated using techniques such as raking or iterative proportional fitting (IPF) 
that rely only on the observed exogenous variables and their respective population marginal 
proportions (Gelman, 2007, 2023). Thus, when sampling is also based on unobserved variables (as 
is generally almost always likely to be the case, or at least it is highly questionable practice if the 
analyst were to a priori preclude such a possibility), these weights will not represent the true 
inverse probability of selection 1/ ( 1| , )q qqqv P ω= = x z , but instead only represent the probability 
of selection conditional on the observed exogenous variables 1/ ( 1| )q qqv P ω= = x . Such a 
weighting procedure, therefore, will not accommodate the bias in the estimation because the 
product ( 1| , ) qq q qP vω = x z   does not equal one and the steps in Equation (26) will not hold. Since, 

under this sampling design, we cannot show that ( , )wE   = s β m 0 , the weighted estimator (along 
with the unweighted estimator) will yield biased results. Thus, while weighting approaches are 
effective in situations where selection is based only on observed variables, they are unable to 
accommodate self-selection effects resulting from participant non-response (see also Brewer and 
Carlson, 2024). 

Since neither the unweighted or weighted approach yields unbiased results, an alternative 
approach involves using a second selection equation to control for endogenous selection 
(Heckman, 1979). For instance, in the case of a linear outcome, Heckman applies a two-stage 
estimation approach, where the selection indicator qω  is assumed to be determined using a binary 
probit framework in the first stage, given by: 

*
qq qs η′= +γ d ,  (27) 

where *
qs  is the propensity of a respondent to answer a survey if it is presented to them, qd  is an 

( 1)H ×  vector of exogenous variables impacting selection, γ  is an ( 1)H ×  column vector of 
corresponding coefficients to be estimated, and η  is a standard random normal error term. Then, 
each individual is assumed to select alternative qqs ω=  ( {0,1}qω ∈ ) if 1 *q q

qsω ωθ θ− < < , for 
1θ − = −∞ , 0 0θ = , and 1θ = ∞ . As before, qω  is the actual binary indicator that determines whether 

an individual appears in the sample, while the underlying propensities do not appear to the 
researcher. Collect the elements of qs  and qω  into vectors s  and, ω  respectively.  Of course, this 
estimator relies on the ability to estimate the first-stage selection equation, implying that 
exogenous variable data must be available for both those individuals with an observed outcome, 
and those who are unobserved. Thus, the Heckman approach is more appropriate for censored 
outcomes than completely missing data due to nonresponse (for the moment, we will maintain this 
assumption, that we observe exogenous variable data from an underlying random sample of 
individuals while censoring the outcome endogenously).   

In the case of a linear outcome variable, Heckman’s two-step estimator can be used to 
estimate the parameters γ  from the selection model (in the first stage), and then the parameters β  
(in the second stage) from an adjusted form of the main outcome model with a correction term 
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based on the inverse Mills ratio (Heckman, 1979). Under the assumption that the errors are jointly 
normal, this procedure provides a consistent estimator of β .  

However, while the original form of the Heckman two-stage procedure for sample selection 
has been extended to additional distributional assumptions (Newey, 2009; Liu and Yu, 2022), two 
additional issues remain with this formulation. First, the two-stage approach relies on the 
assumption that the vector of variables in the selection model ( qd ) includes an instrument that is 
observed by the researcher, strongly influences selection, and is irrelevant in the main outcome 
equation. Although this exclusion restriction is not strictly required for model identification, 
identification without this type of instrument relies entirely on the distributional assumptions and 
the nonlinear relationship between the two estimation equations (see Wolfolds and Siegel, 2019). 
Thus, when these conditions on the instrument are not met, the Heckman two-stage approach 
performs poorly (Puhani, 2000; Wolfolds and Siegel, 2019). Second, and more importantly, while 
this approach works for linear models, the inverse Mills ratio correction term does not extend to 
the case of nominal outcomes (Greene, 2018; Galimard et al., 2018). As Dubin and Rivers (1989) 
describe, the general model conceptualization used in the Heckman procedure has straightforward 
analogies to nonlinear models (including binary outcomes), where the model system can be set up 
with a binary probit selection equation and a binary probit outcome equation. However, the two-
stage approach using the inverse Mills ratio as a correction factor cannot be applied to 
accommodate the correlations between the error terms in nonlinear outcome models.  

Therefore, rather than using a two-stage approach, we use a joint modeling approach that 
models sample selection and the main outcome in a single stage, allowing for unobserved 
correlations between the two error terms ( qε  and qη ) in the model. This approach maintains the 
structure of the nominal main outcome decision (as shown in Equation (1)) as well as the structure 
of the binary probit formulation (as shown in Equation (27)) for sample selection, but allows for 
direct correlations between the two error terms in a single-stage estimation. Lee (1979) proposed 
the use of a joint likelihood function of this type, in the case of a switching regression with linear 
outcomes and a binary selection variable as well as extending the framework to a polychotomous 
discrete choice selection variable with a continuous outcome (using a copula approach to tie 
extreme value error terms of the multinomial selection equation to the normal distribution of the 
continuous outcome equation; see Lee, 1983). The copula approach (for an extended discussion of 
this approach see Bhat and Eluru, 2009) relaxes the normality assumption on the univariate error 
terms, while providing a multivariate functional form for the joint distribution of random variables. 
However, while these approaches consider continuous outcome equations, the same joint approach 
may be applied to the case of sample selection with a limited dependent main outcome.    

Specifically, in our current context of a binary main outcome, consider qε  and qη  to be 
jointly normally distributed with a mean vector of zeros and a correlation matrix given by 

1
1
ρ

ρ
 

=  
 

Σ . The correlation term ρ  captures the error correlations among the underlying latent 

propensity for the main outcome and sample selection, accommodating the presence of unobserved 
self-selection effects that influence the outcome. This accounts for the variables qz  that both 
impact selection and are informative of the main outcome. Finally, while the parameters of the 
model system may be identified in this bivariate normal distribution case even without the need 
for an exclusion restriction when there is at least one common continuous exogenous variable (but 
not a binary variable) in both the selection and outcome equations, only weak identification is 
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suggested. In general, an exclusion restriction is still generally a necessary and sufficient condition 
for identification, and is absolutely necessary for point identification in cases with more flexible 
error distributions (see Han and Lee, 2019 and Bhat, 2024).   

Next, define a vector δ  that collects the parameters to be estimated ( ), ,ρ ′′ ′=δ β γ . Then, 
using this joint modeling approach, the likelihood for each individual can be written as: 

2( ) Pr( , ) ( | ,; ,   )
r

q q q q q q q q
D

L y m s f rm r dω ω= = = = ∫ μδ Σ , (28) 

where the integration domain { : }rD r r= < <low highθ θ  is now the multivariate region of *
qy  and 

*
qs  truncated by the respective upper and lower thresholds. 2 ( | , )qf r Σμ  is the bivariate normal 

density function with a mean of q
q

q

′ 
=  ′ 

β
μ

γ d
x  and a covariance matrix given by 

1
1
ρ

ρ
 

=  
 

Σ . For 

now, we assume that the exogenous variables for all individuals in the underlying sample of size 
Q  are observed, but the outcome qm  is only observed for individuals with 1qω = . Then, this 
likelihood function applies to all members of the underlying random sample. However, for 
individuals with unobserved outcomes ( 0qω = ), we can simply marginalize over the main 
outcome qm , so that only the selection outcome qω  is available for estimation, giving the 
univariate likelihood: 

1( ) Pr( ) ( | ,  1; )
r

q q q q q
D

L s f r drω ω ′= = = ∫ γ dδ .  (29) 

Since unobserved error correlations between the sample selection model and the main outcomes 
are estimated using the joint approach through the matrix Σ , the unweighted estimator can be 
used, giving the likelihood function for the sample: 

1

1( ) ( ) (; , ; , ; )q q
q q q q q

Q

q

L LmL ω ωω ω −

=

=∏δ ω δ δm .  (30) 

Under the usual regularity conditions needed for likelihood objects, the logarithm of the joint 
likelihood function can again be maximized through solving the corresponding first-order (score) 
equations, now defined as: 

1
( ) log ( ) ( ) ,; , ; , ; ,q

Q

q
q

qL m ω
=

= ∇ = =∑s sδ ω δ m ωm 0δ  (31) 

where 
l ; , ;g

;
o ( ) log ( )

( ) (1 ), q q q q q
qq q q q

mL L
m

ω ω
ω ω ω

∂ ∂
= + −

∂ ∂
s

δ δ
δ

δ δ
. The first component of the 

score function corresponds to those individuals with an observed outcome (where the joint 
likelihood function is applied), while the second component corresponds to those individuals with 
no observed outcome (where the marginalized likelihood function is applied). Then, to show that 
the estimator is unbiased we can show that 
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where the ability to split the joint likelihood function into the product of a conditional likelihood 
and marginal likelihood relies on the appropriate specification of the correlation term ρ  estimated 
using the data from those with both outcomes. Then, we can show that each of these expected 
value terms equal zero to prove that the joint estimator is unbiased: 
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Thus, when the exogenous variables for the entire random sample of Q  individuals are known, 
this estimator returns unbiased estimates of both selection and the outcome of interest, even when 
marginalizing over nonrandom selection for the main outcome. 

Finally, this approach, as described above, relies on the availability of exogenous variable 
data from all individuals in the underlying random sample, even those without an observed 
outcome. This is a reasonable assumption for some applications, such as accounting for attrition 
in panel data models or when demographics are known for all potential respondents in the sampling 
frame. In many cases, however, the exogenous variables are unknown for individuals who choose 
not to participate, and many existing approaches do not account for these scenarios (Galimard et 
al., 2018; Brewer and Carlson, 2024). We address these scenarios where the exogenous data is 
unavailable for nonrespondents using an additional step to generate an augmented sample based 
on the observed characteristics of individuals in the sample, the size of the sampling frame, and 
the known population marginal distribution of exogenous variables. In such situations, an IPF 
process can be used to generate an augmented sample that includes the real data for all individuals 
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in the observed sample Q  and exogenous variable data for a hypothetical set of individuals who 
are assumed to be unwilling to respond (Choupani and Mamdoohi, 2016; Durán-Heras et al., 
2018). To do so, we first use IPF to generate a hypothetical augmented sample that is representative 
(in terms of the exogenous variables) of the real population W  and matches the size of the sampling 
frame Q , using the population marginal distributions of exogenous variables and multi-way 
distribution table of exogenous variables in the sample Q  (and assign each generated individual a 
value of 0qω = ). Then, each individual in the real sample Q  replaces one individual from the 
generated augmented sample that has a corresponding set of exogenous variables, taking on the 
value 1qω =  and their real observed main outcome qm . Essentially, this process recovers a final 
augmented sample that is representative in terms of the population marginal distribution of the 
exogenous variables, with the unobserved segment of the sample being representative of 
nonrespondents. Then, jointly modeling the main outcome (available for only those in the observed 
sample) with sample selection (using the generated individuals as nonrespondents) will result in 
an improved estimate of the true parameters. 

To understand the properties of the estimator using this method, we can use the same 
process as shown in Equation (32). However, while there is no change to the estimator for those 
individuals with 1qω = , we must consider the possibility that the generated individuals with 0qω =  
are no longer representative of the population (and therefore the distribution of the outcome qs  
given qx  may no longer match that of the population). Specifically, the expected value of the score 
function is now 
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where ˆ ( );q qL ωδ  is the marginal likelihood of selection for each unobserved individual. The only 
difference between this term and the original likelihood of selection ;( )q qL ωδ  is that we now have 
estimated values ˆ qx  that replace the true values qx  for these unobserved individuals. If 
ˆ ( ) ( ); ;q q q qL Lω ω=δ δ  then the remaining steps of Equations (32) and (33) hold, and this estimator is 

unbiased. This will be true if the distribution of ˆ qx  matches the distribution of qx  for 
nonrespondents in the population (because then, the likelihood of selection given a value of qx  is 
known). However, using the IPF algorithm only guarantees convergence to the population 
marginal distribution, while maintaining the contingency table least distinguishable from the 
sample, rather than the population joint distribution of the exogenous variables (Ireland and 
Kullback, 1968; Beckman et al., 1996). Therefore, while this procedure yields better results than 
ignoring the unobserved selection effects (which amounts to an assumption that the likelihood of 
selection given qx  is always one), it is not guaranteed to be unbiased. The following simulation 
examines the characteristics of each of these estimators under endogenous selection, 
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demonstrating that even though this method is not unbiased, it results in significant improvements 
over independent models if the exogenous variables of nonrespondents are unknown. 
 
4.1 Endogenous Selection Simulation Design 
To evaluate the effects of weighting approaches and the joint modeling approach under 
endogenous selection, we undertake a second simulation exercise based on the same binary probit 
model. For this simulation, a new population of 100,000 individuals is generated using the same 
approach as the previous simulation (for the purpose of this simulation we consider only a single 
population, see the top row of Figure 5 labeled “Generate Population Exogenous Data”). In this 
case, however, thresholds are now applied to the underlying (uncorrelated) standard normal 
variables for the exogenous variables qx  such that there is a 40% chance that 1 1x =  and 50% 
chance that 2 1x = . In addition, for the selection model, the vector of explanatory variables qd  is 

assumed to include both 1x  and 2x , as well as a third exogenous variable 1r  which is drawn from 
an independent standard normal distribution (and included as a continuous variable). The variable 

1r  satisfies the exclusion restriction as it is informative of selection and included in the selection 
equation but is not informative of the main outcome. Values of the random error term qε  for the 
main outcome and qη  for the selection model were drawn from a bivariate random normal 

distribution with correlation 0.5ρ = . Finally, the latent propensity *
qy  is calculated based on 

Equation (1) using the same coefficients used in the previous simulation ( 0 0.75β = − , 1 0.50β = , 

and 2 0.50β = − ) and the latent propensity of selection *
qs  is calculated based on Equation (27) using 

the coefficients 0 0.50γ = −  (for the constant), 1 1.00γ =  (corresponding to 1x ), 2 0.50γ = −  
(corresponding to 2x ) and 3 0.50γ =  (corresponding to 1r ). Appropriate thresholds are applied to 
get the binary outcome qy  and binary selection indicator qs  (see the second row of Figure 5 labeled 
“Generate Outcome Data”). 

Next, 1,000 independent samples are drawn from the population. For each sample, 5,000 
individuals are selected at random from the entire population (including those with 0qs =  and 

1qs = ). This approach amounts to offering the survey to a random sample of 5,000 individuals in 
the population, some of whom will choose to respond based on their value of qs  (using the 
coefficients defined above, this results in approximately 2,000 individuals, or 40%, choosing to 
respond to the survey), and all of these individuals become part of the underlying random sample 
Q  (see the third section of Figure 5 labeled “Select Underlying Random Sample”). Using these 
samples of 5,000 individuals, four models are considered (see the fourth section of Figure 5 labeled 
“Run Models”). First, an unweighted binary probit model is run using only those individuals from 
the sample with 1qs =  (those with an observed outcome; approximately 2,000 individuals in each 
sample). Second, a weighted binary probit model is run using only those individuals with 1qs =  

and weights generated based on the respondent values of 1x , 2x  and 1r  (weights cannot be 
generated based on the endogenous selection variable in this case, because it is unobserved by the 
researcher). Third, a joint binary probit model for the main outcome and sample selection is run 
using all 5,000 individuals but suppressing the outcome qy  for those individuals with 0qs = . 
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Finally, the last model is another joint model for the main outcome and selection, but where no 
data (exogenous or endogenous) is observed from individuals with 0qs = . Instead, an IPF method 
is used to generate new exogenous data for individuals with 0qs =  based on the distribution of 

respondents with 1qs =  and the known population marginal distributions of 1x , 2x  and 1r  (see 
the far right side of Figure 5, where the section labeled “Run Models” is split into (a) generate 
hypothetical augmented sample using IPF and (b) run joint binary probit model using augmented 
sample). 

As before, the results from each model are stored to evaluate the performance of each 
modeling strategy (see the final row of Figure 5 labeled “Evaluate Performance”). The same 
metrics are used to evaluate the performance of these models under the endogenous selection 
scenario as used in the previous simulation. Further, the estimates are again used to predict the 
share of the population selecting 1y = . In this case, the estimated likelihood functions for the 
unweighted binary probit model, the weighted binary probit model, and the joint binary probit 
model estimated with the known sampling frame are applied to the exogenous variable data from 
the underlying random sample of 5,000 individuals selected in each draw (regardless of whether 
each individual chose to respond to the survey) to calculate the probability of each individual 
selecting the outcome 1y =  in the underlying random sample (not the estimation sample). For the 
joint binary probit model estimated with the unknown sampling frame, the estimated likelihood 
function is applied to the augmented sample generated using IPF for estimation (we continue to 
assume at this stage that the exogenous variable data for the underlying random sample is 
unavailable) to calculate the probability of each individual selecting the outcome 1y =  in this 
augmented sample (not the estimation sample). The average across the likelihood predictions for 
these 5,000 individuals (either the underlying random sample or augmented sample) is calculated 
for each model to represent the predicted population share selecting the outcome 1y = .   

 
4.2 Endogenous Selection Simulation Results 
Table 3 presents the performance results of the four models in this simulation. In the table, each 
row-panel represents a modeling approach while each column represents the values for each of the 
variables in the model (including the main outcome equation, the selection model, and the 
correlation term). As seen in the table, neither the unweighted nor weighted models (see the first 
two row-panels in Table 3) are consistent when estimated independently using only the sample of 
observed individuals. In this case, since the selection variable is unobserved, it is not conditioned 
for in the model and the weights that are based only on the exogenous variables are unable to 
accommodate the selection bias, so both models are biased. This has important implications, 
confirming that weighting is not an appropriate strategy to address sample selection biases when 
they are due to unobserved self-selection effects. 

In contrast, when the sampling frame is assumed to be known, the parameters can be 
consistently estimated with the joint binary probit model shown in the third row-panel. As 
expected, this joint model consistently estimates the main outcome, as well as the selection model 
parameters and correlation. Thus, accounting for the correlation between selection and the main 
outcome effectively eliminates the sample selection bias and allows the model to be estimated 
consistently. This approach does, however, rely on the exogenous variable data from the entire 
underlying random sample of individuals, even when the outcome is unobserved. Therefore, the 
fourth row-panel gives the results if the sampling frame is assumed to be unknown, generating an 
augmented population based on the known population marginals to replace the unknown 
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nonresponding individuals. Although the performance of the joint model in this case is worse than 
when the sampling frame is known, the estimates are significantly superior to those of the 
independent models (and much of the reduction in performance is in the selection equation rather 
than for the main outcome). Thus, even if not all bias is removed, the joint modeling approach still 
represents a significant improvement over an assumption of sampling on observables.  

From a modeling perspective, these results highlight the importance of considering self-
selection effects when unobserved factors may influence survey response, as significant biases 
occur based on the unobserved self-selection effects. From a sampling perspective, these results 
indicate that researchers can accommodate self-selection when sufficient information is known 
about the underlying population or an underlying representative sample. One implication is that 
researchers can accommodate situations when individuals choose not to respond to specific survey 
questions based on unobserved factors, as long as unobserved factors don’t influence response 
rates to the survey overall. This means that, particularly when asking about sensitive data, allowing 
participants to choose not to answer specific questions may be preferable to forcing responses and 
having participants abandon the survey entirely (as this still allows for the collection of the 
exogenous variable data for these participants). However, even when unobserved endogenous 
factors influence sample selection and no data is observed for those who respond, researchers can 
use the IPF population generation techniques described above to improve estimation relative to 
ignoring these sample selection biases. Also, since consistency can be proven when the joint 
distribution of exogenous variables in the population is known, the collection of population joint 
distributions of common exogenous variables would be beneficial.  

In addition to the model estimates themselves, the share predictions of the individuals in 
the population selecting 1y =  based on the results of each model are shown in Table 4. In the 
table, the true population share is shown in the first row, followed by the average in-sample share 
(that is, the proportion of individuals, in the underlying random sample of 5,000 individuals and 
with 1qs = , who selected the outcome 1y = , averaged across the 1,000 samples) in the second 
row. The following four rows show the share predictions using each of the four models under 
consideration. These shares are predicted for each sample based on the application of the estimated 
parameters (for each modeling approach and each of the 1,000 samples) to calculate the probability 
of each individual in the underlying random sample (or augmented sample in the case where 
underlying exogenous variable data is assumed to be unobserved) predicted to select the outcome 

1y = . The average across these individual probabilities for each modeling approach then 
represents the respective predicted population share for the sample (and the average predicted 
population share for each modeling approach across the 1,000 samples is reported in the table). 
Then, for each of these prediction mechanisms, the average percentage error between the 
prediction and the true population share (shown at the top of the table) is also shown in the final 
column.  

As may be observed in the table, the in-sample share is an extremely poor prediction of the 
true population share as the sampling mechanism is biased. Model-based estimates using either a 
weighted or unweighted approach do not accommodate these sampling biases. In fact, both of 
these approaches overestimate the population share by nearly as much as the in-sample share. 
Notably, the poor performance of these models implies that calculating descriptive statistics based 
on weights can be a poor reflection of population statistics, aligning with the recent findings of 
Brewer and Carlson (2024) for the case of a linear regression, who found that weighting schemes 
can actually worsen predictions when endogenous selection effects are present. On the other hand, 
the share predictions based on the model results from the joint modeling approaches both yield 
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significantly improved predictions of the population share. As expected, the model with the known 
sampling frame performs slightly better than the model with the generated sampling frame, but 
both models result in unbiased predictions of the population shares.  
 
5. CONCLUSIONS 
The current research has several practical implications for researchers in terms of survey design 
and dissemination as well as for modeling practices. We show that weighting approaches can 
adversely affect model efficiency under exogenous sampling, and unweighted estimators should 
be used in these cases. Further, given that exogenous sampling strategies are consistent, 
researchers should work to improve the efficiency of their estimates in the survey dissemination 
process by intentionally sampling to ensure that there is sufficient exogenous variation in the 
sample. These results demonstrate the close connection between sampling considerations and 
modeling approaches, highlighting the need to carefully integrate these processes and consider the 
modeling impacts of various sampling approaches. 

In the case of endogenous sampling, we show that selection on unobserved variables cannot 
be addressed using weighting approaches, which are only effective when sampling is based on 
observed variables. In particular, our results caution against assuming a priori that sample selection 
is based solely on observed variables, because such an assumption can lead even descriptive 
statistics based on weights to be poor reflections of population statistics. In this context, our 
investigation strongly advocates for the use of sample selection models that accommodate 
unobserved self-selection effects. We show that jointly modeling sample selection with the main 
outcome can accommodate unobserved correlation effects and lead to unbiased results, when the 
exogenous variables of an underlying representative sample are known. Finally, our proposed 
method of generating an augmented exogenous population using IPF when this underlying sample 
is not observed also results in significantly improved results in simulation efforts both in terms of 
model coefficients and prediction of population statistics. 

Overall, while this paper provides detailed theoretical and simulation-based support for our 
findings, there are several avenues for additional research. First, in terms of intentional sampling 
techniques, more research is needed to further quantify the efficiency gains of sampling techniques 
that move away from representative sampling to improve the variation of variables in the modeling 
effort. Additionally, although we provide intuition as well as simulation to examine improvements 
under endogenous sampling using our proposed joint modeling approach with an IPF augmented 
sample, consistency is not guaranteed. Further work should explore more robust population 
generation techniques with provable asymptotic properties to develop consistent estimators for 
samples with unobserved endogenous selection.  
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Table 1: Exogenous Sampling Simulation Results 
 

  
Correlation: 0.00  Correlation 0.25 Correlation 0.50 Correlation 0.75 

0β  1β  2β  0β  1β  2β  0β  1β  2β  0β  1β  2β  

True Population Values -0.75 0.50 -0.49 -0.75 0.50 -0.49 -0.75 0.51 -0.50 -0.75 0.51 -0.51 

Maintaining 
Population 
Proportions 
of X1 (5%) 

Mean Coefficient Value -0.75 0.48 -0.50 -0.75 0.48 -0.50 -0.75 0.48 -0.50 -0.75 0.48 -0.51 
APE with True Value 0.47 3.76 0.76 0.50 4.74 0.73 0.55 5.27 0.73 0.54 5.92 0.69 

Standard Deviation of Coefficient Value 0.09 0.29 0.14 0.09 0.31 0.14 0.09 0.32 0.14 0.09 0.34 0.15 
Mean Standard Error 0.09 0.28 0.14 0.09 0.65 0.14 0.09 1.17 0.14 0.09 2.91 0.14 

Oversampling 
of X1 (7.5%) 

Mean Coefficient Value -0.75 0.49 -0.50 -0.75 0.49 -0.50 -0.75 0.49 -0.50 -0.75 0.49 -0.51 
APE with True Value 0.44 2.32 0.97 0.40 2.74 1.15 0.32 2.69 1.46 0.38 3.05 1.16 

Standard Deviation of Coefficient Value 0.09 0.24 0.14 0.09 0.25 0.14 0.09 0.26 0.14 0.09 0.27 0.14 
Mean Standard Error 0.09 0.23 0.14 0.09 0.24 0.14 0.09 0.25 0.14 0.09 0.56 0.15 

Oversampling 
of X1 (10%) 

Mean Coefficient Value -0.75 0.50 -0.50 -0.75 0.50 -0.50 -0.75 0.51 -0.51 -0.75 0.51 -0.51 
APE with True Value 0.26 0.60 1.23 0.39 0.61 1.04 0.23 0.01 1.82 0.44 0.28 1.18 

Standard Deviation of Coefficient Value 0.09 0.20 0.14 0.09 0.21 0.14 0.09 0.22 0.15 0.09 0.23 0.15 
Mean Standard Error 0.09 0.20 0.14 0.09 0.21 0.14 0.09 0.22 0.14 0.09 0.23 0.15 

Oversampling 
of X1 (12.5%) 

Mean Coefficient Value -0.75 0.50 -0.50 -0.75 0.50 -0.50 -0.75 0.51 -0.50 -0.75 0.51 -0.51 
APE with True Value 0.40 0.56 1.27 0.51 0.56 1.02 0.38 0.02 1.74 0.60 0.43 0.83 

Standard Deviation of Coefficient Value 0.09 0.19 0.14 0.09 0.19 0.14 0.09 0.20 0.14 0.09 0.21 0.15 
Mean Standard Error 0.09 0.19 0.14 0.09 0.19 0.14 0.09 0.20 0.14 0.09 0.21 0.15 

Oversampling 
of X1 (15%) 

Mean Coefficient Value -0.75 0.50 -0.50 -0.75 0.50 -0.50 -0.75 0.51 -0.51 -0.75 0.51 -0.51 
APE with True Value 0.25 0.25 1.52 0.35 0.32 1.16 0.01 0.39 2.59 0.29 0.15 1.34 

Standard Deviation of Coefficient Value 0.09 0.17 0.14 0.09 0.18 0.14 0.09 0.19 0.14 0.09 0.20 0.15 
Mean Standard Error 0.09 0.17 0.14 0.09 0.18 0.14 0.09 0.19 0.14 0.09 0.20 0.15 
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Table 2: Share Prediction from Exogenous Sampling Simulation 
 

 Correlation: 
0.00 

Correlation 
0.25 

Correlation 
0.50 

Correlation 
0.75 

True Population Share 0.174 0.174 0.173 0.173 

Maintaining 
Population 

Proportions of 
X1 (5%) 

Predicted Population Share 0.174 0.173 0.173 0.172 
APE 0.097 0.109 0.125 0.100 

In-Sample Share 0.174 0.173 0.172 0.172 
In-Sample Share APE 0.110 0.124 0.145 0.101 

Oversampling 
of X1 (7.5%) 

Predicted Population Share 0.174 0.173 0.173 0.172 
APE 0.127 0.109 0.072 0.052 

In-Sample Share 0.177 0.176 0.175 0.174 
In-Sample Share APE 1.920 1.411 1.055 0.807 

Oversampling 
of X1 (10%) 

Predicted Population Share 0.174 0.174 0.173 0.172 
APE 0.051 0.008 0.030 0.023 

In-Sample Share 0.181 0.179 0.177 0.176 
In-Sample Share APE 4.342 3.238 2.426 1.816 

Oversampling 
of X1 (12.5%) 

Predicted Population Share 0.174 0.173 0.173 0.172 
APE 0.120 0.142 0.127 0.115 

In-Sample Share 0.185 0.182 0.179 0.177 
In-Sample Share APE 6.236 4.646 3.402 2.554 

Oversampling 
of X1 (15%) 

Predicted Population Share 0.174 0.174 0.173 0.173 
APE 0.026 0.014 0.029 0.071 

In-Sample Share 0.189 0.185 0.181 0.179 
In-Sample Share APE 8.582 6.456 4.760 3.647 
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Table 3: Endogenous Sampling Simulation Results 
 

 Outcome of Interest Selection Model Correlation 

0β  1β  2β  0γ  1γ  2γ  3γ  ρ 

True Population Values -0.77 0.51 -0.49 -0.52 1.00 -0.48 0.50 0.50 

Unweighted Binary Probit 

Mean Coefficient Value -0.30 0.28 -0.40 -- -- -- -- -- 
APE with True Value 60.57 44.83 18.86 -- -- -- -- -- 

Standard Deviation of Coefficient Value 0.05 0.06 0.06 -- -- -- -- -- 
Mean Standard Error 0.05 0.06 0.06 -- -- -- -- -- 

Weighted Binary Probit 

Mean Coefficient Value -0.30 0.28 -0.40 -- -- -- -- -- 
APE with True Value 60.58 44.83 18.84 -- -- -- -- -- 

Standard Deviation of Coefficient Value 0.05 0.06 0.06 -- -- -- -- -- 
Mean Standard Error 0.05 0.06 0.06 -- -- -- -- -- 

Joint Binary Probit (Known 
Sampling Frame) 

Mean Coefficient Value -0.79 0.53 -0.50 -0.51 1.00 -0.49 0.50 0.52 
APE with True Value 2.70 3.86 1.74 0.43 0.15 0.59 0.08 3.31 

Standard Deviation of Coefficient Value 0.08 0.06 0.06 0.03 0.04 0.04 0.02 0.08 
Mean Standard Error 0.09 0.07 0.06 0.03 0.04 0.04 0.02 0.08 

Joint Binary Probit 
(Unknown Sampling Frame) 

Mean Coefficient Value -0.75 0.51 -0.49 -0.51 1.03 -0.51 0.57 0.47 
APE with True Value 3.08 0.04 1.26 0.87 2.48 5.70 13.30 5.39 

Standard Deviation of Coefficient Value 0.08 0.07 0.06 0.04 0.06 0.06 0.04 0.08 
Mean Standard Error 0.09 0.07 0.06 0.03 0.04 0.04 0.02 0.08 
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Table 4: Share Prediction from Endogenous Sampling Simulation 

 
 Share APE 

True Population Share 0.221 -- 

Average In-Sample Share 0.387 74.769 

Predicted 
Share Using 

Unweighted Binary Probit 0.352 58.950 

Weighted Binary Probit 0.383 72.827 

Joint Binary Probit (Known Sampling Frame) 0.218 1.594 

Joint Binary Probit (Unknown Sampling Frame) 0.228 2.870 

 

 

 

 

 

  
Figure 1: Exogenous and Endogenous Selection Demonstration 
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Figure 3: Effects of Exogenous Variation on Estimator Performance 

 
 

 
Figure 4: Design of Exogenous Sampling Simulation
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Figure 5: Design of Endogenous Sampling Simulation 


