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ABSTRACT 
 
Recent evidence suggests that many activity-travel choices are inter-dependent with one another 
and hence inextricably linked in ways that need to be better understood to help inform the 
specification of activity-based travel model systems.  Model systems in practice often 
sequentially link a series of choice dimensions into a deeply nested logit model where 
accessibility variables (logsum terms) from lower nests cascade up through the structure to the 
higher levels in the model structure.  While these model systems are convenient from a practical 
standpoint, they ignore the potential jointness in choice-making processes and do not effectively 
and directly capture the effects of spatial land use and built environment characteristics on 
activity generation.  In this paper, a unified model of activity type choice (generation), time of 
day choice, mode choice, destination choice, and time use allocation (duration) is formulated and 
estimated on a survey sample data set drawn from the 2000 San Francisco Bay Area Travel 
Survey (BATS).  The model system constitutes a joint multiple discrete continuous extreme 
value (MDCEV) – multinomial logit (MNL) model, in which all discrete choices, except for 
destination choice, and the continuous duration dimension are modeled using the MDCEV, and 
destination choice is modeled as a MNL (with sampling of alternatives) nested and therefore 
integrated with the MDCEV model component.  The parameter estimates of the joint model offer 
behaviorally intuitive results that support the integrated treatment of these choice dimensions as 
a choice “bundle”.  The potential applicability of the model system is demonstrated through a 
policy simulation example that shows how changes in travel cost and time variables lead to 
changes in out-of-home discretionary activity participation.   
 
 
Keywords: activity type choice, time of day choice, activity duration, mode and destination 
choice, joint model, simultaneous equations model, integrated model, MDCEV-MNL model 
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1. INTRODUCTION AND MOTIVATION 
 
Emerging policy issues of interest, including concerns regarding global climate change and the 
desire to better understand how pricing policies and technological innovations impact travel 
demand, enhanced understanding of activity-travel behavior dimensions garnered over decades 
of behavioral research, and advances in microsimulation-based computational approaches have 
all contributed to a new era in travel demand modeling and forecasting (Pendyala et al, 2005; 
Pinjari et al, 2006).  This era is characterized by an increasing shift towards activity-based travel 
demand modeling approaches that explicitly recognize that travel is undertaken to fulfill activity 
needs and desires dispersed in space and time (Meloni et al, 2004).  The move towards 
microsimulation-based approaches facilitates the disaggregate representation of behavioral 
agents and their interactions, while simultaneously incorporating the ability to analyze policy 
impacts and address equity concerns at the level of the individual traveler or any sub-market 
segment of interest (Miller and Roorda, 2003).  
 
Within the scope of this paper, it is not possible to thoroughly review the developments in 
activity-based models over the past decade and the gradual implementation of tour-based models 
in practice in several urban areas in the United States and other parts of the world. Regardless of 
the specific model design adopted, it is found that activity and tour-based model systems 
universally strive to mimic and replicate activity-travel choice processes of individuals.  These 
choice processes include such dimensions as activity type choice, time of day choice, trip 
chaining or linking choice, joint versus solo activity engagement choice, destination choice, 
mode choice, activity sequencing decisions, and activity time allocation (duration) decisions.  
Many of these choice processes are discrete in nature (e.g., activity type choice, time of day 
period choice, mode and destination choices), while a few may be more continuous in nature 
(e.g., activity duration).  Given the large number of choices that are involved in the behavioral 
process, many models, particularly the tour-based models in practice, resort to the adoption of 
deeply nested logit models (Ben-Akiva and Lerman, 1985) where one choice process is nested 
within another choice process and so on, forming a long chain of inter-connected nests to 
complete the representation of the behavioral process (Bowman, 1995; Bowman and Bradley, 
2006; PB Consult, 2005).  As it is virtually impossible to estimate such long chains of nested 
logit models simultaneously (i.e., in one single step), components of the nested logit model are 
usually estimated one step (or maybe two steps) at a time and the logsum from one level is 
carried up to the next higher level, resulting in a sequential estimation and model application 
approach.  Although there are other behavioral model systems that attempt to move away from 
such deeply nested logit specifications, such as those based on computational process modeling 
and heuristic approaches (Arentze and Timmermans, 2005), the fact remains that most activity-
based model systems break down the behavioral decision process so that one is modeling only 
one or two choice processes at any step in the model system.   
 
Although a sequential treatment of choice mechanisms is convenient from a practical model 
estimation and application standpoint, it is unclear whether such model systems truly replicate 
behavioral processes. While tour-based and activity-based models in practice can be lauded for 
their ability to model activity engagement patterns, consider interactions among activities and 
trips, and microsimulate activity-travel patterns at the level of the individual traveler, the issue 
arises as to whether these model systems can be challenged and questioned from a behavioral 
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standpoint not unlike the traditional four-step travel modeling process.  The four-step travel 
modeling process has been consistently criticized for its sequential nature of treatment of the 
travel demand process.  To what extent activity and tour-based models in practice overcome this 
issue is potentially open to debate, although there is no question that even limited information 
maximum likelihood (LIML) specifications of deeply nested logit models allow one to model 
correlated choice processes better than was done in the four-step travel modeling process.   
 
While it is arguably true that people have limited cognitive abilities and therefore exercise 
choices in a limited, sequential way, there is considerable evidence that many choices are made 
jointly or simultaneously and that there are significant unobserved factors that simultaneously 
impact multiple choice dimensions (see, for example, Pinjari and Bhat, 2009a). In fact, one could 
argue that the limited information sequential model specifications have been adopted in the 
activity-based modeling realm because of the estimation challenges and computational 
complexity associated with specifying, identifying, and estimating simultaneous equations model 
systems that represent joint choice processes in which individuals and households are making a 
“package” of activity-travel choices as a “bundle”.  In other words, it is conceivable that 
individual agents are making choices regarding the type of activity to pursue, the mode and 
destination, and the time allocation to the activity in one swoop, thus motivating the adoption of 
a “joint” choice model specification in which unobserved factors unknown to the analyst may be 
simultaneously impacting multiple dimensions of interest (Jara-Diaz et al, 2007).  
 
The growing interest in the ability to model multiple choice dimensions simultaneously, where 
the endogeneity of many choice variables is explicitly recognized in the activity-travel behavior 
modeling arena, motivates this paper. Specifically, this paper presents a joint model system of 
five choice dimensions: 

• Activity type choice 
• Activity time of day choice (treated as discrete time intervals) 
• Mode choice 
• Destination choice 
• Activity duration (continuous choice dimension) 

These five choice dimensions are of critical interest to any activity-based model system 
regardless of the model design that might be adopted. Thus, this paper aims to specify and 
estimate a comprehensive econometric model system that jointly models these five choice 
dimensions in a holistic unifying utility-maximization framework.  The model system explicitly 
includes consideration of built environment attributes including level of service variables and 
spatial land use characteristics to capture the potential impacts of such variables on the activity 
generation process, a key area that warrants additional research.  Such a model specification 
provides the ability to examine induced and suppressed demand effects in response to changes in 
system capacity and level of service. 
 
The modeling methodology adopted in this paper builds on previous work by the authors and 
constitutes a joint multiple discrete continuous extreme value model and multinomial logit model 
system (Bhat 2005, Bhat et al., 2006, Bhat 2008).  The multiple discrete continuous extreme 
value (MDCEV) model component is used to jointly analyze activity type choice, activity time 
of day choice, mode choice, and activity duration.  Specifically, the MDCEV model is used to 
represent activity participation (discrete choice) and time use (continuous choice) for different 
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types of activities at different time periods of the day by different travel modes.  The activity 
location choice is modeled using a multinomial logit (MNL) model nested within the MDCEV 
framework.  The model system is estimated for a survey sample drawn from the 2000 San 
Francisco Bay Area Travel Survey (BATS), a comprehensive database that includes detailed 
household and personal socio-economic, demographic, and activity-travel information together 
with a host of secondary transportation level-of-service and land use variables.  
 
The next section presents the modeling methodology in detail.  This is followed by a description 
of the dataset and survey sample.  The fourth and fifth sections present model estimation and 
policy simulation results, while the sixth and final section offers concluding remarks.  
 
2. MODELING METHODOLOGY 
 
This section presents the modeling methodology for the joint MDCEV-MNL model structure.  
First, the utility structure is presented, second, the econometric model specification is presented, 
and finally the procedure for sampling of location choice alternatives is discussed.  An intuitive 
behavioral interpretation of the model structure is offered as well.  
 
2.1 Utility Structure 
Consider the following utility specification for the integrated analysis of individuals’ activity 
time-use, timing, mode choice, and location choice decisions:  

{ }
62

2
1 1 2 2

32

( ) ln ln 1 ln 1ptm
ptm ptm

ptm ptm

xxU xψ γ ψ γ ψ
γ γ=

⎧ ⎫⎛ ⎞⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪= + + + +⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎪ ⎪⎩ ⎭ ⎝ ⎠⎩ ⎭
∑x

 
 (1) 

In the above equation, the first term 11 ln xψ  corresponds to the utility contribution of the total 
daily time invested 1( )x  in all maintenance activities, and the second term corresponds to the 
utility contribution of the total daily time invested 2( )x  in all in-home (IH) discretionary 
activities. The next set of terms correspond to the utility contribution due to the time investment 
( )ptmx in out-of-home (OH) discretionary activity episode types (indexed by ptm), with each 
activity episode type defined by its purpose (p), timing (t), and mode of travel (m). In the current 
empirical context considered in this paper,  there are five OH discretionary activity purposes 
(volunteering, socializing, recreation, meals, and shopping), six time periods (3am-7am or early 
morning, 7am-9am or morning, 9am-12noon or late morning, 12noon-4pm or afternoon, 4pm-
7pm or evening, and 7pm-3am or night), and two modes of travel (auto, and non-auto), yielding 
60 different types of OH discretionary activity episodes (or ptm combinations). Thus, there are a 
total of 62 MDCEV choice alternatives in that one or more of these alternatives may be chosen 
by an individual through the course of a day.1 For each of these alternatives, the ψ  terms 
( 1 2, , and ptmψ ψ ψ ) are the baseline utility parameters that control the discrete choice of the 

                                                 
1 Without loss of generality, all individuals can be assumed to participate in maintenance activities. On the other 
hand, an individual can participate in none, or one, or more of IH discretionary and 5 OH discretionary activity 
purposes (p) identified above. If (s)he chooses to participate in OH discretionary activities, (s)he can do so during 
one or more of the 6 time periods (t), and access the activities using one or more of the 2 travel modes (m). Thus, 
there is multiple discreteness in the choices across the activity purpose, activity timing, and travel mode dimensions. 
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alternative. For all alternatives except the first alternative, the  γ  terms ( 2  and ptmγ γ ) allow for 
corner solutions (i.e., the possibility of not choosing the alternative) as well as satiation effects 
(i.e., diminishing marginal utility with increasing time investment).2 There is no γ  term 
corresponding to the first alternative (maintenance activity) as it is always chosen by all 
individuals. 
  
Finally, let each of the 60 OH discretionary activity episode types (ptm) be defined (by its 
purpose-timing-mode (ptm) combination) such that an individual participates in no more than 
one episode of that type in a day. Consequently, if an individual chooses to undertake an activity 
episode type (ptm), it has to be at only one of the several destination alternatives (l) available to 
her/him.  
 
Let the index for the activity destination (or location) be l, and let ptmN be the set of destinations 
available for an activity episode type (ptm). Further, for each activity episode type (ptm), let 

ptmψ be defined as follows (Bhat et al., 2006): 

exp ,
ptm

ptm lptm lptm
l N

Wψ δ
∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (2) 

where, lptmW is the utility perceived by the individual for undertaking the OH discretionary 
activity episode of purpose p, during time period t, by traveling on mode m to location l, and 

lptmδ  is a dummy variable taking a value of 1 if the lth location is chosen for that activity episode 

such that ( ) 1
ptm

lptml N
δ

∈
=∑ (i.e., only one location is chosen). 

 
With the above definition of ptmψ  and other terms described earlier, the individual is 

assumed to maximize the utility function ( )U x  in Equation (1) subject to 1 2 ;ptm
ptm

x x x X+ + =∑  

1 0,x > 2 0,x ≥ 0 3, 4,...62.ptmx ptm≥ ∀ =  Since the individual maximizes ( )U x and can choose 
only one location for each activity episode ptm type, the functional form of ( )U x  implies that 
the individual will consider the location that provides the maximum utility for each activity 
episode ptm type in the process of maximizing ( )U x (see Bhat et al., 2008). That is, 

max
ptm

ptm

lptm lptm lptml Nl N
W Wδ

∈∈

=∑ , or exp max
ptm

ptm lptml N
Wψ

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Thus, the individual’s utility maximizing 

problem can be written as: 

{ } 2
1 1 2 2

2

( ) ln ln 1 exp max ln 1
ptm

ptm
ptm lptml Nptm ptm

xxU x Wψ γ ψ γ
γ γ∈

⎧ ⎫⎛ ⎞⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪⎛ ⎞= + + + +⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠ ⎪ ⎪⎩ ⎭ ⎝ ⎠⎩ ⎭
∑x  (3) 

                                                 
2 To distinguish the satiation along OH discretionary activity purpose, activity timing, and travel mode dimensions 
(and to facilitate estimation), ptmγ  (ptm = 3,4,…,62) is parameterized as ptm p t mγ γ γ γ= × × , where pγ , tγ , mγ  
are the estimated dimension-specific satiation parameters. 
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subject to 1 2 ;ptm
ptm

x x x X+ + =∑  1 0,x > 2 0,x ≥ 0 .ptmx ptm≥ ∀  

The analyst can solve for the optimal values of 1 2, , and ptmx x x  by forming the Lagrangian and 
applying the Kuhn-Tucker (KT) conditions. Specifically, the following KT conditions can be 
formed (see Bhat, 2008): 

0   212 >= xifHH  (4) 

2 1 2 0H H if x< =  

1 0ptm ptmH H if x= >  

1 0ptm ptmH H if x< =  
where, 

1 1 1

2
2 2

2

ln( ) ln( ),

ln( ) ln 1 , and

max ln 1
ptm

ptm
ptm lptml N

ptm

H x

xH

x
H W

ψ

ψ
γ

γ∈

= −

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠  

 
2.2 Econometric Structure 
To complete the model specification, let 1 1 1exp( )zψ β ε′= + and 2 2 2exp( )zψ β ε′= + , where 1zβ′  
and 2zβ ′  are the observed baseline utility components of maintenance and IH discretionary 
activities, respectively, and 1ε  and 2ε  are the corresponding unobserved components assumed to 
be independent and identically Gumbel distributed. Further, to define ptmψ , we expand lptmW as:  

lptm ptm lptm lptmW z wβ φ η′ ′= + +   (5) 

where, ptmzβ ′  is the observed baseline utility corresponding to the activity purpose, timing, and 
mode of the OH discretionary activity episode ptm, lptmwφ′ is the observed utility corresponding 
to the potential location l for the activity episode, and lptmη  is the unobserved utility component 
associated with the location l of activity episode ptm. Similar to 1ε  and 2ε , the lptmη  terms are 
assumed to be independent and identically distributed (across different activity episode ptm 
types) Gumbel terms. Within each activity episode ptm type, however, all the error terms may 
share common unobserved attributes (specific to the activity episode ptm type) generating 
correlations among the  lptmη terms across all potential locations for the activity episode. Thus, for 
each activity episode ptm type, the following distribution of error terms may be used: 

{ }1 2
 / / /

1 2( , ,..., ) exp  ...
ptm

ptm ptm ptm ptm Lptm ptm
ptm ptm LptmF e e e

θη θ η θ η θη η η − − −⎡ ⎤= − + + +⎣ ⎦    (6) 

where the ptmθ  is the dissimilarity parameter indicating the level of correlation among the lptmη  
terms across all the potential locations for the activity episode ptm combination. Given this error 
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distribution, using the properties of Gumbel distribution, ptmH  in Equation (4) can be expressed 
as: 

{ }max ln 1

ln exp ln 1

ptm

ptm

ptm
ptm ptm lptm lptml N

ptm

lptm ptm
ptm ptm ptm

l N ptm ptm

x
H z w

w x
z

β φ η
γ

φ
β θ ζ

θ γ

∈

∈

⎛ ⎞
′ ′= + + − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞′

′= + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
 

 (7) 

where, ptmζ  is a standard independent and identically distributed (across ptm) Gumbel error term. 

In this equation, ln exp
k

lk

l N k

wφ
θ∈

⎛ ⎞′
⎜ ⎟
⎝ ⎠

∑  constitutes the logsum term. 

 
Next, following the MDCEV model derivations (see Bhat, 2008), the probability that the 
individual chooses the first Q out of K (=62) activity purpose-timing-mode alternatives (this may 
include maintenance as well as the IH discretionary activities without any timing and mode 
distinctions) for time investments * * *

1 2, ,..., Qx x x  may be written as: 

* * * 1
1 2

11

1

1( , ,..., 0,0,..., 0) ( 1)!

k

h

Q
V

Q Q
k

Q k QKkk k V

h

e
P x x x r Q

r
e

=

==

=

⎡ ⎤
⎢ ⎥

⎡ ⎤⎡ ⎤ ⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢ ⎥⎛ ⎞⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∏
∑∏

∑
,  (8) 

where3 

1 * *

1 1and 1k
k k k

r r k
x x γ

⎛ ⎞ ⎛ ⎞
= = ∀ >⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 

1 1 1

2
2 2

2

ln( ),

ln 1 , and

ln ln 1 ; 2
k

lk k
k k k

l N k k

V z x

xV z

w xV z k

β

β
γ

φβ θ
θ γ∈

′= −

⎛ ⎞
′= − +⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞′

′= + − + ∀ >⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

 

The conditional probability that location l will be chosen for an activity episode purpose-timing-
mode (ptm) combination k, given that * 0kx > , is given by: 

[ ]*( | 0;   )   k k lk lk l k l kP l x l N P w w l lφ η φ η′ ′′ ′ ′> ∈ = + > + ∀ ≠  (9) 

                                                 
3 Note that the notation for the subscripts of the choice alternatives has been changed to k(=1,2,…62) from 
1,2,ptm(=3,4,…62) for convenience. 
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Based on the multivariate Gumbel distribution function for the lkη  (or lptmη ) terms (l = 1,2,…, L) 
from Equation (6), the above probability expression can be computed using the following 
standard multinomial logit formula: 

*

exp
( | 0;   )

exp
k

lk

k
k k

l k

l N k

w

P l x l N
w

φ
θ
φ
θ

′

′∈

⎛ ⎞′
⎜ ⎟
⎝ ⎠> ∈ =
⎛ ⎞′
⎜ ⎟
⎝ ⎠

∑
 (10) 

Next, the unconditional probability that the individual spends *
1x  amount of time in daily 

maintenance activities, *
2x  amount of time in daily IH-discretionary activities, *

3x  amount of time 
in OH discretionary activity episode purpose-timing-mode (ptm) combination 3 (i.e., k =3) at 
location a, *

4x  amount of time in OH discretionary activity episode purpose-timing-mode (ptm) 
combination 4 (i.e., k =4) at location b, … and so on, may be written as: 

* * * * *
1 2 3 4

* * * * * *
1 2 3 4

( , , at ,  at , ...,  at , 0,0,0,...0)

( , ,... ,0,0,...0) ( | 0) ( | 0)... ( | 0)
Q

Q Q

P x x x a x b x q

P x x x P a x P b x P q x= × > × > >
  (11) 

 
2.3 Sampling of Location Choice Alternatives 
A practical issue with the proposed MDCEV-MNL model (as also with the deeply nested logit 
approach) is that, since there can be a large number of location choice alternatives at the single 
discrete choice level (and since multiple single discrete choice models may be invoked), the 
model estimation can be highly computation intensive. To reduce the computation time, the 
analyst can include only a smaller sample of the location choice alternatives (with the chosen 
alternative in the sample) during estimation. According to McFadden (1978), random sampling 
of alternatives will not compromise the consistency of the location choice model parameters as 
long as a simple multinomial logit modeling framework is maintained for the location choice as 
in Equation (10).4 However, sampling the location choice alternatives warrants a correction to 

the log-sum term ln exp
k

lk

l N k

wφ
θ∈

⎛ ⎞′
⎜ ⎟
⎝ ⎠

∑  used in the MDCEV component of the joint model (See 

Equation 7). This is because, in this term, the sum of exponentials of the utilities (scaled by the 

dissimilarity parameter) of all the location choice alternatives exp
k

lk

l N k

wφ
θ∈

⎛ ⎞′
⎜ ⎟
⎝ ⎠

∑  is not equal to the 

sum of exponentials of the utilities of a sample of those alternatives. This is corrected by 
                                                 
4 The reader will note here that Equation (10) is derived from a nested extreme value error term distribution as in 
Equation (6). However, since this distribution assumes the same scale parameter for all location choice alternatives 
associated with the activity episode ptm type, the location choice parameters will be consistent. In essence, as long 
as the error distributions do not allow different scale parameters across the location choice alternatives associated 
with an activity episode ptm type (i.e., to accommodate spatial correlations, etc.) and no random coefficients are 
estimated in the location choice model, one can use a random sample of location choice alternatives to consistently 
estimate the model parameters. See Bierlaire et al. (2008) for more details on sampling related issues with multi-
dimensional choice models. 
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incorporating a scaling factor ( kπ ) that is equal to the total number of available location choice 
alternatives divided by the number of sampled alternatives. Since location choice alternatives are 
sampled randomly, and since the random sample varies across individuals and activity purpose-
timing-mode (ptm) combinations, this scaling factor should help approximate the logsum term 
reasonably well. That is: 

a  random sample of 
ln exp ln exp

k k

lk lk
k

l N l Nk k

w wφ φπ
θ θ∈ ∈

⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′
≈⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑   (12) 

In this study, 30 location choice alternatives are randomly sampled from 1099 potential locations 
yielding, kπ  = 36.63. 
 
2.4 An Intuitive Behavioral Interpretation 
 
The probability expression in Equation (11) is a combination of MDCEV and single discrete 
choice probabilities. Specifically, for each OH discretionary activity episode purpose-timing-
mode (ptm) combination chosen by an individual, a single discrete choice model of location 
choice is invoked. The parameters φ  and kθ  appear in both the MDCEV probability expression 
(Equation 8) as well as the standard discrete choice probability expression for the choice of 
activity location (Equation 10) to create jointness between the multiple discrete-continuous and 
single discrete choices. Further, the logsum term (see Equation 7) appearing in the MDCEV 
probability expression carries the accessibility of destinations (or potential locations) from the 
single discrete location choice model to the MDCEV model of time investment by activity 
purpose, timing, and travel mode. Thus, Equation (11) represents a unified and comprehensive 
model of activity-travel program generation that incorporates the influence of accessibility 
measures on activity time-use, timing, and mode choices.  
 
The proposed two-level MDCEV-MNL model is an attractive alternative to the deeply nested 
logit modeling approach available in the literature, where accessibility measures have to 
propagate up to the activity generation level through multiple levels of a deeply nested logit 
model. Further, the MDCEV-MNL model provides a seamless way of incorporating time-use 
(and the impact of accessibility on time-use) into the framework. Specifically, the modeling 
framework explicitly accommodates the concept that individual’s activity time-use (i.e., time 
allocation) decisions are important and influential components of their activity-travel decision-
making (Bhat and Koppelman, 1999). On the other hand, the deeply nested logit approach does 
not explicitly incorporate activity time-allocation choices into the analysis framework in a 
straight forward manner. Another appealing feature is that the model recognizes the simultaneity 
of the activity time-use, timing, mode choice, and location choice decisions within a unified 
utility maximization framework.   
 
 
3. DATA DESCRIPTION  
 
The data set used in this paper is derived from the 2000 San Francisco Bay Area Travel Survey 
(BATS), designed and administered by MORPACE International Inc. for the Bay Area 
Metropolitan Transportation Commission (MTC).  The data includes information on: (1) 
Individual and household socio-demographics for over 15,000 households in the Bay Area, and 
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(2) All activity episodes (including activity type, start and end times of the activity, geo-
referenced location of activity participation, and mode of travel to the activity) undertaken by the 
individuals in all surveyed households for a two-day period.  
 
The travel survey records were augmented extensively with several secondary data items, 
including land-use characteristics, transportation network level-of-service data, and Census 
population and housing data.  In addition, geo-referenced data on businesses, bicycle facilities, 
highways and local roads were used to derive spatial variables characterizing the activity-travel 
environment (ATE) in and around the household locations of the individuals in the data set.  
Details regarding the data preparation and augmentation processes can be found in Guo and Bhat 
(2004) and Pinjari et al., (2009).   
 
As mentioned in the previous section, the activity choice dimensions modeled in this paper 
include activity type choice, activity time of day choice, travel mode choice, activity location 
(destination) choice, and activity time use allocation (duration).  The MDCEV model component 
alternatives are formed as combinations of activity type, time of day, and travel mode while the 
duration of each activity episode constitutes the continuous dependent variable.  Finally, the 
MNL module accommodates the activity location or destination choice.  There are: (a) a 
maintenance activity type, (b) an in-home discretionary activity type, and (c) five out-of-home 
discretionary activity types, six time periods, and two travel modes, yielding a total of 62 
possible MDCEV choice alternatives (2 + 5x6x2 = 62).  It is to be noted that the activity timing 
and travel mode analysis is limited to the five out-of-home discretionary activity types.     
 
In order to control for fundamental differences between workers and non-workers in their 
activity engagement patterns and choice processes, and in the interest of brevity, the analysis in 
this paper was restricted to the sample of 5,360 non-working individuals aged 16 years or above.  
Descriptive statistics for this sample of individuals are presented in Table 1. All 5,360 
individuals participate in in-home maintenance for an average duration of nearly 11 hours.  Forty 
percent engage in in-home discretionary activities for an average duration of about 5.5 hours.  
Note that the average durations are computed over those who actually participate in the activity 
type.  A little over one-half of the sample participated in OH discretionary activities, for an 
average duration of about 2.5 hours. It is found that the automobile mode is the preferred and 
dominant mode of travel accounting for nearly 90 percent of all out-of-home discretionary 
activity engagement.  Non-maintenance shopping shows a relatively high participation rate, but 
lower time allocation (regardless of mode), while activities such as meals, socializing, and 
recreation show lower participation rates but higher time allocation.  Across the top of the table 
(in the grey shaded row), it is seen that only a very small percent of individuals participate in OH 
discretionary activities in the early morning, and the percentage steadily rises into the afternoon, 
and then shows a decline towards the night hours.  Activities undertaken in the morning and 
early morning, however, show the longest average durations relative to those in the afternoon 
and evening, potentially indicating the effect of time constraints that might get tighter towards 
the latter half of the day.  Overall, this table shows the interplay among the dimensions of 
activity-travel participation that merit a unified approach towards modeling these behavioral 
characteristics. 
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4. EMPIRICAL ANALYSIS 
 
4.1 Model Specification And Estimation Results  
 
Model estimation was performed using Gauss code written specifically to estimate the joint 
MDCEV-MNL model system.  Although it would have been ideal to estimate a separate 
destination choice model for each of the 60 OH discretionary activity purpose-timing-mode 
(ptm) combination categories, for this initial effort, a single MNL location choice model was 
estimated for all discretionary activity ptm categories.  However, extending the estimation 
process to incorporate 60 MNL models of destination choice is straightforward by specifying 
dimension-specific model coefficients; the model specification here is one in which all 
destination choice model coefficients are restricted to be identical across all activity purpose 
categories, timing categories, and mode categories.  A variety of variables were included in the 
model specification including household and personal socio-economic and demographic 
variables, contextual variables such as day of week and season of the year, and a host of spatial 
variables characterizing the activity-travel environment (ATE) around the household locations, 
not to mention several transportation network level of service variables. The spatial ATE 
variables included density measures, activity opportunity and accessibility measures, and 
population and housing data for the neighborhood (traffic analysis zone).  The ATE measures 
were considered at the level of the traffic analysis zone and at finer spatial resolutions, including 
within 0.25 mile, 1 mile, and 5 mile radii buffers of the household location (see Guo and Bhat, 
2004 and Pinjari et al, 2009 for complete details).   
 
In the current research effort, a comparison was made between the joint MDCEV-MNL model 
that integrates destination choice with activity choices and an independent MDCEV-MNL model 
that does not incorporate the log-sum parameters in the MDCEV component. The goodness of fit 
of the two models were compared using the Bayesian Information Criterion (BIC), which is 
given by the expression 2 ln( ) ln( )L number of parameters Q− × + × , where ln( )L  is the log-
likelihood value at convergence and Q is the number of observations. The model that results in 
the lower BIC value is the preferred model. The BIC value for the MDCEV-MNL model (with 
103 model parameters) is,150514.2 which is substantially lower than that for the independent 
MDCEV-MNL model (152334.2 with 102 model parameters). Thus, the BIC clearly favors the 
MDCEV-MNL model of integrated activity choices and destination choice. 
 
The discussion in this paper is limited to the results of the joint MDCEV-MNL model.  The 
MDCEV component is specified (and the results are presented) in such a way that the effect of 
each variable is first identified separately along the activity purpose, activity timing and travel 
mode dimensions. Subsequently, any interaction effects of the variable over and above the uni-
dimensional effects are identified. A blank entry corresponding to the effect of a variable 
indicates no significant effect of the variable on the integrated choice process. Further, the effects 
of variables on the baseline utilities have been constrained to be equal if coefficient equality 
could not be rejected based on statistical tests. Finally, t-statistics are presented in parentheses.  
The final specification of the MDCEV component of the model is presented in Tables 2. In the 
interest of brevity, and considering the large number of alternatives (62), tables showing 
estimates of baseline preference constants and satiation parameters are not furnished here. 
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Overall, the model results show indications as expected.  Larger household sizes are associated 
with greater levels of participation in maintenance activities (in and out of home), while single 
persons are more prone to out-of-home socializing and recreation in the evening.  The presence 
of very young kids motivates activity engagement in the prime period of the day as opposed to 
early mornings and late nights, although those with school age children are more restricted to 
pre- and post-school hours.  The number of working adults contributes negatively to activity 
engagement in the middle of the day, presumably due to work constraints. Lower income 
individuals are more prone to in-home discretionary activities, while higher income individuals 
are prone to undertake out-of-home activities, consistent with expectations.  Higher levels of car 
ownership contribute negatively to in-home activity participation and non-auto mode use. 
 
Females are more likely to engage in volunteering and maintenance activities, particularly in the 
midday period, confirming the role of gender differences in activity engagement. Younger 
individuals are likely to socialize in the evening and night, while older individuals (65+ years) 
are more likely to volunteer and not undertake night activities.  Those who are licensed to drive 
have a greater propensity for out-of-home activities, while the reverse is true for those physically 
disabled.  Employed individuals engage less in maintenance activities and in-home discretionary 
activities, even on days that they do not work (this analysis was limited to non-working days for 
all 5,360 individuals, whether they are employed or not). Fridays are associated with greater out-
of-home discretionary activity participation, and night time activities.  On rainy days, it is less 
likely that individuals will eat out using non-auto modes.  Population density contributes 
positively to out-of-home meals, shopping by non-auto mode, possibly because such areas are 
better served by transit and have better walk and bicycle access to destinations.  Overall, the 
findings are consistent with expectations and consistent with those found earlier by Pinjari and 
Bhat (2009a).  
 
The estimation results for the destination choice model are presented in Table 3.  The destination 
choice model component was estimated with 30 randomly sampled choice alternatives for each 
location choice decision.  The effects of transportation network level of service, built 
environment, and demographic interaction terms were represented in the final model 
specification.  Auto travel times and costs decrease the utility associated with choosing a 
destination for any activity type.  The presence of bicycle lanes, total employment, the size of the 
zone, and zonal household income positively impact destination choice for discretionary 
activities while retain and service employment, increasing fraction of land devoted to residential 
uses in the zone, and accessibility to passive and natural recreation contribute negatively to 
destination choice for the activity categories considered in this paper.  The long list of interaction 
terms demonstrates how household and personal socio-economic and demographic 
characteristics play a key role in influencing destination choice for discretionary activities 
undertaken outside home. In the interest of brevity, a detailed explanation is not provided here, 
but suffice to say that all of the interaction terms included in the model specification are highly 
significant and indicate that household socio-economic and demographic characteristics serve to 
moderate or enhance the likelihood of choosing a certain type of destination for activity 
engagement. For example, females are more prone to choosing destinations with high density of 
eat-out centers, as are older people and higher income individuals.  Those with kids and in larger 
households are less prone to choose zones with high household density as destinations, 
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presumably because they prefer more open space and suburban locations to accommodate family 
activities.   
 
The logsum parameters ( ptmθ ) estimated for each activity purpose, timing, and travel mode 
combination were not statistically different from unity.  In the final model estimation, all logsum 
parameters were restricted equal to one.  This implies the absence of common unobserved factors 
across all location choice alternatives specific to an activity type, timing, and mode combination.    
Note that this finding does not imply independence between the MDCEV and MNL model 
components; rather the logsum variables tie the two model components together, where as the 
logsum parameters represent only the presence (or absence) of correlated unobserved factors 
across destination choice alternatives for each activity type, timing, and mode combination 
category. 
 
4.2 Policy Simulation  
 
The major objective of this paper was to develop a unified model of activity-travel and location 
choices and time use that would allow one to examine the influence of level of service measures 
and activity-travel environment (ATE) attributes on these choice dimensions in an integrated 
manner.  To demonstrate the capabilities of the model system presented in this paper, the model 
was used to examine the impacts of the following scenarios on activity and time use behavior: 
 

• Doubling travel cost across all time periods  
• Doubling travel cost during peak periods  
• Doubling travel cost for auto mode  
• Doubling travel time across all time periods  
• Doubling travel time during peak periods  
• Doubling travel time by auto mode  

 
Logsum variables computed using the activity destination choice MNL model were used as 
explanatory variables in the MDCEV model to predict individual’s participation in and time 
allocation to activities by activity purpose, timing, and mode.  For each policy scenario, logsum 
variables were computed for all 60 OH discretionary activity purpose, timing, and mode 
combinations (for use in the base case prediction), and then updated for the specific timing or 
travel mode categories for which the policy applied (for the policy case prediction).  The 
prediction using MDCEV was carried out for all individuals in the sample using 1000 
replications of the error term draws for each individual.  Additional details about the forecasting 
procedure using the MDCEV model are provided in Pinjari and Bhat (2009b).  
 
The forecasts under alternative scenarios are presented in Table 4.  Specifically, the influence of 
each policy is reported as an aggregate percent change in the amount of time invested in 
maintenance activities, in-home discretionary activities, and out-of-home discretionary activities 
by purpose, time of day, and mode (relative to the base case).   
 
In general, the results provide indications along expected lines.  Increases in travel cost lead to 
reduced out-of-home activity engagement and slight increases in in-home activity engagement.  
Increases in travel cost during the peak period impact volunteer, eat-meal, and recreation 
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activities more than others, and reduce peak period activity engagement while increasing off-
peak activity engagement. Increases in auto travel costs and times reduce the use of auto mode 
for activity engagement and contribute to enhanced mode shares for non-auto modes.  In general, 
travel time increases appear to have larger impacts than travel costs, suggesting that individuals 
are more time-sensitive when making activity-travel choices.  In terms of the modal impact, it 
appears that all day travel cost or time increases have a greater impact than a time-specific peak-
period travel cost or time increase. It appears that individuals are more likely to respond to price 
and time signals that cover an entire day as opposed to those that are narrower in the time band 
of influence.  Overall, the policy simulation results clearly show that the model is effective in 
capturing the responses of individuals to system changes in a unifying framework. 
 
5. CONCLUSIONS 
 
This study aims to present a comprehensive unified model system of activity-travel choices that 
is consistent with microeconomic utility maximization theory of behavior.  The activity-travel 
choice dimensions analyzed in this paper include activity type choice, time of day choice, mode 
choice, destination choice, and activity time allocation or duration.  All discrete choices, except 
for activity destination choice, and the continuous choice dimension of activity duration are 
modeled simultaneously using the multiple discrete continuous extreme value (MDCEV) model 
form while the destination choice is modeled using a classic multinomial logit model (MNL) 
component.  The model components are tied together within a utility maximization-consistent 
framework using logsum variables that reflect the accessibility of destinations for each activity 
type, timing, and mode combination. Model estimation results and the policy simulation analysis 
showed that the joint model system has merit, offers behaviorally intuitive interpretation, and 
offers a goodness of fit statistically superior to that offered by an independent model system that 
treats various choice dimensions separately and sequentially.  The model specifications included 
built environment and transportation network level of service attributes demonstrating the impact 
of these variables on activity-travel dimensions.  The model system is presented for a non-
worker sample drawn from the 2000 San Francisco Bay Area Travel Survey (BATS).  One of the 
key empirical findings of this analysis is that the built environment and transportation network 
level of service attributes of the destinations significantly impact activity time use allocation, an 
aspect that is often overlooked in the literature.    
 
The model form adopted in this paper has key implications for activity-travel demand model 
development.  It appears that the findings reported here support the notion that individuals make 
several activity-travel choices jointly as a “bundle”, calling for the simultaneous modeling of 
various choice dimensions in a unifying framework. Activity-travel model systems that purport 
to simulate the behavior of agents along the time axis may benefit from the adoption of model 
forms that are able to simultaneously predict multiple choice dimensions as a “bundle”.  Ignoring 
to do so may yield erroneous policy scenario predictions.   
 
The current study may be enhanced further by estimating dimension-specific (i.e., activity 
purpose-, timing-, and mode-specific) coefficients for transportation network level of service 
measures and activity-travel environment attributes in the location choice models.  In addition, 
one needs to note that the policy forecasts provided by the MDCEV model are potentially 
restrictive in that the total time allocation (budget constraint) is assumed constant across all 
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policy scenarios (there is simply a reallocation of time across activity categories, but maintaining 
total time expenditure for all activity categories considered constant).  Overcoming this 
limitation is another direction for future research.      
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Table 1 Descriptive Statistics of Activity participation and Time-Use by Activity Purpose, Activity Timing and Travel mode5 

  

ACTIVITY TIMING 
Early 

Morning 
(3am-7am) 

Morning 
(7am-9am) 

Late Morning
(9am-12pm) 

Afternoon 
(12pm-4pm) 

Evening 
(4pm-7pm) 

Night 
(7pm-3am) 

ACTIVITY PURPOSE and 
TRAVEL MODE 

Number (%) of non-
workers participating, and 

mean duration of 
participation among those 

participating 

63 
(2.3%)6 
140 min 

382 
(13.9%) 
169 min 

1131 
(41.1%) 
121 min 

1257 
(45.7%) 
97 min 

720 
(26.2%) 
103 min 

371 
(13.5%) 
111 min 

Maintenance 5360    (100%)   651 min -- -- -- -- -- -- 

IH Discretionary  2133   (39.8%)   341 min -- -- -- -- -- -- 

OH Discretionary 2752   (51.3%)   163 min -- -- -- -- -- -- 

OH Discretionary Auto mode 2473  (89.9%)  158 min       

      Volunteering   396   (14.4%)7  149 min      4 (1.0%)8   81 (20.5%) 137 (34.6%) 89 (22.5%) 72 (18.2%) 63 (15.9%) 

      Socializing   508   (18.5%)   128 min   6 (1.2%)  20 ( 3.9%) 125 (24.6%) 159 (31.3%) 97 (19.1%) 77 (15.2%) 

      Meals   809   (29.4%)   115 min 13 (1.6%)  90 (11.1%) 206 (25.5%) 270 (33.4%) 223 (27.6%) 84 (10.4%) 

      Non-Maintenance Shopping 1092   (39.7%)    60 min 4 (0.4%)  46 ( 4.2%) 372 (34.1%) 571 (52.3%) 175 (16.0%) 53 ( 4.9%) 

      Recreation  7 38   (26.8%)  145 min  33 (4.5 %)  116 (15.7%) 256 (34.7%) 200 (27.1%) 115 (15.6%) 88 (11.9%) 

OH Discretionary Non Auto mode 432   (15.7%) 134 min       

      Volunteering    37    (1.3%)   170 min  2 (5.4%) 9 (24.3%) 10 (27.0%) 8 (21.6%) 3 (8.1%) 6 (16.2%) 

      Socializing    72    (2.6%)   140 min 0 (0.0%) 3 (4.2%) 19 (4.2%) 27 (37.5%) 21 (29.2%) 4 (5.6%) 

      Meals  135    (4.9%)   119 min 1 (0.7%) 9 (6.7%) 35 (25.9%) 54 (40.0%) 25 (18.5%) 18 (13.3%) 

      Non-Maintenance Shopping  132    (4.8%)     59 min 0 (0.0%) 4 (3.0%) 50 (37.9%) 62 (47.0%) 12 (9.1%) 6 (4.5%) 

      Recreation  131    (4.8%)    136 min 1 (0.8%) 14 (10.7%) 52 (39.7%) 33 (25.2%) 32 (24.4%) 6 (4.6%) 

                                                 
5 The reader will note here that the average time investments reported in this table are for only those who participated in the corresponding activity purpose or for those who 
participated in OH discretionary activities during the corresponding time period. Also, the activity participation percentages across all activity purposes (or across all time periods, 
or modes) may sum to more than 100% because of multiple discreteness (i.e., participation in multiple activity purposes and/or during multiple time periods and/or travel by 
multiple modes over a day). For example, a non-worker can undertake both OH recreation and OH meal activities on a day.   
6 Percentages in this row are out of the 2752 non-workers who participated in at least one OH discretionary activity during the day.  
7 Percentages in this column, from this row onward, are out of the 2473 non-workers who traveled by auto mode for at least one OH discretionary activity during the day.  
8 Percentages from this row and column onward (within this block of rows) are based on total number of non-workers participating in row activity purpose [(4/396)×100=1.0%]. 
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Table 2 The MDCEV Model Results: Baseline Parameter Estimates 

 Household (HH) Socio-demographics 

 HH size Single 
member HH 

Kids of 
age <5 yrs 

present 

Kids of 
age 5-15 yrs 

present 

Number of 
kids of 

age <15 yrs 

#  of adults in 
HH who 

worked on the 
day 

HH 
annual 
income 
< 45k 

HH annual 
income 
>100k 

# of 
vehicles in 

HH 

‘Activity Purpose’ Dimension          

IH and OH Maintenance 0.071 
(3.74) - - - - - - - - 

IH Discretionary - - - - - - 0.168 
(2.92) - -0.061 

(-1.89) 
OH Volunteering - - - - - - - - - 

OH Socializing - 0.420 
(3.73) - - - - - 0.169 

(3.61) - 

OH Recreation - - - - - - - 0.169 
(3.61) - 

OH Meals - - - - - - - 0.169 
(3.61) - 

OH Non-Maintenance Shopping - - - - - - - 0.169 
(3.61) - 

‘Activity Timing’ Dimension          
Early Morning - - - - - - - - - 

Morning - - 0.125 
(1.77) 

0.297 
(2.10) - - - - - 

Late Morning - - 0.125 
(1.77) - - -0.170 

(-4.43) - - - 

Afternoon - - 0.125 
(1.77) - - -0.170 

(-4.43) - - - 

Evening - - 0.125 
(1.77) 

0.428 
(3.88) - - - - - 

Night - - - - - - - - - 

   ‘Travel Mode’ Dimension          

Auto mode - - - - - - - - - 

Non-auto mode - - - - - - - - -1.190 
(-31.90) 

Interactions          

OH Recreation – Evening - 0.363 
(3.53) - - - - - - - 

OH Recreation – Non-auto - - - - - - - 0.463 
(2.11) - 

OH Meals - Non-auto - - - - 0.154 
(1.17) - - - - 

OH Meals - Non-auto - Evening - - - - -0.535 
(-1.36) - - - - 
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Table 2 (Continued) The MDCEV Model Results: Baseline Parameter Estimates  
 Individual Socio-demographics Contextual ATE attributes 

 Female 
Age 
< 30 
yrs 

Age 
> 65 
yrs 

Licensed 
to drive 

Physically 
disabled Employed Friday Fall Rain Retail 

employment 
Population 

density 

Total 
employment 

density 

Density of 
highways 

‘Activity Purpose’ Dimension              

IH and OH Maintenance 0.315 
(7.29) - - - - -0.173 

(-3.59) - - - - - - - 

IH Discretionary - - - - - -0.1263 
(-1.98) - -0.105 

(-1.98) - - - - - 

OH Volunteering 0.350 
(3.46) - 0.617 

(6.51) 
0.743 
(9.46) 

-0.249 
(-3.09) - - - - - - - - 

OH Socializing - 0.467 
(2.70) - 0.743 

(9.46) 
-0.249 
(-3.09) - 0.242 

(4.31) - - - - - - 

OH Recreation - - - 0.743 
(9.46) 

-0.249 
(-3.09) - 0.357 

(4.14) - - - - - - 

OH Meals - - - 0.743 
(9.46) 

-0.249 
(-3.09) - 0.242 

(4.31) - - - - - - 

OH Non-Maintenance Shopping - - - 0.743 
(9.46) 

-0.249 
(-3.09) - 0.242 

(4.31) - - - - - - 

‘Activity Timing’ Dimension     
Early Morning - - - - - - - - - - - - - 
Morning - - - - - - - - - - - - - 

Late Morning 0.286 
(5.10) - - - - - - - - - - - - 

Afternoon 0.286 
(5.10) - - - - - - - - - - - - 

Evening - 0.308 
(1.85) - - - - - - - - - - - 

Night - 0.739 
(4.78) 

-0.482 
(-3.70) - - - 0.404 

(3.23) - - - - - - 

‘Travel Mode’ Dimension              
Auto mode - - - - - - - - - - - - - 

Non-auto mode -0.220 
(-2.92) - - - - - - - - - - - - 

‘Interactions’              
OH Non-Maintenance Shopping – 
Afternoon - - - - - - - - - -0.001 

(-2.59) - - - 

OH activity Non-auto - Afternoon 
(except shopping) - - - - - 0.369 

(1.91) - - - - - - - 

OH Meals - Non-auto - - - - - - - - -0.263 
(-0.85) - - - - 

OH Meals, shopping -Non-auto - - - - - - - - - - 0.016 
(5.43) - - 

OH Recreation - Non-auto - - - - - - - - - - - 0.006 
(0.75) - 

OH Social, meals - Non-auto  - - - - - - - - - - - - -0.069 
(-0.88) 



 
 

22

Table 3 MNL Component (Location Choice) Model Estimation Results 
 

Variable Coefficient t-stat 
LOS Measures   

Auto peak travel time -0.012 -11.82 

Auto peak travel cost -0.056 -2.59 

ATE Attributes   

Density of bicycle lanes 0.129 7.75 

Retail employment -0.005 -5.70 

Service employment -0.005 -4.47 

Logarithm of Total employment 0.405 29.06 

Fraction of residential land-use -2.272 -41.69 

Logarithm of zonal area 0.056 5.44 

Mean zonal household income 0.007 9.19 

Accessibility to passive and natural recreation -0.364 -2.92 

Interaction with socio-demographics   

Density of bicycle lanes * age/100 -0.110 -4.84 

Density of bicycle lanes * Continuous income x 10-5 0.042 5.46 

Density of bicycle lanes * household vehicles 0.025 4.94 

Density of eat-out centers * female 0.003 3.26 

Density of eat-out centers * Continuous income x 10-5 0.010 13.31 

Density of eat-out centers * age/100 0.027 32.64 

Density of eat-out centers * household size 0.014 28.96 

Density of eat-out centers * Own household 0.002 2.17 

Logarithm of household population * age/100 0.102 6.42 

Logarithm of household population * household vehicles 0.011 3.32 

Household density * No. of kids < 15yrs -0.006 -1.32 

Household density * household size -0.001 -0.36 

Household density * household vehicles 0.009 3.41 

Accessibility to employment * household size -0.003 -6.25 

Accessibility to employment * Own household 0.008 15.38 
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Table 4 Policy Simulation Results 
 

Alternatives Activity Purpose Activity Timing Travel Mode 

Scenario details Maintenance IH 
Discretionary 

OH 
Volunteer 

OH 
Social 

OH 
Meals 

OH 
Shopping 

OH 
Recreation 

Early 
Morning Morning Late 

Morning Afternoon Evening Night Auto  Non-
auto 

Travel cost measure 
increased by 100% 
for all time periods 

0.01 0.02 -0.99 -1.00 -0.84 -0.91 -0.93 -0.92 -0.90 -0.92 -0.96 -0.92 -0.87 -1.00 -0.75 

Travel cost measure 
increased by 100% 
for peak periods 

0.00 0.00 -0.58 -0.05 -0.46 0.07 -0.29 1.34 -3.89 1.30 1.26 -3.93 1.34 -0.30 -0.19 

Travel cost measure 
increased by 100% 
for auto mode 

0.01 0.01 -1.16 -1.21 -0.27 -0.31 -0.83 -0.77 -0.75 -0.69 -0.64 -0.68 -0.76 -2.10 2.48 

Travel time measure 
increased by 100% 
for all time periods 

0.04 0.06 -3.36 -3.40 -2.86 -3.09 -3.18 -3.11 -3.07 -3.13 -3.26 -3.13 -2.95 -3.39 -2.57 

Travel time measure 
increased by 100% 
for peak periods 

0.01 0.02 -1.88 -0.15 -1.53 0.22 -0.95 4.41 -12.70 4.22 4.12 -12.83 4.37 -0.99 -0.64 

Travel time measure 
increased by 100% 
for auto mode 

0.03 0.04 -3.85 -3.99 -0.95 -1.05 -2.73 -2.54 -2.51 -2.30 -2.12 -2.27 -2.54 -7.03 8.34 

 


