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ABSTRACT 

Random utility maximization-based discrete choice models involve utility functions that are 

typically specified with explanatory variables representing alternative-specific attributes. It may 

be useful to specify some alternative-specific attributes as stochastic in situations when the analyst 

cannot accurately measure the attribute values considered by the decision maker. In addition, the 

parameters representing decision makers’ response to the attributes may have to be specified as 

stochastic to recognize response heterogeneity in the population. Ignoring either of these two 

sources of stochasticity can lead to biased parameter estimates and distorted willingness-to-pay 

estimates. Further, in some situations the analyst may not even have access to measurements of 

important alternative-specific attributes to include them in the utility specification. In this study, 

we explore the feasibility of simultaneously inferring alternative attributes and the corresponding 

coefficients, as well as stochasticity in both – without the help of external measurement data on 

alternative attributes – using mixed logit models on pooled revealed preference (RP) and stated 

preference (SP) choice datasets. To do so, we first theoretically examine parameter identifiability 

for different specifications and distributional forms of alternative attributes and their coefficients. 

Next, we illustrate this through simulation experiments in a travel mode choice setting and 

demonstrate the conditions under which pooled RP-SP data can help disentangle stochastic 

alternative attributes from random coefficients. In addition, an empirical application is presented 

in the context of commute mode choice in Bengaluru, India, to demonstrate the importance of 

recognizing stochasticity in mode-specific in-vehicle travel times along with the random 

coefficient on in-vehicle travel times.  

 

Keywords: pooled RP-SP data, travel mode choice, mixed logit, stochastic variables, random 

coefficients, parameter identification 
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1. INTRODUCTION 

Pooling stated and revealed data sources has long been recognized by transportation researchers 

as a valuable approach for enriching behavioural information from travel choice models (Bradley 

and Daly, 1991; Hensher and Bradley, 1993; Morikawa, 1994; Hensher et al., 1998; Bhat and 

Castelar, 2002; Cherchi and Ortuzar, 2006; Hensher, 2012; Helvestorn et al., 2018, etc.). 

Combining these two data sources, also referred to as ‘data enrichment’ or ‘data fusion’, helps 

exploit the realism of revealed preference (RP) data along with the statistically appealing 

properties of stated preference (SP) data. SP data comes with its possible limitations related to the 

veracity of individual stated responses, which may be different in hypothetical settings than in 

real-life contexts. On the other hand, RP data may be associated with endogeneity bias when 

attributes that impact consumer choices are unobserved to the analyst and are correlated with the 

observed attributes. Moreover, SP data is able to reduce collinearity among attributes describing 

choice alternatives, which can potentially be a problem with RP data. The recognition of the 

strengths and drawbacks of each source has led to the understanding that pooling the two data 

sources can lead to an enhanced modelling of travel choice behaviours.  

Consider, for example, a travel mode choice study that utilizes both RP and SP data. In this 

context, the attributes of choice alternatives presented to the respondent in SP choice scenarios are 

determined by (hence, known to) the analyst. For example, mode-specific travel times presented 

to a respondent in a stated mode choice experiment can be considered free of measurement errors 

and other sources of variability. In contrast, RP choice alternative attributes are often associated 

with several sources of variability. For example, there may be analyst’s errors in measuring the 

travel times due to: (1) using level-of-service data between the centroids of aggregated spatial 

zones instead of precise, point-to-point measurements of the same (Bhatta and Larsen, 2011; 

Ortuzar and Ivelic, 1987; Train, 1978; Walker et al., 2010), (2) errors in network coding and/or 

assumptions of travel speeds, (3) differences between travellers’ perceptions and the analyst’s 

measurements of travel times (Brey and Walker, 2011; Varotto et al., 2017), and (4) day-to-day 

variability in travel times due to varying travel conditions on the network (Biswas et al., 2024; 

Srinivasan et al., 2014). In all these cases, it is very difficult for the analyst to accurately know and 

measure the specific travel time values considered by the travellers in making their travel choice 

decision. 
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To put the above discussion in a mathematical form, consider the following widely used 

additive random utility specification for an individual q  for choosing mode i :  

 qi q qi qiU  β x  (1) 

In the above expression for utility function qiU , qix  is a vector of alternative-specific attributes 

and decision-maker specific characteristics (including a constant); qβ  is the corresponding vector 

of parameters that might vary across individuals; and qi  is a random error term that represents 

the difference between the utility perceived by the decision-maker and the utility specified by the 

analyst. The alternative attributes in qix  are typically assumed to be known accurately to the 

analyst. However, this assumption may not hold in RP settings, because, as discussed earlier, the 

analyst might not  accurately know the alternative-specific travel time values considered by the 

traveller.  

In the discrete choice modelling literature, a few broad approaches have been used to 

incorporate variability due to measurement errors in the alternative attributes in qix . One approach 

is the errors-in-variables (EIV) approach, which has been widely used in the context of regression 

models (Gleser, 1981; Carroll and Spiegelman, 1984). For example, Bhatta and Larsen (2011), 

Ortúzar and Ivelic (1987), and Diaz et al. (2015) specify error components in the utility functions 

to represent errors (or stochasticity) in alternative attributes such as travel time. In another study, 

Nirmale and Pinjari (2023) use the EIV approach to explore errors in choice environment variables 

that do not vary across alternatives (e.g., traffic environment variables such as relative speed and 

space gap in driver behaviour models). In another context, where data on exogenous attributes 

such as travel time are missing or unknown beyond certain interval bounds, the EIV method has 

been implemented through Rubin’s multiple imputation approach (Steinmetz and Brownstone, 

2005). The second approach to accommodate stochastic variables is the Integrated Choice and 

Latent Variable (ICLV) approach (Ben-Akiva et al., 2002; Bhat and Dubey, 2014; Vij and Walker, 

2016). This approach has been adopted to accommodate (a) analyst-based measurement errors for 

mode-specific travel times (Walker et al., 2010), (b) errors in traveller reported travel times 

(Varotto et al., 2017), and (c) missing data for demographic variables such as income (Sanko et 

al., 2014). In the ICLV approach, the relevant explanatory variables are treated as latent (therefore, 
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stochastic) and are modeled using a separate latent variable equation. However, all the above 

studies specify the coefficients on the stochastic (or latent) variables as being deterministic. In this 

context, Diaz et al. (2015) and Nirmale and Pinjari (2023) highlight the issue of confounding of 

variability between the two sources – variability in qβ  and stochasticity in  qix  – and the difficulty 

in identifying these with the help of choice data alone. 

In another well-established and large stream of literature, the parameters in qβ  

corresponding to qix  have been specified as random to capture unobserved taste heterogeneity 

among decision-makers (Bhat, 2001; Train, 2001, etc.). Such studies typically use either the mixed 

multinomial logit model (see, for example, Bhat, 2001; Bhat, 2003; Hensher and Greene, 2003; 

Hess and Polak, 2005; Mc Fadden and Train, 2000, and Brownstone et al., 2000) or the mixed 

multinomial probit model (Daganzo, 1979; Keane, 1992; Bhat, 2011; Bhat and Sidharthan, 2012).  

The streams of literature on addressing each of the two sources of variability discussed so 

far – variability in the alternative attributes in qix  and the variability in the corresponding 

coefficients in qβ  – have developed in independent directions, with little effort toward accounting 

for both sources of variability. This is because the EIV and ICLV approaches (for considering 

variable stochasticity) and mixed logit/probit models (for recognizing response stochasticity) do 

not allow the simultaneous identifiability of both stochasticity sources. In a recent study, however, 

Biswas et al. (2024) showed that the ICLV approach can be extended to allow the simultaneous 

identification of stochasticity in alternative-specific attributes (e.g., travel times) as well as random 

heterogeneity in response to the attributes in the context of traveller choices, as long as at least two 

different types of measurements (or data) are available in the RP setting – one for the alternative-

specific attributes (e.g., travel time)1 and one for traveller choices that depend on the attributes. 

However, measurements of the alternative-specific attributes under consideration may not be 

available in many situations. For example, if one is interested in accommodating mode-specific 

stochasticity in travel times for multiple modes of travel, the analyst may not always have access 

 
1 Typically, network skims (i.e., travel times of shortest time paths between two locations) are used to generate travel 
times for mode choice models, assuming free-flow speeds in the network. Such data are not useful for identifying 
variability in travel times because they do not represent variability in travel conditions. One needs actual measurements 
of travel time that reflect travel conditions (and the variability therein) on the network. 
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to travel time measurements for all modes. Importantly, it is not easy to get measurements of some 

attributes influencing traveller choices, such as crowding levels in public transit vehicles, let alone 

variability in such attributes. For example, it is not uncommon that travellers do not respond to 

survey questions on their perceived crowding levels in transit systems, if they do not use public 

transit often. In the absence of measurements of crowding levels in transit systems, a large chunk 

of RP survey data samples may remain unutilized for estimating mode choice models with 

crowding level as an attribute entering the utility functions of transit modes. Similarly, it is not 

easy to get accurate measurements of mode-specific out-of-vehicle travel times (OVTT) or waiting 

times individuals face for estimating mode choice models. Therefore, it is common to make 

assumptions, albeit with errors that vary across individuals, about the values of OVTT or mode-

specific waiting time values. The current study provides another approach to allow the 

simultaneous identifiability of both stochasticity sources by combining two sources of data and is 

especially valuable when external measurements are not available for certain attributes. In this 

context, SP data, which provides choices under specific “fixed” attribute values, can substitute for 

unavailable external measurements for the attribute. However, when SP data sources are used 

along with RP sources, particular issues arise in case of identification, which require theoretical 

examination of parameter identifiability.  

In view of the above discussion, in the current study, we aim to explore the feasibility of 

using pooled RP-SP data as another approach to simultaneously infer the alternative attributes in 

qix  and the corresponding coefficients ( qβ ), as well as the stochasticity in both qix  and qβ  -- 

without the help of external measurement data for the alternative attributes. In this context, our 

hypothesis is that SP data, which typically include known and deterministic values of qix  (since 

the alternative attribute values are carefully constructed and presented to the decision-maker)2, 

allow the identification of qβ  and corresponding heterogeneity. Once the response heterogeneity 

is identified from SP data, the alternative attributes in qix  (and the variability therein) may be 

identified in the RP data collected from the ‘field’. Essentially, SP data enable the estimation of 

 
2 It is assumed here that the decision-makers (i.e., the survey respondents) do not distort the attribute values presented 
to them but directly utilize the presented values in their utility functions. There is a stream of literature on attribute 
non-attendance (Scarpa et al., 2009; Hensher et al., 2012), which highlights that some attributes presented in the SP 
settings may not even be considered by the decision-makers. While we do not delve into such issues in the current 
study, this might be an important confounding factor to be considered in future research.   
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random coefficients ( qβ ) and, because the coefficients are treated as the same in both SP and RP 

settings, the RP data enable identification of alternative attributes in qix . In this context, we 

formulate a mixed logit choice modelling framework for pooled RP-SP datasets with the 

alternative attributes in the RP data and the corresponding coefficients common to both RP and SP 

settings as unknown parameters to be estimated. Within the context of such mixed logit models 

for pooled RP-SP data, the following objectives are pursued: 

 First, we conduct a theoretical investigation to ascertain whether the parameters describing 

the distributions of alternative attributes in the RP setting can be identified (and how many 

such parameters can be identified) along with the parameters describing the distribution of 

random coefficients on the attributes, using mixed logit models for pooled RP-SP data. 

This investigation is carried out in the context of mode choice models separately for the 

following two different types of alternative-specific (or mode-specific) attributes: (1) the 

attributes exhibit systematic variability across individuals in the data – due to variation that 

can be expressed as a function of an observed variable – as well as random variability, and 

(2) the attributes exhibit only random variability across individuals in the data. Further, in 

either case, the identification conditions are laid out for two widely used distributional 

assumptions on the alternative attributes and random coefficients on them – (1) normal 

distribution and (2) lognormal distribution.  

In most of the aforementioned cases, we establish that it is feasible to use pooled 

RP-SP data to infer the distributional parameters of a single RP attribute for all but one 

alternative in the choice set, along with the random coefficient on the attribute. Further, the 

identifiability of the parameters is better in situations where the alternative attribute of 

interest exhibits systematic variability across individuals in the data. 

 Second, to augment the theoretical investigations, we conduct simulation experiments to 

examine the efficacy of our proposed approach (combining RP-SP datasets) in inferring 

the values of an alternative attribute for the choice alternatives in RP settings along with 

the random coefficient on that attribute and any other alternative attributes.  

 Third, we present an empirical analysis of commute mode choice using pooled RP-SP data 

from Bengaluru, India, to demonstrate the feasibility of inferring in-vehicle travel times 
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(IVTT) in RP settings along with the corresponding coefficient. Furthermore, using this 

empirical analysis we highlight the importance of recognizing stochasticity in both mode-

specific in-vehicle travel times and the corresponding coefficient.  

The rest of the paper is structured as follows. Section 2 discusses the mixed logit modelling 

framework. Section 3 presents the theoretical conditions for identification of the model. Section 4 

discusses the simulation experiments conducted for a mode choice setting. Section 5 presents the 

empirical results and findings in the context of travel mode choice in Bengaluru, India. Finally, 

Section 6 discusses the conclusions of this study and directions for future research. 

 

2. MODEL FRAMEWORK AND ESTIMATION 

In this section, we formulate a mixed logit modelling framework for travel mode choice on pooled 

RP-SP data. In this model, the mode-specific travel times for the RP choice occasions are treated 

as stochastic (since the trave time values considered by the travellers in the RP setting are unknown 

to the analyst) as well as the corresponding coefficient, and other coefficients may also be random. 

The SP choice alternative utility functions also have random coefficients but deterministic travel 

times and other explanatory variables. 

2.1  Utility specifications for RP and SP settings 

Define the utility associated with a mode choice alternative i  for an individual q at choice occasion 

t , if it is an RP choice occasion, as:  

 *
,0 'TT q qitqit qit qitqi TTU    φ x  (2) 

Alternatively, if t  is an SP choice occasion, the utility associated with alternative i  is defined as: 

 ,0 'qitTT qqit qit qitqi TTU    φ x  (3) 

In the above equations, 0qi  and 0qi  are individual-level random effects (i.e., alternative-specific 

constants) representing individual q ’s preference for alternative i due to individual-level 

unobserved factors influencing the choices in RP and SP settings, respectively. The distribution of 

0qi  across individuals is assumed to be represented by two moment parameters 0 0{ , }i i   and the 
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distribution of 0qi  is assumed to be represented by two moment parameters  0 0,i i  ; that is, 

0 0 0qi i i qiz      and 0 00 i i qiqi z     . Note that the location parameters of the individual-

level alternative-specific random effects are specified to be different between RP and SP choice 

occasions while the random components are kept same. Specifically, qiz  is a standard normal 

variate for alternative i, assumed to be the same across all RP and SP choice occasions of an 

individual q to generate covariance in utilities across different choice occasions of q.  

The term *
qitTT  in Equation (2) is the mode-specific travel time considered by the 

individual q  in an RP choice occasion t . As mentioned earlier, the specific *
qitTT  value considered 

by the individual is unknown to the analyst. Therefore, *
qitTT  is assumed to follow a distribution 

characterized by a vector of parameters iχ . The distribution is assumed to be known to the analyst 

while the parameters of the distribution are to be estimated from pooled RP-SP data. 3  

Next, qitTT  in Equation (3) is the deterministic travel time value presented to the individual 

q for alternative i  in an SP choice occasion. ,TT q  is the individual-specific random coefficient on 

mode-specific travel times in both RP and SP choice utility functions. This random coefficient is 

assumed to follow a distribution characterized by a vector of parameters ζ . It is worth noting that 

,TT q  is assumed to be the same for both RP and SP choice occasions for any individual. This 

assumption is necessary for inferring travel times in the RP setting using the proposed approach. 

Of course, the same assumption need not be made for the coefficients on other alternative 

attributes. However, it is a common practice in pooled RP-SP data models to specify same 

coefficients on alternative attributes for RP and SP choice occasions. In fact, at least one parameter 

must be specified to be the same between RP and SP choice occasions for joint estimation while 

allowing scale differences between RP and SP settings.  

 

3 In many empirical contexts, the analyst would have access to some measurements of 
*

qitTT , such as the individuals’ 

reported travel times for their chosen modes. In this paper, we examine the extent to which the analyst can infer 
alternative attributes in RP settings using pooled RP-SP data in the absence of measurements in the RP setting. In 
future research, it would be useful to examine if the measurements available to the analyst can be utilized in the 
proposed RP-SP framework to improve the inference of alternative attributes. 
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Next, qitx  and qitx  are vectors of other alternative-specific attributes (such as travel cost), 

and individual-specific attributes (such as employment status and gender) in the RP and SP utility 

functions respectively. Note that while the alternative-specific attributes in qitx  and qitx  will likely 

be different between RP and SP choice occasions, the individual-specific attributes will, in general, 

be the same. The vector φ  is the vector of coefficients on the variables in qitx  and qitx .  

To complete the utility specification, distributional assumptions are made for the stochastic 

components in the utility functions of both RP and SP settings. In this context, the additive kernel 

error terms qit  and qit  are assumed to be independent Gumbel distributed across all alternatives 

in both RP and SP choice occasions of all individuals. The scale of the error terms ( qit ) is fixed 

to 1 for all alternatives in RP choice occasions for any q . To account for the scale difference 

between SP and RP choice settings (Ben-Akiva et al., 1994), the scale of the error terms ( qit ) is 

specified as   for all alternatives in SP choice occasions.   is a parameter to be estimated. 

Following the random utility maximization theory, an individual q  at any choice occasion 

t  is assumed to choose the alternative that provides the maximum utility. In this context, define 

an indicator variable qity  which takes the value 1 if the individual q  chose alternative i  at choice 

occasion t  (0 otherwise). 

2.2  Mixed logit model for pooled RP-SP data 

To write the model likelihood, we define some additional notation here. qJ  denotes the set of 

available choice alternatives for individual q and qJqJ . J  denotes the full set of choice 

alternatives across all individuals and JJ . qR  denotes the number of RP choice occasions 

corresponding to individual q . qS  denotes the number of SP choice occasions corresponding to 

individual q . Then, the total number of choice occasions for the individual is q q qT R S  . Stack 

the mode-specific stochastic travel time variables ( *
qitTT ) for all modes available to the individual 

at an RP choice occasion t  into a 1qJ   vector as: * * * *
1 2, ,...,

qqt q t q t qJ tTT TT TT
   TT . Next, stack 
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*
qtTT   for all RP choice occasions of the individual into * * * *

, 1{ ,..., ,..., }
qq RP q qt qRTT TT TT TT . 

Further, stack the parameter vectors iχ  of *
qitTT  for all choice alternatives into the vector 

1 2[ , ,..., ,..., ]i Jχ χ χ χ χ .  

Next, consider the 2 1J   vector of alternative-specific random effects ( 0qi  and  0qi ) for 

all alternatives in the RP and SP choice occasions. Recall that 0 0 0qi i i qiz      and 

0 00 i i qiqi z     . Stack the standard normal variates ( qiz ) in these random effects for all choice 

alternatives into a vector 1 2{ , ,..., ,..., }q q q qi qJz z z zz . And stack the unique elements of parameter 

vectors 0 0{ , }i i   and  0 0,i i   for these random effects for all choice alternatives into a vector 

 01 01 01 0 0 0 0 0 0{ , , },...,{ , , },...,{ , , }i i i J J J        ψ . For identification purposes, for each of 

the RP and SP settings, at least one location parameter of the individual-level alternative-specific 

random effects must be fixed (typically to zero). However, all J  scale parameters corresponding 

to the random effects can be estimated to recognize covariance across utility functions of different 

choice occasions of the same individual.  

Further, let ( )f   denote the PDF of the random coefficient ,TT q  on mode-specific travel 

times, ( )g   denote the PDF of the stochastic travel times *
,q RPTT  in RP choice occasions, and ( )h   

denote the PDF of the standard normal variates ( qz ) used for random alternative-specific 

constants, respectively. 

The full set of parameters to be estimated in the model for pooled RP-SP data are those in 

the vectors ψ , χ , ζ , and φ , and the scalar  . Among these, ψ , χ , ζ , and φ  are relevant to RP 

data. And those in ψ , ζ , φ , and   are relevant to SP data. Stack the full set of parameters into a 

vector  , the subset relevant to RP data into RP  and the subset relevant to SP data into SP . 

The conditional likelihood that individual q  chooses alternative i  at the tht  RP choice occasion, 

conditional on the stochastic components qz , ,TT q , and *
qtTT  may be expressed as: 
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    
 

*
0 0 ,*

,
*

0 0 ,
1
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i i qi TT q qit
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j j qj TT q qjt
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
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φ x
z TT

φ x

  (4) 

Similarly, the conditional likelihood that individual q  chooses alternative i  at the tht  SP choice 

occasion, conditional on the stochastic components qiz  and ,TT q , may be expressed as: 

     
  

0 0 ,

,

0 0 ,
1

exp
1| , ,

exp
q

qiti i qi TT q

qit qit SP q TT q J

qjtj j qj TT q
j

qit

qjt

z TT
y

z TT






  

  






  
  
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φ x
z

φ x

  (5) 

The conditional likelihood function individual q  chooses alternative i  on any choice occasion, 

regardless of whether it is an RP occasion or an SP occasion, can be written in a compact form as: 

   
 

,

,

* *
, ,

(1 )

,

1| , , , 1| , , ,

1| , ,

qt RP

qt RP

Y

qit qit q TT q qt qit qit RP q TT q qt

Y

qit qit SP q TT q

y y

y

 




      

    

z TT z TT

z

 


 (6) 

In the above equation, , 1qt RPY   for an RP choice occasion and , 0qt RPY   for an SP choice occasion 

, ,( 1 )qt SP qt RPY Y  . Using the above expression, the conditional likelihood function for the 

observed choices on all choice occasions of an individual q  can be written as below: 

   * *
, , ,

1 1

, , , 1| , , ,
qit

q q
yT J

q q TT q q RP qit qit q TT q qt
t i

y 
 

 
    

  
 z TT z TT   (7) 

Next, the unconditional likelihood function for the observed choices across all choice 

occasions of an individual q  can be formulated as below: 

   
*

,,

* * *
, , , , , ,, , , ( ) ( | ) ( | ) ( ) ( ) ( )

TT q qq RP

q q q TT q q RP q TT q q RP q TT q q RPh f g d d d


      
zTT

z TT z ζ TT χ z TT 

 (8)4 

 
4 The likelihood expression in Equation (8) is a single level integral since the unobserved heterogeneity in the attributes 
(e.g., travel time) and in their parameters is considered at the individual level, as opposed to the choice occasion level. 
This formulation is suitable for datasets with a single RP observation per individual (as is the case with the empirical 
data used in the current study), under the assumption that the unobserved heterogeneity does not vary across the 
different SP choice occasions of an individual. However, if there are multiple RP choice occasions per individual, 
then the unobserved heterogeneity in the attributes is likely to be at the choice occasion level. Then, the integration in 
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The open-form integral in the above likelihood function may be simulated as below: 

  *
, ,

1

1
, , ,

R
r r r

q q q TT q q RP
r

SL
R




    z TT  (9) 

where, qSL   is the simulated likelihood function for the thq  individual’s choices on all of their 

choice occasions; ,
r
TT q  denotes the thr  draw ( 1, 2,...., )r R  from ,( | )TT qf  ζ , *

,
r

q RPTT  denotes 

the thr  set of draws ( 1, 2,....,r R ) from *
,( | )q RPg TT χ ; r

qz   denotes the   thr  set of draws 

( 1, 2,...., )r R  from ( )h qz ; and R  denotes the total number of such draws used for simulation. 

Finally, the simulated log-likelihood function for all individuals in the data can be written as: 

  ln q
q

SLL SL  (10) 

In this paper, the above simulated log-likelihood function was computed using Halton draws 

(Train, 2000; Bhat, 2003) using a code written in the GAUSS mathematical programming 

platform.  

 

3. PARAMETER IDENTIFICATION: THEORETICAL ANALYSIS 

This section presents a theoretical analysis of the identifiability of parameters in the RP-SP model 

with a stochastic alternative-specific attribute in the RP setting and a generic (common to all utility 

functions) random coefficient on the alternative-specific attribute.5 In this context, it should be 

noted that the SP data helps inform or identify the parameters of the random coefficient on the 

alternative attribute of interest, since the corresponding variables in the SP setting are assumed to 

 
the likelihood expression would involve a two-level integral – one level for the choice occasion specific unobserved 
effects and another level for individual specific unobserved effects. Such a likelihood expression is provided below: 
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The reader is referred to Bhat and Castellar (2002) for such likelihood expressions involving two-level integrals.  

5 Note for a given alternative-specific attribute, there can be as many different variables as the number of choice 
alternatives. For example, in the context of travel time in mode choice models, there can be as many travel time 
variables as the number of mode choice alternatives – with each mode-specific travel time variable entering the 
corresponding mode’s utility function. And we consider a generic (i.e., common) random coefficient for all the 
variables of a given alternative-specific attribute. 



12 

be free of measurement errors. Given the random coefficient parameters can be identified using 

the SP data alone, one can examine how much can be inferred about the alternative-specific 

attributes using the RP data. It is as if the random coefficient estimated from the SP data serves as 

an explanatory variable for estimating the parameters of the corresponding stochastic alternative-

specific attributes using RP data. Therefore, the identification analysis can be limited to the RP 

data setting alone, assuming that the parameters of the random coefficient on the stochastic 

variable under consideration are already known (from SP data)6. For the stochastic alternative-

specific attribute in the RP setting, we consider two different possibilities, as discussed next.  

The first case is when the stochastic alternative-specific attribute exhibits both systematic 

and random variation across individuals in the data. That is, the corresponding stochastic 

variables vary across individuals due to an observed variable in addition to random variation that 

cannot be attributed to an observed variable. For example, one can express in-vehicle travel time 

of a mode i  for an individual q , qiIVTT  as a function of travel distance, an observable variable 

that varies across individuals in the data. That is, qi qi qIVTT d  , where qd  is the observed travel 

distance and qi  is the randomly varying mode-specific inverse speed (Note: Inverse speed of a 

mode is the time it takes to traverse unit distance by that mode).  

In the second case, the stochastic alternative-specific attribute exhibits only random 

variation (i.e., it does not exhibit systematic variation) across individuals in the data. For example, 

waiting time or out-of-vehicle travel time (OVTT ) might exhibit only random variation without 

any systematic variation that can be attributed to an observed variable. 

In either case, the following two fundamental principles of identification in RUM-based 

discrete choice models apply: (1) The location of at least one of the random utility functions should 

be fixed (i.e., only differences in utility matter) and (2) the scale of the random utility functions of 

the model cannot be identified. Also, in either case, one should examine the structure of the 

covariance matrix of the differenced random utility components (i.e., after taking the difference of 

the utility functions with respect to one, base alternative utility function). This should be done to 

eliminate any further linear dependencies in the covariance matrix of utility differences to avoid 

 
6 While we separate the SP and RP data settings for the purpose of this discussion, the estimation of parameters in the 
SP and RP settings takes place jointly on the pooled RP-SP data. 
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unidentified models. The discussion of the identification conditions is presented next for each of 

the two cases. 

3.1  Stochastic alternative-specific attribute exhibits both systematic and random 

variation across individuals in the data 

In the presence of systematic variation of stochastic alternative-attribute across individuals in the 

data, the corresponding terms in the covariance matrix of utility differences also exhibit systematic 

variation across individuals. This systematic variation obviates the need for examining the 

structure of the matrix for eliminating linear dependencies. Only the two fundamental principles 

of identification mentioned earlier suffice for this case. Next, the identification conditions for this 

setting are discussed for two distributional assumptions for the stochastic alternative-specific 

attribute and its coefficient – normal and lognormal. 

3.1.1 Normal distributed stochastic alternative-specific attribute with normal distributed 

coefficient 

Considering a total of J  choice alternatives, each with a normal distributed alternative-specific 

stochastic attribute and a generic, normal distributed random coefficient. In this situation, up to 

1J   alternative-specific location parameters and 1J   alternative-specific scale parameters are 

identifiable for the alternative-specific stochastic variables. That is, one location parameter and 

one scale parameter per choice alternative are identifiable for all but one of the J  alternatives. 

This is based on the fundamental principle that only differences in utility matter. The reader is 

referred to the corresponding discussion in Appendix A for additional details. Among the J  

alternative-specific scale parameters, the one with the lowest variance (scale) should be normalized 

so that the resulting covariance matrix of utilities is positive semidefinite (Walker, 2001). 

3.1.2 Lognormal distributed stochastic alternative-specific attribute with lognormal 

distributed coefficient 

In this case, similar to the case of normal distributed stochastic variable and coefficient, up to 1J   

alternative-specific location parameters are identifiable for the alternative-specific stochastic 

variables. Further, 1J   alternative-specific scale parameters are identifiable in this setting. In 

some situations, however, it may be possible to identify all J  alternative-specific scale parameters. 

This is because, as discussed in Appendix A, the difference of two lognormal random variables 
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does not yield a distribution with a known analytic form. Since the resulting distribution might 

need more than two parameters to describe it fully, it may be possible to estimate one more than 

1J   alternative-specific scale parameters. This is demonstrated later (Section 4) using simulation 

experiments. However, it is safe to fix at least one of the J  scale parameters to be sure of a 

theoretically identified model. 

3.2  Stochastic alternative-specific attribute exhibits only random variation across 

individuals in the data 

In this case, first we examine the situation when the coefficient on the alternative-specific 

stochastic attribute is fixed and same for all individuals in the data. That is, consider the following 

utility function for an RP setting, where the mode-specific travel time ( *
qiTT ) exhibits only random 

variation without systematic variation across individuals, and the coefficient ( TT ) of *
qiTT  is same 

for all individuals:  

 *
0qi i TT qi qiU TT      (11)  

With the above utility specification, even though the TT  value can be estimated from relevant SP 

data, it is not possible to identify any parameters of the distributions describing *
qiTT  in RP data. 

To understand this, one can view TT  estimate from the SP data as an explanatory variable for 

estimating *
qiTT  (or their parameters) using RP data. Just as an explanatory variable without any 

variation in the data does not help estimate its coefficients, when TT  does not vary across 

individuals, one cannot estimate any parameter describing *
qiTT . Therefore, it is important that the 

coefficient on the stochastic alternative-specific attribute be specified as random, when there is no 

systematic variation across individuals in the alternative-specific attribute, to be able to infer the 

distribution parameters of the alternative-specific attribute.7  

In the rest of this section, we consider only the situations when the coefficient on the 

alternative-specific attribute is random (i.e., it varies across individuals). In this case, since the 

 
7 However, the coefficient on the alternative-specific attributes need not vary across individuals when the alternative 

attributes (e.g., 
*

qiTT ) themselves demonstrate some systematic variation across individuals (as in Section 3.1). 
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variables for the alternative-specific attribute do not exhibit any systematic variation across 

individuals, one must examine the structure of the covariance matrix of utility differences to 

determine the number of parameters one can estimate. Specifically, one should determine the 

maximum number of unique parameters that give rise to the covariance matrix of utility 

differences. To do so, one should find the rank of the Jacobian of the vector of unique elements in 

covariance matrix of utility differences (the Jacobian is with respect to the parameters to be 

estimated). This is called the rank condition (Bunch, 1992; Walker 2001). The rank of such a 

Jacobian matrix depends on the following: (a) The number of choice alternatives ( J ), (b) the 

number of utility functions in which the alternative-specific stochastic attribute enters ( L ), and (3) 

the distributional assumptions made on the alternative-specific stochastic attribute and the 

corresponding random coefficient. Appendix B derives and discusses the identification conditions 

for the following two distributional assumptions for different values of J  and L : (1) normal 

distributed alternative-specific attribute and random coefficient, and (2) lognormal distributed 

alternative-specific attribute and random coefficient.  

Table 1 presents a summary of the identification conditions discussed for the various cases 

discussed in this section. 

Table 1. Summary of identification conditions when the alternative-specific stochastic 
attribute exhibits only random variation across individuals (i.e., no systematic variation) 
Distributional 
assumptions 

No. of choice alternatives (L) with a stochastic 
alternative attribute for different choice set sizes 

( J ) 

Rank of Jacobian 
matrix 

No. of identifiable 
parameters in the 
covariance matrix 
of utility functions 

Normal 
distributed 
alternative-
specific 
stochastic 
attribute with 
normal 
distributed 
random 
coefficient 

; 5, 1L J J J    
( 1)

2

J J 
 

( 1)
1

2

J J 
  

; 5L J J   
Difficult to derive a generic expression for the 
rank of the Jacobian matrix. Need to derive 
the rank on a case-to-case basis. 

; 5, 1L J J J    (The alternative-specific 

attribute enters the utility functions of other, J L  
alternatives in a deterministic form) 

( 1)

2

J J 
 

( 1)
1

2

J J 
  

; 1L J J   (The alternative-specific attribute 

does not enter the utility functions of other, J L  
alternatives)  

( 1)

2

L L 
 

( 1)
1

2

L L 
  

Lognormal 
distributed 
alternative-

5, 1L J J J     
( 1)

2

J J 
 

( 1)
1

2

J J 
  
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specific 
stochastic 
attribute with 
lognormal 
distributed 
random 
coefficient 

( 5)L J J   
Difficult to derive a generic expression for the 
rank of the Jacobian matrix. Need to derive 
the rank on a case-to-case basis. 

; 1L J J   (The alternative-specific attribute 

enters the utilities of other, J L  alternatives in a 
deterministic form. OR the alternative-specific 

attribute does not enter the utilities of J L  

alternatives) 

( 1)

2

L L 
 

( 1)
1

2

L L 
  

3.3 Discussion 

The theoretical analysis in Sections 3.1 and 3.2 provides insights into the identifiability of 

parameters of alternative-specific stochastic attributes in RP data, given that the random coefficient 

on the attribute is identified using SP data. Based on this analysis, some virtues and downsides of 

using of using pooled RP-SP data for inferring stochastic alternative-specific attributes, while 

recognizing random coefficients on such attributes, are discussed here. 

For settings where the alternative-specific stochastic attributes involve both random and 

systematic variation, the identification conditions discussed in Section 3.1 (and Appendix A) are 

encouraging for mode choice models when the analyst can infer attributes such as the distance-

dependent IVTT for up to (at least) 1J   modes if the attributes are normal (lognormal) distributed. 

The analyst can typically measure the IVTT of at least one travel mode (e.g., non-motorized modes) 

without error and infer the distance-dependent IVTT of other modes using pooled RP-SP data. 

Next, for inferring alternative-specific stochastic attributes such as OVTT that are free of 

systematic variation, the identification conditions derived in Section 3.2 (and Appendix B) can be 

applied. However, there are some limitations to this method. First, when the stochastic attribute is 

free of systematic variation, pooling RP-SP data allows for the inference of only a single 

alternative-specific attribute per choice alternative (not for multiple attributes), and with limits on 

the number of parameters one can estimate for such an attribute across different choice alternatives. 

Second, if multiple alternative-specific stochastic attributes need to be inferred for each choice 

alternative, each variable requires deterministic variation based on a different observable variable. 

It is not possible to use a single observable variable (such as qd ) to infer multiple alternative-

specific attributes. Such model specifications can potentially lead to parameter (un)identifiability 

issues.  
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Despite the above-mentioned limitations, the ability to identify both alternative-specific 

attributes and their coefficients – while recognizing stochasticity in both attributes and the 

coefficients – is a step forward in the choice modelling literature.  

 

4. SIMULATION EXPERIMENTS 

To augment the theoretical investigations, we conduct simulation experiments using a mixed logit 

model of commute mode choice for a pooled RP-SP data setting based in Bengaluru, India. Using 

these experiments, we examine the efficacy of our proposed approach (combining RP-SP datasets) 

in inferring alternative-specific attributes for the choice alternatives in RP settings along with the 

randomness in the coefficient on such attributes. The experiments also aid in verifying the 

parameter identifiability conditions laid out in Section 3.1 for the case when the alternative-

attributes to be inferred exhibit both systematic and random variation across individuals in the data 

and are also associated with a random coefficient. Additionally, the experiments help in 

demonstrating the effects of ignoring variability in alternative-specific attributes when such 

variability is present.  

4.1 Simulation design 

We simulated synthetic data considering three different designs for commute mode choice setting. 

The three designs are variants of each other. Of these, the first and second designs, which involve 

normal distributed alternative-specific attributes and random coefficients, are discussed in this 

section. The third design, which involves lognormal distributed attributes and random coefficients, 

is discussed in Appendix C. For each of the three designs we simulated 200 RP-SP datasets, each 

comprising 5000 individuals. For each individual in each dataset, four RP choice occasions and 

one SP choice occasion are generated.  

4.1.1 Design-I: Normal distributed stochastic alternative-specific attribute in 1J   

alternatives with normal distributed random coefficient 

In this design, RP and SP data are simulated for a commute mode choice context with five travel 

mode alternatives – bus, personal car, personal two-wheeler (TW), metro and walk – in Bengaluru, 

India. The following equations denote the utility functions for the RP alternatives:  
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   
 (12) 

In these utility functions,  0 , , , ,i RP i car TW metro walk    is the location parameter of the 

alternative specific constant for a given mode i.  , , , ,i qiz i bus car TW metro walk    is a normal 

distributed term representing individual-specific random effects for mode i, where i  is the 

standard deviation parameter and qiz  is a standard normal variate that is same across all RP and 

SP utility functions of the alternative for the individual. Note that the location parameter of the 

alternative specific constant for the bus mode is fixed to be zero for identification purposes. 

Next, the RP setting travel times for motorized modes ( * { , , , }qiTT i bus car TW metro  ) 

are expressed as a product of the inverse speed qi  (time required to traverse unit distance) by the 

mode and the travel distance, qd , as below8:  

 *
qi qi qTT d   (13) 

The mode specific inverse speeds qi  (min/km) are considered random (normal distributed) to 

allow variability in travel times (for all modes except walk). This specification (Equation (13)) 

enables the alternative attribute *
qitTT  to vary across individuals due to an observed variable ( qd ), 

thus introducing systematic variation, in addition to random variation that cannot be attributed to 

qd . The location and scale parameters of qi  for each mode are to be estimated for the RP setting 

using the proposed model framework. True values for the location parameters of inverse speeds 

are assumed based on the average speed of the corresponding mode in Bengaluru and reasonable 

values for the scale parameters of inverse speeds are assumed based on the order of travel time 

variability among the modes in the city.  

For the walk mode, a fixed walk speed of 4 kmph (i.e., inverse speed of 15 min/km) is 

assumed to generate walk travel times ( qiTT ). The inverse speed for walk mode is assumed to be 

 
8 In our simulation experiments, we assumed that the travel distance between a given origin and destination as the 
same for all modes. This assumption can be easily relaxed to allow the travel distance to be mode-specific, which we 
allow in the empirical analysis in Section 5. Also, it is possible to incorporate route choice along with mode choice in 
a joint modelling framework, albeit that would increase the choice dimensions being modeled. 
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known to the analyst, while the location parameters and scale parameters of qi  for all other modes 

are to be estimated. Data on qd  for each individual is generated from a truncated normal 

distribution with a minimum and maximum of 1 km and 25 km, respectively, and an average travel 

distance of 7 km (to represent commute travel distances in Bengaluru).  

Next, travel costs for each mode alternative i  (except for walk mode, which does not 

involve monetary costs), which are assumed to be non-stochastic, are denoted by qiTC . Data for 

qbusTC  are generated using distance-based bus fare charts in the city, while that for qmetroTC  are 

constructed based on the fare chart for the metro mode. Next, data for qcarTC  and qTWTC  are 

generated based on vehicle maintenance costs, fuel price in Bengaluru, and average mileage of a 

hatchback car model.  

A generic random coefficient ,TT q , which is assumed to follow 2( 1,0.5 )N  , is specified 

on the mode-specific travel times for all motorized modes. A separate deterministic coefficient 

TTw  (true value assumed to be -0.4) is taken as the coefficient for walk travel time. Considering 

an average value-of-in-vehicle-time of 133 (in INR/hour), the value of the coefficient on travel 

cost ( c ) is assumed to be -0.45. All coefficients are assumed to be individual-specific (that is, 

they do not vary across the SP and RP occasions for an individual). Finally, the kernel error terms 

in the RP setting,  , , , ,qi i bus car TW metro walk   , are assumed to be independent Gumbel 

distributed with scale parameter 1.  

The following equations denote the utility functions for the SP alternatives: 

 
 

 
0 , ,

0 ,

; , , ,

;

qi qii SP i qi TT q cqi qi

qii SP i qi TTwqi qi

z TT TC i bus car TW metroU

z TT i walkU





   

  

     

   
 (14) 

In these SP utility functions, 0 , { , , , }i SP i car TW metro walk     is the location parameter of the 

alternative specific constant for a given mode i.  The  , , , ,i qiz i bus car TW metro walk    terms, 

and the travel time and cost coefficients ( ,TT q , TTw , c ) are the same as those defined for the RP 

setting Equations (12). However, Unlike the randomly distributed travel times ( *
qiTT ) in the RP 
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setting, the travel times ( qiTT ) in the SP setting are assumed to be non-stochastic, albeit they are 

generated in the same way as the RP travel times.   qiTC  are the non-stochastic travel costs for the 

SP setting generated in the same way as that for the RP setting. The kernel error terms 

 , , , ,qi i bus car TW metro walk    are assumed to be independent Gumbel distributed with scale 

parameter 0.7 (i.e., the ratio of scales of the SP and RP kernel error terms is 0.7).  

Let J denote the total number of choice alternatives available to an individual in the data 

and L denote the number of alternatives with stochastic travel time. In this simulation design, 

5J   and 4L  , because 4 of the 5 mode alternatives are associated with stochastic travel times. 

4.1.2 Design-II: Normal distributed stochastic alternative-specific attribute in J  

alternatives with normal distributed random coefficient 

Design-II is similar to Design-I in all respects except that the walk mode is not included in the 

choice set. Here, 4J   and 4L  . In this design, since the walk mode is not in the choice set, it 

is assumed that the location parameter of the metro mode inverse speed is assumed to be known 

to the analyst (that is the analyst does not have to estimate this parameter). This assumption is 

necessary to meet the basic identification requirement that only utility differences matter. 

However, it is assumed that the analyst has to estimate the scale parameters of travel time 

distributions for all four modes in the choice set. This design is implemented to demonstrate that 

such a model with normal distributed travel times cannot be identified (more on this later). 

4.2 Evaluation and discussion 

4.2.1 Evaluation of models estimated on simulated data from Design-I 

We estimated the following two models on all 200 simulated RP-SP datasets from Design-I: 

Model-I and Model-II. Model-I is a mixed logit model with the same structure as the true data 

generation process (DGP) used to simulate data from Design-I. That is, 1L J   alternatives 

(motorized alternatives) involve normal distributed travel time (normal distributed inverse speeds, 

to be precise) and a normal distributed random coefficient on travel time. The location and scale 

parameters of all these distributions need to be estimated. However, it is assumed that the analyst 

knows the travel time of the thJ alternative (walk mode) and estimates a deterministic coefficient 

on its travel time. Model-II simplifies Model-I by ignoring the variability in travel times of all the 
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motorized modes (i.e., the scale parameter of the normal distributions is assumed to be zero and 

only the location parameter is estimated for all the motorized modes). 

The parameter recovery for each of the models is examined using the following metrics:  

(1) Absolute Percentage Bias (APB): For a given parameter in the model, APB is the absolute 

value of the difference between the true parameter value and the mean of the parameter estimates 

across the 200 simulated datasets – expressed as a percentage of the true parameter value.  

(2) Asymptotic Standard Error (ASE): ASE for a given parameter is the average (across the 200 

simulated datasets) of the standard errors of the parameter’s estimated values. 

(3) Finite Sample Standard Error (FSSE): FSSE for a given parameter is the standard deviation of 

the parameter’s estimated values across the 200 datasets. 

 Table 2 reports a summary of the above metrics separately for the two models, along with 

the true parameter values used in the DGP for simulating the 200 datasets. As can be observed 

from the results for Model-I, the model was able to recover the assumed true parameters accurately 

and precisely. This includes the scale and location parameters of the normal distributed inverse 

speeds for all the 1J   motorized modes and the scale and location parameters of the 

corresponding random coefficient. The identification of these parameters was possible because of 

the presence of at least one mode (walk mode) in the RP choice set with travel times known to the 

analyst, and the SP data helping in the identification of the random coefficient. In addition, all J  

scale parameters corresponding to the alternative-specific random effects were identified due to 

the panel nature of the RP-SP data. These results corroborate the theoretical discussion in Section 

3.1.1 for a pooled RP-SP data setting with an alternative-specific attribute that has both systematic 

and random variation (and the random variation is normal distributed). That is, if the alternative-

specific attribute (in the RP setting) and the random coefficient on it are normal distributed, the 

analyst can combine SP and RP datasets to estimate the location and scale parameters of the 

alternative-specific attribute for up to 1J   alternatives along with the paramters of the 

corresponding random coefficient.  
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Table 2. Simulation results for mixed logit models on pooled RP-SP data (normal travel time and normal random coefficient on travel time) 

Variable description 
True  
value 

Model-I Model-II  0
ˆ:

ˆ
Model I

Model II

H 




Mean 
estimate 

APB ASE FSSE 
Mean 

estimate 
APB ASE FSSE 

Location parameters for alternative-specific random effects (bus mode is base) 

Car 1.80 1.623 9.82 0.1622 0.0996 0.805 55.28 0.1002 0.0436 4.29 

Two-wheeler  0.30 0.333 10.89 0.1275 0.0665 0.169 43.59 0.0986 0.0497 1.02 

Metro 0.50 0.424 15.19 0.0985 0.0555 0.431 13.73 0.0865 0.0242 0.05 

Walk 1.50 1.341 10.57 0.1854 0.1379 0.629 58.05 0.1497 0.0225 2.99 

Scale parameters for alternative-specific random effects (normal distributed) 

Bus  1.00 0.869 13.10 0.0092 0.0107 0.528 47.15 0.0681 0.0692 4.96 

Car 1.85 1.552 16.09 0.1292 0.0763 1.393 24.68 0.0729 0.0701 1.07 

Two-wheeler 1.55 1.328 14.29 0.1765 0.0768 1.001 35.42 0.0735 0.0543 1.71 

Metro 1.35 1.115 17.42 0.1390 0.0802 0.412 69.48 0.1625 0.0215 3.29 

Walk 1.10 1.040 5.44 0.1428 0.1101 0.677 38.49 0.0732 0.1291 2.26 
Parameters of mode-specific inverse speeds (for travel times) in the RP setting  

RP bus inverse speed – Location parameter 1.85 1.793 3.06 0.0790 0.0537 1.645 11.06 0.0244 0.0283 1.79 

RP bus inverse speed – Scale parameter 0.40 0.351 12.13 0.0897 0.0328 0.000 NA NA NA NA 

RP car inverse speed – Location parameter 1.25 1.177 5.81 0.0681 0.0534 1.080 13.61 0.0274 0.0437 1.32 

RP car inverse speed – Scale parameter 0.20 0.170 15.06 0.0662 0.0238 0.000 NA NA NA NA 

RP TW inverse speed – Location parameter 1.10 1.066 3.12 0.0697 0.0523 0.921 16.29 0.0286 0.0123 1.92 

RP TW inverse speed – Scale parameter 0.30 0.276 7.87 0.0582 0.0199 0.000 NA NA NA NA 

RP metro inverse speed – Location parameter 1.50 1.450 3.33 0.0730 0.0523 1.428 4.79 0.0241 0.0196 0.29 

RP metro inverse speed – Scale parameter 0.15 0.165 10.16 0.0633 0.0220 0.000 NA NA NA NA 

Coefficients on level of service variables    

Travel time for motorized modes – Location parameter -1.00 -0.856 14.36 0.0554 0.0339 -0.602 39.83 0.0281 0.0386 4.09 

Travel time for motorized modes – Scale parameter 0.15 0.128 14.71 0.0110 0.0066 0.099 33.83 0.0095 0.0132 2.00 

Walk travel time  -0.40 -0.343 14.31 0.0231 0.0136 -0.250 37.61 0.0097 0.0133 3.71 

Travel cost  -0.45 -0.386 14.18 0.0238 0.0149 -0.274 39.07 0.0095 0.0116 4.37 

 SP scale parameter (RP scale is assumed to be 1) 0.70 0.663 5.22 0.0505 0.0317 0.547 21.87 0.0250 0.0299 2.06 
Average value across all parameter estimates NA 10.73 0.0864 0.0511 NA 33.55 0.0595 0.0386 NA 
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Next, observe from the results for Model-II in Table 2 that the location and scale parameters 

of the random coefficient on travel time display a statistically significant bias toward zero when 

compared to the corresponding estimates from Model-I. In addition, the coefficients for other 

parameters in the utility function also display a similar trend of bias toward zero. This is evident 

from the t-statistics reported in the last column of the table for the null hypothesis that the 

parameter estimates from Model-II are the same as those from Model-I. Also, this finding is 

consistent with the findings in a recent paper by Biswas et al. (2024) pertaining to bias due to 

ignoring stochasticity in alternative attributes whose stochasticity is additive in nature (e.g., 

normally distributed). As discussed in that study, the additive stochasticity in alternative attributes, 

when ignored, gets lumped into the kernel error terms and increases the variance of the kernel error 

terms. Since the model’s kernel error scale is not identified, the remaining parameter estimates of 

the model, which are confounded by the scale of the model, get biased toward zero. 

Finally, although not reported in the tables, in terms of model fit, Model-II was found to 

be inferior to Model-I across all the simulated datasets. The inferior fit to data and the large bias 

in parameter estimates of Model-II highlight the importance of recognizing stochasticity in 

alternative attributes. 

4.2.2 Evaluation of models estimated on simulated data from Design-II  

We estimated mixed logit models (Model III) on simulated data from Design-II with the same 

structure as the true DGP used in that design. That is, L J  alternatives involved normal 

distributed travel time (normal distributed inverse speeds, to be precise) and a normal distributed 

coefficient on travel time. For identification purposes, the location parameter of metro model 

inverse speed was assumed to be known (i.e., the location parameters of inverse speeds for only 

1J   mode-specific inverse speeds were estimated). However, the scale parameters of all J  

distributions were estimated. Such a model ran into parameter (un)identifiability issues. Only after 

fixing at least one mode-specific inverse speed scale as a known parameter, the model was 

identified, and we could retrieve the other parameters with similar levels of accuracy and precision 

as that of Model-I in Table 1. These results again corroborate the findings in Section 3.1.1 that the 

location and scale parameters of up to only 1J   normal distributed mode-specific inverse speeds 

can be estimated along with the parameters of the corresponding random coefficient. 
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 In addition, we carried out a third set of simulation experiments for lognormal distributed 

stochastic alternative-specific attribute in J   alternatives with lognormal distributed random 

coefficient. The corresponding simulation design and evaluation of the results are presented in 

Appendix C of the paper. 

Note that all the simulation experiment results reported in this paper are based on 

estimations carried out using 400 Halton draws to simulate the stochastic terms in the likelihood 

expressions. We explored increasing the number of Halton draws to 600 for a few simulated 

datasets and did not find substantial differences in the parameter estimates from those obtained 

using 400 draws. Also, the parameters of the proposed model were recovered well using 400 draws. 

 

5. EMPIRICAL ANALYSIS 

In this section, we present an empirical analysis of commute mode choice using pooled RP-SP 

data from Bengaluru, India, to demonstrate the feasibility of inferring in-vehicle travel times 

(IVTT) in RP settings along with the corresponding coefficient. Furthermore, using this empirical 

analysis we highlight the importance of recognizing stochasticity in both mode-specific in-vehicle 

travel times and the corresponding coefficient.  

5.1 Empirical Data 

The empirical data used for this analysis was obtained from a survey conducted from February to 

April 2022 to understand the travel behaviour of the residents of the Bruhat Bengaluru Mahanagara 

Palike (BBMP) area of Bengaluru. For this analysis, we used data of only those who reported 

commuting as the most frequent purpose of their travel. Such commuters were asked about their 

most frequently used travel mode for their home-to-work commute, along with information on the 

travel origin (home) and destination (work) locations for their commute, travel distance, and travel 

times and costs for their most frequently used travel modes.  

In addition to the RP questions, the survey included an SP section for mode choice, which 

comprised four different SP choice scenarios. The first three of the four SP scenarios corresponded 

to a non-pandemic situation, where it was stated that the risk of the pandemic was minimal, and 

the entire population was vaccinated. The fourth scenario described travel situations in a pandemic 
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setting. In the current empirical analysis, the three non-pandemic SP scenarios were used for every 

respondent in the data sample. 

For administering both the RP and SP components of the survey in a single meeting with 

the respondent, a repository of SP scenarios was pre-generated based on b-efficient designs using 

the Ngene software (ChoiceMetrics, 2012). Different sets of scenarios were pre-generated for each 

of the following travel distance bands: 0-5 km, 5-10 km, 10-15 km, 15-20 km, 20-25 km and 25-

30 km. It was assumed that the maximum travel distance for an individual within the survey region 

would be within 30 km. The distance bands were used as the basis to compute mode-specific 

attributes such as IVTT, OVTT, and travel cost for the SP scenarios. Soon after a respondent 

completed the RP section of the survey, appropriate SP scenarios, drawn on-the-fly from the pre-

generated repository, were presented to the respondent based on their reported travel distances and 

mode availability in the RP section. The RP distance-band based SP scenario generation was done 

to reduce the risk of endogeneity due to pivoting off directly from RP attributes (such as IVTT, 

OVTT, and cost) for generating SP attributes (Guavera and Hess, 2019), while also presenting 

hypothetical mode choice settings that were not too different from the respondents’ commute 

settings.  

The final estimation sample comprised data from a total of 914 respondents, with one RP 

choice occasion and three SP choice occasions per respondent. A total of ten modal alternatives 

were considered in the RP section of the survey – (1) own car (or just “car” from here on), (2) own 

two-wheeler (or just “two-wheeler” from here on), (3) auto-rickshaw, (4) bus, (5) metro, (6) walk, 

(7) bicycle, (8) ride-hailing (Ola or Uber) cars, (9) ride-hailing (Ola or Uber) two-wheelers, and 

(10) other modes. However, less than ten respondents indicated they would choose either of the 

two ride-hailing modes, bicycle, and other modes. This may be because ride-hailing is not 

commonly used, and bicycles are rarely used for commuting purposes in Bengaluru. Therefore, 

only the first six modes were considered for the current analysis. The RP mode shares in the sample 

are as follows: 6.4% for car, 51.0% for two-wheeler, 3.3% for auto-rickshaw, 22.4% for bus, 14.7% 

for metro, and 2.2% for walk. Additional details of the empirical data, including the 

sociodemographic characteristics of the respondents, the rules used to determine availability of 

different modes for each respondent, and the mode-specific level-of-service variables (travel times 

and costs) used in one of the models estimated in the study are presented in Appendix D.  
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5.2 Empirical results and findings 

We estimated the following three different empirical models in this study:  

(1) Model A, which is the proposed model that combines SP and RP data to estimate the 

distribution of mode-specific IVTT (mode-specific inverse speeds, to be precise) in RP 

settings as well as random coefficient on IVTT in both RP and SP settings. In this model, 

the inverse speed of the metro mode was fixed to 1.67 minutes per km, considering the 

average speed of metro in Bengaluru as 36 kmph, and the walk inverse speed for the walk 

mode was assumed to be 15 minutes per km. For both these modes, the variability in 

inverse speeds was assumed to be zero. This was done for two reasons – first, to assist in 

the estimation (identifiability) of the model, and the other, because of negligible variability 

in metro in-vehicle travel times and that of walking times. For the other four modes – car, 

bus, two-wheeler, auto rickshaw – we estimated the distribution of mode-specific inverse 

speeds using this model, assuming that the inverse speeds are power lognormal 

distributed.9 The coefficient on IVTT is assumed to follow a lognormal distribution, whose 

parameters are estimated using empirical data. 

(2) Model B, which is a simpler version (and a special case) of Model A, ignores the variability 

in mode-specific inverse speeds, and only estimates a single value of mode-specific inverse 

speed (as opposed to a distribution) for each of the car, bur, two-wheeler, and auto 

rickshaw modes. Similar to Model A, this model assumes a fixed inverse speed of 1.67 

minutes per km for the metro mode and 12 minutes per km for the walk mode. Further, the 

coefficient on IVTT is assumed to follow a lognormal distribution, whose parameters are 

estimated using empirical data. 

(3) Model C, which does not involve any estimation of mode-specific inverse speeds, uses 

exogenously obtained travel times for RP data instead of estimating the mode-specific 

 
9 The power lognormal distribution is a three-parameter distribution – with location, scale, and power parameter as its 
three parameters. A special case of this distribution, when the power parameter is 1, is the familiar lognormal 
distribution. When the power parameter is greater than 1, the power lognormal distribution has an advantage over the 
lognormal distribution in that it has a thinner right tail (i.e., low PDF values for large values) than that of the lognormal 
distribution. This property facilitates an easier estimation than models that use the lognormal distribution (Bhat and 
Lavieri, 2018). The reader is referred to Bhat and Lavieri (2018), who originally introduced the use of this distribution 
in discrete choice models, for a discussion on the properties and advantages of this distribution when compared to the 
lognormal distribution. For the estimation of the proposed model in this study, we fixed the power parameter terms to 
a specific value in the  range from 1 to 3 and estimated the other parameters of the model. After exploring different 
values of the power parameter, we found that the power parameter value of 2.4 yielded the best fitting model. 
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travel time (or inverse speed) distributions. Such mode-specific travel time data were 

obtained from Google Application Programming Interfaces (APIs), a commonly used 

source of travel time data in the recent past. In this model, similar to the other two models, 

the coefficient on IVTT is assumed to follow a lognormal distribution, whose parameters 

are estimated using empirical data.  

In all the above three models, exogenously obtained data on OVTT and travel costs are used as 

discussed in Appendix D (i.e., OVTT and travel costs are assumed to be exogenously known to the 

analyst).10 In all the three models, the OVTT variable enters the utility functions in the form of 

OVTT/distance with lognormal distributed coefficient. Further, in all the three models, the auto-

rickshaw mode of transportation is considered the base alternative for the introduction of the 

effects of alternative-invariant exogenous variables. Note that we considered correlation between 

the coefficients of IVTT and OVTT/distance variables, but did not recover any significant 

correlation. There may be some correlation among the travel times (e.g., IVTT) of different modes 

in Model A. For example, for a given origin-destination (OD) pair, it is likely that travel times of 

some modes might covary because of OD and route-specific unobserved effects. However, it is 

difficult to identify such correlations because the generic random coefficient on travel time across 

the different modes would pick up the correlations. 

 All the three models were estimated using 400 Halton draws to simulate the random terms 

in the likelihood expressions. Increasing the number of draws to 800 did not yield significantly 

different parameter estimates from those of models estimated using 400 draws.  

The estimation results for each of these models are presented in Table 4 and Table 5. Table 

4 presents the goodness-of-fit measures and implied values of time. As can be observed from the 

goodness-of-fit measures in this table, the proposed model provides better fit than the other two 

models (in terms of AIC, BIC, as well as Rho-squared values). In addition, the mean monetary 

values of IVTT and OVTT savings (at average travel distance of 9.85 km) from the proposed model 

are 199.28 INR/hour and 470.75 INR/hour, respectively, whereas those for Model B and Model C 

 
10 It may be argued that the OVTT and travel cost values considered by the travellers need not be known accurately by 
the analyst, and therefore the analyst should infer these values, too. Doing so, along with inferring the IVTT is an 
avenue for future research.  
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appear to be too high for an Indian city context.11 Based on these comparisons, Model A can be 

adjudged the best of the three models estimated in the study. 

 Table 5 presents the parameter estimates of all the three models. Since Model A provided 

better fit and more reasonable values of monetary values of IVTT and OVTT savings than the other 

two models, we focus the discussion on this model. The first and second broad row panels of Table 

5 provide the estimates of the mode-specific constants for RP and SP datasets respectively. These 

estimates do not have any substantive interpretation but adjust to best fit the sample shares after 

accommodating the effects of other explanatory variables. The next set of rows report the scale 

parameter estimates corresponding to the mode-specific random effects that persist across the 

different choice occasions of an individual, which could be estimated due to the presence of 

multiple choice occasions per individual in the RP-SP data. These random effects capture 

correlations among the mode-specific utility functions of different choice occasions of an 

individual.   

Table 4. Empirical data fit and money values of time for pooled RP-SP models of commute 
mode choice 

 
Model A 

(proposed  
model) 

Model B (RP 
travel time 
variability 
ignored) 

Model C (with 
exogenous RP 
travel times) 

Goodness-of-fit measures 

Log likelihood at convergence -1,495.19 -1,525.31 -1,562.58 
Log likelihood for constants- 
  only model 

-2,655.23 -2,655.23 -2,655.23 

Mc Fadden’s Rho-squared  0.44 0.43 0.41 
Akaike Information 
  Criterion (AIC) 

3,102.37 3,154.62 3,221.16 

Bayesian Information 
  Criterion (BIC) 

3,372.17 3,405.15 3,452.42 

 Money value of time measures 

Mean value of IVTT (INR /hour) 199.28 209.78 314.91 
Mean value of OVTT at avg. travel 
distance (INR /hour) 

470.75 935.63 1241.38 

 
11 It is not easy to compare these values against the money values of time reported in the literature for Indian cities, as 
the other studies do not consider variability in travel times along with the random coefficients. Besides, most studies 
in the Indian context use the basic multinomial logit (MNL) model for mode choice analysis. Therefore, we estimated 
an MNL model and obtained the resulting money values of IVTT and OVTT as 83 INR/hr and 171 INR/hr, which are 
in line with the money values of IVTT and OVTT reported in other studies on Indian cities (Athira et al., 2016). 
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Next, observe from the fourth and fifth broad row panels in Table 5 that the proposed model 

(Model A) enables the simultaneous estimation of the distributions of mode-specific IVTT (or, 

mode-specific inverse speeds) in RP settings while allowing the coefficient on IVTT to be 

randomly distributed. The estimates obtained for the mode-specific inverse speed distributions are 

reasonable. For example, it takes an average of 2.23 minutes by car to travel 1 km while it takes 

3.65 minutes by bus to travel the same distance.  

The fifth broad row panel in Table 5 provides the parameter estimates on the level-of-

service variables – IVTT, OVTT/distance, and travel cost. As discussed earlier, all three models 

allow the coefficients on IVTT and OVTT/distance to be randomly (lognormal) distributed. Next, 

note from the parameter estimates of Model B and Model C in Table 5 that the expected value and 

standard deviation of the random coefficient on IVTT display a bias toward zero when compared 

to the corresponding estimates from Model A. In addition, the coefficients for other parameters in 

the utility function also display a similar trend of bias toward zero. This finding is consistent with 

the findings from our simulation experiments in Section 4 and also with those in a recent paper by 

Biswas et al. (2024). 12 

Furthermore, socio-demographic variables such as gender, income and age are included in 

the model specification (see the sixth, seventh, and eighth broad row panels of Table 5). The results 

for the gender variable suggest that commuting men are more likely to prefer car, two-wheeler and 

metro modes relative to commuting women whereas there is no difference in preferences between 

men and women for the walking mode. This may be because men are likely to make longer trips 

compared to women (Saigal et al., 2021). Among the motorized modes, car and two-wheelers 

appear to be the most preferred by men over other modes, perhaps because men tend to have a 

greater access (than women) to vehicles in Indian households (Shirgaokar et al., 2018; Jain and 

 

12  Each of the three models reported in Table 5 constrain the coefficients on the LOS attributes to be same between 
the RP and SP settings. As discussed in Section 2.1, this constraint is necessary for only the coefficient of IVTT (since 
IVTT in the RP setting is inferred from the pooled data model). That is, there is no need to impose such a constraint 
on the coefficients of other LOS attributes – OVTT/distance, walk travel time, and travel cost – in the model. Therefore, 
we estimated additional empirical specifications (for the proposed model) that allowed the coefficients on LOS 
attributes other than IVTT to be different between the RP and SP settings. However, doing so did not yield significant 
improvement in model fit when compared to the corresponding specification reported in Table 5. Since the data fit 
did not improve when we allowed different coefficients for SP and RP settings, we retained the specification that 
constrained the SP and RP coefficients to be same for all LOS attributes (while allowing the scales of the kernel error 
terms and means of the alternative-specific constants to be different between the SP and RP settings). 
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Tiwari, 2019). Next, from the parameter estimates for the income variables, note that low-income 

commuters are less likely than high-income commuters to prefer car and two-wheeler modes. Also, 

the middle-income commuters’ preference for the metro mode is higher than that of high-income 

commuters. In addition, middle income commuters demonstrate a greater preference for two-

wheelers than higher income commuters, perhaps because the latter segment is more likely to 

prefer cars over two-wheelers. Next, individuals aged between 26 to 45 years are less likely to 

prefer bus, metro, and two-wheelers as they are more likely to prefer car when compared to 

younger individuals (in the age group 19 to 25 years). This is expected since younger individuals 

would be more likely to use public transit modes and two-wheelers when compared to older 

individuals who would place a higher value on comfort and convenience as well be more likely to 

have greater access to personal cars. Finally, individuals of age above 45 years are the least likely 

to prefer the bus mode among all individuals, perhaps because they prefer modes that offer more 

comfortable travel than buses. 

The last reported parameter estimate for all the three models is the scale of the utility 

functions in the SP setting (Note: the scale for the RP setting is fixed to be 1). The estimated 

parameter value is smaller than 1, which implies that the unobserved factors influencing choices 

in the SP setting exhibit lower variability than those in the RP setting.  
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Table 5. Empirical parameter estimates for pooled RP-SP models of commute mode choice13 

 
13 ‘*’ in a specific cell indicates that the corresponding parameter estimate was not statistically significant and hence dropped from the specification. ‘NA’ in a specific cell 
indicates ‘Not Applicable’.  
14 For Model A, inverse speeds are considered power lognormal distributed. Location and scale parameters were estimated while fixing the power parameter values. For ease of 
interpretation, the values reported here are the resulting expected values and standard deviations of the power-lognormal distribution; not the location and scale parameter 
estimates. 

Variable description 
Model A (proposed model) Model B (RP travel time variability ignored) Model C (with exogenous RP travel times) 

Par. est. t-stat. Par. est. t-stat. Par. est. t-stat. 
Location parameters for normal distributed alternative-specific random effects (Auto-rickshaw mode is the base) 

Metro – RP 11.535 10.38 11.064 10.16 8.664 4.41 
Walk – RP 6.296 1.93 6.211 1.37 4.979 1.65 
Car – RP 4.915 7.03 4.883 7.44 4.275 2.47 
Two-wheeler – RP 7.098 9.72 7.068 10.32 7.066 3.96 
Bus – RP 7.910 8.22 7.637 8.27 7.348 3.90 
Metro – SP 8.433 11.95 8.255 12.34 8.153 3.51 
Walk – SP 9.097 2.39 9.056 1.57 8.510 2.27 
Car – SP 7.205 10.67 7.117 10.77 7.104 3.12 
Two-wheeler – SP 4.305 9.85 4.255 10.57 3.410 1.60 
Bus – SP 9.093 13.35 9.011 12.82 8.721 3.69 

Scale parameters for normal distributed alternative-specific random effects 
Metro  4.315 5.18 4.250 3.49 2.521 4.41 
Walk  1.062 2.39 1.043 1.87 1.017 2.95 
Car 3.540 2.55 3.354 2.58 3.340 2.50 
Two-wheeler 1.037 2.83 0.841 1.30 0.760 2.01 
Auto-rickshaw 4.664 6.61 4.329 2.72 4.073 3.07 
Bus 5.815 10.01 5.806 10.36 3.880 5.36 

Mean and standard deviations of mode-specific inverse speeds (for IVTT) in RP setting (min/km) 14 
Car – Expected value 2.227 53.27 0.333 1.06 NA NA 
Car – Standard deviation 0.372 2.52 NA NA NA NA 
Two-wheeler (TW) – Expected value 1.894 10.82 0.826 3.40 NA NA 
Two-wheeler (TW) – Standard deviation 0.525 1.59 NA NA NA NA 
Auto-rickshaw – Expected value 3.256 18.76 1.048 5.39 NA NA 
Auto-rickshaw – Standard deviation 1.295 4.60 NA NA NA NA 
Bus – Expected value 3.652 27.20 1.117 5.21 NA NA 
Bus – Standard deviation 1.709 6.63 NA NA NA NA 
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Table 5 (Contd.). Empirical parameter estimates for pooled RP-SP models of commute mode choice 

 

Variable description 
Model A (proposed model) Model B (RP travel time variability ignored) Model C (with exogenous RP travel times) 

Par. est. t-stat. Par. est. t-stat. Par. est. t-stat. 
Coefficients on level-of-service variables (lognormal distributed coefficients on IVTT and OVTT/distance) 

IVTT (min) for motorized modes – 
  Expected value -0.109 -4.01 -0.058 -6.38 -0.058 -1.52 
IVTT (min) for motorized modes – 
  Standard deviation 0.120 3.49 0.118 5.62 0.112 1.03 
  Walk travel time (min) -0.179 -1.60 -0.134 -0.78 -0.074 -0.90 
OVTT/distance (min/km) for motorized 
  modes – Expected value -0.259 -7.83 -0.257 -4.46 -0.228 -6.15 
OVTT/distance (min/km) for motorized 
  modes – Standard deviation 0.239 5.61 0.216 3.13 0.156 2.70 
Travel cost (INR) -0.033 -4.18 -0.017 -2.12 -0.011 -2.24 

Gender (Female is the base, Auto-rickshaw is base mode) 
Metro 2.099 2.24 1.771 1.30 1.687 1.54 
Car 4.883 4.75 2.690 1.99 1.818 1.56 
Two-wheeler 4.750 4.50 2.446 1.89 1.584 1.34 

Income dummy variables (High income is base category, Auto-rickshaw is base mode) 
Medium income - Metro  4.536 3.53 2.823 2.11 2.328 2.21 
Medium income - Walk  -3.436 -1.90 -3.394 -1.44 -1.681 -1.12 
Medium income – Car 1.050 1.08 * * * * 
Medium income - Two-wheeler 1.831 1.78 1.776 1.49 * * 
Low income – Walk -2.605 -1.39 -2.577 -1.24 -2.188 -1.34 
Low income – Car -2.240 -2.14 -1.938 -1.22 -1.461 -1.55 
Low income – TW -2.383 -2.24 -2.156 -1.31 -2.132 -2.04 

Age (Age 19-25 years is the base category; Auto-rickshaw is base mode) 
26-45 years – Bus -3.109 -2.53 -3.094 -2.08 -2.085 -2.02 
26-45 years – Metro -2.068 -1.84 -1.930 -1.47 -1.362 -1.42 
26-45 years – Walk * * * * -1.700 -1.00 
26-45 years – Car 3.530 3.26 3.335 2.40 2.559 2.63 
26-45 years – TW -5.858 -4.08 -5.804 -3.12 -3.257 -2.93 
>45 years – Bus -1.317 -1.20 -1.287 -1.10 -1.283 -1.23 
>45 years – TW -1.600 -1.58 -1.555 -1.26 -1.096 -1.13 

 SP scale parameter (RP scale is assumed to 
  be 1; t-stat is against 1) 

0.356 10.53 0.198 11.91 0.150 19.22 
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Table 6 reports the mode-specific speeds for each of the three empirical models estimated 

in the study. For Model A, these values were obtained by first simulating the power lognormal 

distributions of the inverse speeds (whose distributional parameters were estimated using the 

proposed model), then taking an inverse of the simulated values to simulate the speeds, and then 

taking an average and standard deviation of the simulated speeds. For Model B, the estimated 

mode-specific fixed inverse speeds were inverted to obtain the speeds. For Model C, the speeds 

were computed from the exogenously obtained travel times and distances from Google APIs. Note 

from the modal speed values inferred from Model A that the two-wheeler average speed is the 

highest among all the modes, while the bus mode has the lowest average speed. Further, the 

estimated average speeds are in the ballpark range of the speeds typically observed in Bengaluru 

(Infrastructure Development Corporation (Karnataka) Ltd., 2020). In addition, the standard 

deviations and coefficients-of-variation in the inferred mode-specific speeds offer insight into the 

variation in the mode-specific speeds profiles perceived by travellers. Such insights cannot be 

obtained from Model B, which ignores the variability in mode-specific inverse speeds. On the 

other hand, recall that Model C utilizes exogenous data on travel times. It is apparent from the last 

row of the Model C column that the exogenous data is based on speeds that are relatively higher 

than those inferred from Model A. For example, the data used for Model C suggests an average of 

22 kmph for bus travel speeds. However, other estimates in Bengaluru (Infrastructure 

Development Corporation (Karnataka) Ltd., 2020) suggest lower speeds that are nearer to the 

speeds inferred from Model A. 

Table 6. Mode-specific speeds 

 
Model A  
(proposed model) 

Model B (RP travel 
time variability 
ignored) 

Model C (with 
exogenous RP travel 
times) 

Car Mean = 27.7 kmph; SD = 4.8 Mean = 43.0 kmph Mean = 25.6 kmph 

Two-wheeler  Mean = 34.2 kmph; SD = 9.9 Mean = 26.3 kmph Mean = 35.0 kmph 

Auto-rickshaw Mean = 21.5 kmph; SD = 8.9 Mean = 21.0 kmph Mean = 22.0 kmph 

Bus Mean = 20.3 kmph; SD = 10.2 Mean = 19.6 kmph Mean = 22.7 kmph 
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In summary, the empirical results are consistent with the findings from the simulation 

experiments and demonstrate that combining RP and SP datasets enables the simultaneous 

estimation of alternative attributes (and the stochasticity therein) in RP settings as well as a random 

coefficient on such attributes. Additionally, ignoring stochasticity in alternative attributes, when 

present, can cause bias in parameter estimates of the random coefficient on these attributes as well 

as other parameter estimates in the model. Furthermore, the mode-specific speeds inferred from 

the proposed model (Model A) are closer to the speeds typically observed in Bengaluru than those 

inferred from Model B or those obtained exogenously (from Google APIs).  

 

6. CONCLUSION 

In the current study, we explore the feasibility of using pooled revealed preference and stated 

preference (RP-SP) data models to simultaneously infer alternative attributes and the 

corresponding coefficients as well as the stochasticity in both alternative attributes and their 

coefficients. To do so, we formulate a mixed logit choice modelling framework for pooled RP-SP 

datasets with the alternative attributes in the RP data and the corresponding coefficients common 

to both RP and SP settings as unknown parameters to be estimated. Using such a mixed logit model 

framework for a mode choice setting, we conduct theoretical investigations to examine whether 

the parameters describing the distributions of alternative attributes in the RP setting can be 

identified (and how many such parameters can be identified) along with the parameters describing 

the distribution of random coefficients on the attributes. We carried out the investigations 

separately for the following two different types of alternative-specific (mode-specific) attributes: 

(1) the attributes exhibit systematic variability across individuals in the data – due to variation that 

can be expressed as a function of an observed variable – as well as random variability, and (2) the 

attributes exhibit only random variability across individuals in the data. Further, for each case, we 

lay out the identification conditions for two widely used distributional assumptions on the 

alternative attributes and random coefficients on them – (1) normal distribution and (2) lognormal 

distribution. 

Our investigations revealed that for settings where the alternative-specific stochastic 

attributes involve both random and systematic variation, the analyst can infer the distribution of 

the attributes (e.g., distance-dependent IVTT ) for up to (at least) 1J   choice alternatives if the 
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attributes are normal (lognormal) distributed. To apply such a framework to model mode choice 

while inferring the IVTT of different travel modes, the analyst can measure the IVTT of at least one 

mode (e.g., non-motorized modes) without error and infer the distance-dependent IVTT of other 

modes using pooled RP-SP data. Next, we derived separate identification conditions for inferring 

alternative-specific stochastic attributes such as OVTT that do not exhibit systematic variation. 

Further, we discuss the limitations of this method pertaining to the identification of stochastic 

attributes free of systematic variation and if multiple alternative-specific stochastic attributes need 

to be inferred for each choice alternative.  

To augment the theoretical investigations, we conduct simulation experiments to examine 

the efficacy of combining RP-SP datasets in inferring the values of an alternative attribute for the 

choice alternatives in RP settings along with the random coefficient on that attribute and any other 

alternative attributes. Our findings from these experiments corroborated those from the theoretical 

investigations carried out for parameter identification. Finally, we present an empirical analysis of 

commute mode choice using pooled RP-SP data from Bengaluru to demonstrate the feasibility of 

inferring mode-specific IVTT in RP settings along with the corresponding random coefficient.  

In summary, this study formulates a methodology to infer stochastic alternative attributes 

and identify the randomness in their coefficients through pooling SP and RP datasets. By doing 

so, the study addresses the problem of confounding between these two sources of stochasticity, 

which has not been addressed well in the literature. Nevertheless, this study is not without 

limitations. First, the study assumes that all attributes presented in SP choice occasions are 

considered by the survey respondents. This assumption ignores the issue of attribute non-

attendance, where some attributes may not be considered by all respondents. Second, the empirical 

application in this study demonstrates the application of the proposed method for inferring mode 

specific IVTT values when estimating mode choice models. It would be useful to expand the 

empirical application to infer OVTT values and crowding levels in transit modes. These issues 

comprise important avenues for future research. 
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Appendix A: Parameter identification when alternative-specific stochastic attribute exhibits 

both systematic and random variation across individuals in the data 

Consider the following utility expressions for an RP alternative i  for individual q : 

 *
0 ,qi i TT q qi qiU TT      (A1) 

In this equation, *
qiTT  is the stochastic alternative-specific travel time variable with a random 

coefficient ,TT q . The parameters describing the distribution of ,TT q  are estimated with the help 

of SP data. qi  is a Gumbel distributed error term specified as IID across all RP alternatives and 

across all individuals. Denote its variance as 2g , where   is the scale of the kernel error terms 

and 
2

6
g


 . To rewrite the above utility expression, express *

qiTT  as a function of an observed 

variable travel distance qd  and randomly varying inverse speed qi  (i.e., *
qi q qiTT d  ) , and denote 

the random coefficient ,TT q  as qy . The utility expression in Eq. (A1) can now be written as: 

 0qi i q q qi qiU y d      (A2) 

Using the above notation, consider a choice setting with three alternatives, with the following 

utility expressions: 
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1 01 1 1

2 02 2 2

3 3 3

q q q q q

q q q q q

q q q q q

U y d

U y d

U y d

  

  

 

  

  

 

 (A3) 

For this setting, we discuss parameter identifiability for two different sets of distributional 

assumptions – (1) normal distribution and (2) lognormal distribution – on qi and qy . 

Stochastic alternative-specific attribute and its coefficient follow normal distribution 

Consider that qi ~  2,i iN     and qy ~   2,y yN   , where y  and y  are estimable (therefore, 

known) using SP data. In this case, the utility expressions can be rewritten to separate the location 

parameters ( i ) from the scale parameters ( i ), as: 

 

1 01 1 1 1 1

2 02 2 2 2 2

3 3 3 3 3

( )

( )

( )

q q q q q

q q q q q

q q q q q

U y d z

U y d z

U y d z

 

 

 

   

   

  

   

   

  

 (A4) 

Next, writing the utility equations in differenced form, with respect to 3qU , we have: 

 
1 3 01 1 3 1 1 3 3 1 3

2 3 02 2 3 2 2 3 3 2 3

( ) ( ) ( )

( ) ( ) ( )

q q q q q q q q q q

q q q q q q q q q q

U U y d y d z z

U U y d y d z z

   

   

      

      

       

       
 (A5) 

The above utility differences can be rewritten, by expanding qy  as  y y qyz  , as below: 

 
1 3 01 1 3 1 3 1 1 3 3 1 3

2 3 02 2 3 2 3 2 2 3 3 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

q q y q y qy q q q q q q q

q q y q y qy q q q q q q q

U U d z d y d z z

U U d z d y d z z

     

     

          

          

         

         
 (A6) 

The deterministic components of the above utility differences are 01 1 3( )y qd        and 

02 2 3( )y qd       . It can be observed from these deterministic components that only two of 

the three location parameters – 1 2 3, , and       – can be estimated. In a general case with J  

choice alternatives, one can estimate up to 1J   location parameters.  

 Now, let us turn to the random components of the utility differences, with the differences 

taken with respect to the third alternative utility function. The corresponding covariance matrix of 

random utility differences is: 
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 (A7) 

This covariance matrix can be separated into two components – one that varies across individuals 

based on the observed variable qd  and another that does not vary across individuals – as below:   
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 (A8) 

The part of the covariance matrix that exhibits variation across individuals (due to qd ) has all the 

unknown parameters related to the distributions of the alternative-specific stochastic *
qiTT  

variables.  Since this part varies across individuals, there is no need to examine the structure of the 

covariance matrix for any linear dependencies in this part. In such cases, the basic principle that 

only differences in utility matter (and the overall scale of the model is not identified) is invoked to 

determine the identifiability of parameters. To do so, one needs to examine the structure of the 

random utility differences and assess how many scale parameters can be estimated. In this context, 

the random components of the utility differences in Equation (A5) that include the scale parameters 

are 1 1 3 3( )q q q qy d z z    and 2 2 3 3( )q q q qy d z z   . Since the difference of two normal 

distributed random variables 1 1 3 3( )q qz z    is another normal distributed random variable, only 

one scale parameter for each the differences 1 1 3 3( )q qz z    and 2 2 3 3( )q qz z    can be 
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estimated.  Alternatively, only two of the three scale parameters – 1 2 3, , and       – can be 

estimated and by normalizing one scale parameter. In a general case with J  choice alternatives, 

one can estimate up to 1J   scale parameters for the alternative-specific stochastic variables.  

In summary, up to 1J   alternative-specific location parameters and up to 1J   

alternative-specific scale parameters are estimable when a normal distributed alternative-specific 

attribute enters each of the J  utility functions with some systematic variation across individuals. 

On the other hand, if the alternative-specific attribute (with systematic variation) enters only L  of 

the J  utility functions ( L J ) then up to L  alternative-specific location parameters and up to L  

alternative-specific scale parameters are estimable. 

Stochastic alternative-specific attribute and its coefficient follow lognormal distribution 

Consider the following utility structure, where exp( )i i qiz    is the alternative-specific inverse 

speed, assumed to be lognormal distributed (i.e., exp( )qi i i qiz     ), and exp( )qy   is the 

lognormal distributed random coefficient on travel time, whose parameters are known from the SP 

data. All other terms in the utility structure are as defined earlier in this appendix. 

 

1 01 1 1 1 1

2 02 2 2 2 2

3 3 3 3 3

exp( ) exp( )

exp( ) exp( )

exp( ) exp( )

q q q q q

q q q q q

q q q q q

U y d z

U y d z

U y d z

 

 

 

   

   

  

   

   

  

 (A9) 

Even this case, as in the case of normal distributed attributes and coefficient, the systematic 

variation across individuals due to the observed variable qd  obviates the need for checking the 

rank of the covariance matrix of utility differences. Therefore, one can follow the basic principle 

that only differences in utilities matter to assess how many parameters of the alternative-specific 

stochastic variables can be estimated. To do so, let us setup the utility differences with respect to 

the third alternative as below: 

 
 
 

1 3 01 1 1 1 3 3 3 1 3

2 3 02 2 2 2 3 3 3 2 3

exp( ) exp( ) exp( ) ( )

exp( ) exp( ) exp( ) ( )

q q q q q q q q

q q q q q q q q

U U y d z z

U U y d z z

   

   

      

      

       

       
 (A10) 

Note from the above set of utility differences that the parameters to be estimated ( i , i  i ) 

are entangled in the differences of lognormal distributions: 
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 3 3 3exp( ) exp( ) ; {1,2}i i qi qz z i          . In a general case with J  alternatives there would 

be 1J   such differences. While the difference of two lognormal distributions is not a known 

distribution, one can estimate 1J   location parameters and 1J   scale parameters, given each of 

the above differences results in another (unknown) distribution that needs at least two parameters 

to describe it. However, since the difference of two log-normal distributions is an (unknown) 

distribution that might need more than two parameters to fully describe it, one might be able to 

estimate all J  scale parameters in a few settings. Nevertheless, the analyst can safely assume that 

estimating 1J   location parameters and 1J   scale parameters would not lead to theoretical 

identification issues. 

Multiple stochastic alternative-specific attributes enter a choice alternative’s utility function 

The above discussion – for both normal and lognormal distributional assumptions – was only for 

situations when each choice alternative’s utility function has a single alternative-specific attribute 

that is stochastic, albeit the number of such stochastic variables across all choice alternatives can 

be as many as J . However, there may be situations where the RP utility function of each choice 

alternative has multiple stochastic alternative-specific attributes, as in the utility function below: 

 0qi i kq kq kqi qi
k

U y d      (A11) 

In this equation, the utility function of alternative i  has k  stochastic alternative-specific attributes 

( kq kqid  ), each with its random coefficient ( kqy ) that is identifiable from SP data. And each of 

these attributes is associated with a separate observed variable ( kqd ) that introduces systematic 

variation across individuals and a random variable kqi  that exhibits random variation across 

individuals. The parameters of kqi k   ought to be estimated using RP data. In such situations, 

since each alternative-specific stochastic attribute is associated with a separate observed variable 

( kqd ) that introduces systematic variation across individuals, one can estimate up to 1J   

alternative-specific location parameters and up to 1J   alternative-specific scale parameters of  

kqi  for each of the k  stochastic attributes (if the attribute appears in all J  utility functions). 

In other situations, the systematic variation across individuals for the different alternative-

specific stochastic attributes is only due to a single observed variable (say qd ), as given below: 
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 0qi i kq q kqi qi
k

U y d      (A12) 

In such situations, one cannot estimate more than a single location parameter and a single scale 

parameter for the distributions of alternative-specific attributes of a given alternative, and only up 

to 1J   alternative-specific location parameters and up to 1J   alternative-specific scale 

parameters can be estimated for all stochastic attributes of all alternatives. 

The above discussion holds for both the distributional assumptions discussed earlier – 

normal and lognormal – for stochastic alternative attributes and their coefficients. 

 

Appendix B: Parameter identification when alternative-specific stochastic attribute does not 

exhibit systematic variation across individuals in the data 

As in Appendix A, consider the following utility expressions for an RP alternative i  for individual 

q , with mode-specific stochastic travel time *
qiTT  and its random coefficient ,TT q : 

 *
0 ,qi i TT q qi qiU TT      (B1)  

However, unlike in Appendix A, the stochastic travel time variable ( *
qiTT ) is not associated with 

any systematic variation across individuals. It exhibits only random variation across individuals. 

All other terms in the above equation are as defined for Equation (A1) of Appendix A.  

Denoting the random coefficient ,TT q  as qy , the utility expression in Equation (B1) can 

be rewritten as below: 

 *
0qi i q qi qiU y TT     (B2) 

For this setting, we discuss parameter identifiability for two different sets of distributional 

assumptions – (1) normal distribution and (2) lognormal distribution – on *
qiTT  and qy . 

Stochastic alternative-specific attribute and its coefficient follow normal distribution 

Consider that *
qiTT  ~  2,i iN   or *

qi i i qiTT z   , where qiz  is a standard normal variate. And 

let qy  ~  2,y yN    or q y y qyy z   , where qyz  is a standard normal variate. The parameters 
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 ,y y   describing qiy  are estimable (therefore, known) using SP data, whereas the parameters 

 ,i i   describing *
qiTT  need to be estimated using RP data. The resulting utility functions can 

be written as below: 

 0 ( )( ) ( )( )qi i y y qy i y qi y qy qi i qiU z z z z              (B3) 

In the above utility structure, the deterministic component is 0i i y   . From such a 

deterministic component, it is not possible to identify i  because y  does not exhibit variation 

across individuals (unlike the situation in Appendix A where the observed attribute qd  which 

varies across individuals is part of the deterministic component). Therefore, i , as with i ,  

should be considered as an unknown parameter in the variance-covariance matrix of utility 

differences.  

The variance-covariance elements of the random components of the above utility functions 

are as follows (assuming that *
qiTT i J , qy , and qi i  J  are all independent of each other): 

 

*

2 2 2 2 2 2 2

( ) ( ) ( )

, where .

qi q qi qi

ii ii i y i y y i

Var U Var y TT Var

s g s



      

 
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 (B4) 

 

* * * *

2

( , ) ( ) ( ) ( )

where 

qi qj q qi q qj q qi q qj

ij ij y i j

Cov U U E y TT y TT E y TT E y TT

s s   

 

 
 (B5) 

Consider a setting with three choice alternatives (i.e., 3J  ). In such a setting, there would be 

three normal distributed alternative-specific stochastic variables ( *
qiTT ) – one in each utility 

function. The resulting covariance matrix of the utility expressions in Equation (B2) is: 
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 (B6) 

Now, define a linear operator jM  that transforms the J  utilities into ( 1)J   utility differences 

taken with respect to the thj  alternative. jM  is an identity matrix of size ( 1) ( 1)J J    where 

the thj  column is substituted by a column of 1 s. Let us consider the first alternative as the base 

alternative. The corresponding linear operator matrix can be defined as below: 

 1

1 1 0

1 0 1
M

 
   

 (B7) 

The covariance matrix 1  of utility differences (with respect to the first alternative) is given by 

1 1M M  . Such a covariance matrix of utility differences for the utility form in Equation (B2) is: 
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  (B8) 

 To determine the maximum number of unique parameters that result in the above 

covariance matrix of utility differences, one should find the rank of the Jacobian of the vector of 

unique elements in above matrix with respect to the parameters in the matrix. This is called the 

rank condition (Bunch, 1991; Walker 2001). The vector of unique elements of 1  is given below: 
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The elements in the above vector (and those in the covariance matrix 1  of utility differences), 

comprise seven unknown parameters – three i , three 2
i , and one 2 . The Jacobian of the above 

vector with respect to these seven parameters is given below: 
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The rank of the above Jacobian matrix is:  1( ) 3Rank veJacobian cu     , indicating that a total 

of three unknown parameters can be estimated. Since the scale ( 2 ) of the overall model must be 

normalized, a total of two unknown parameters can be estimated out of the remaining six i  and 

2
i  parameters describing the alternative-specific stochastic variables. This exercise can be 

repeated for situations with different choice set sizes ( J ). Our explorations suggest that one can 

derive the following generic expression for only situations when 5J  , for which the number of 

unknown parameters in the Jacobian is greater than the number unique elements in 1( )vecu   

(i.e., the number of columns of the Jacobian is greater than its number of rows):  

 1
( 1)

( ) 5, 1
2

R Jacobia
J J

ank vecu J Jn 


        

Therefore, after accounting for one normalization for the overall scale of the model, the number 

of estimable parameters of normal distributed alternative-specific stochastic variables is 

( 1)
1

2

J J 
  when 5J  . Note that, when 2J  , the rank of the Jacobian matrix is 1, and thus, 
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no parameters describing alternative-specific stochastic variables can be identified in a binary 

choice setting.   

For situations when 5J  , the number of unknown parameters in the Jacobian becomes 

less than the number of unique elements in 1( )vecu   (i.e., the number of rows in the Jacobian is 

greater than the number of columns). The structure of such Jacobian matrix is such that it is 

difficult to derive a generic expression for its rank. One must derive its rank on a case-to-case basis 

separately for each value of 5J  . 

Note that the above discourse is for a setting where the utility functions of all choice 

alternatives involve a stochastic alternative-specific attribute ( *
qiTT ) with a random coefficient. 

However, in some situations, only a subset of the utility functions might include the stochastic 

attribute while the other utility functions include only a deterministic component of the 

corresponding attribute (with the same random coefficient across all alternatives). For example, in 

a mode choice model mode-specific access times might be stochastic for only transit and shared 

mobility alternatives and deterministic for personal vehicle alternatives. To consider such 

situations, let L  ( L J ) be the number of utility functions in which the alterative-specific attribute 

enters in a stochastic form along with the random coefficient. In such situations, for values of 

5J  ,  the rank of the Jacobian matrix can be derived as 
( 1)

2

J J 
 as long as the alternative-

specific attributes enter the other J L  utility functions in a deterministic manner (with the same 

random coefficient ,TT q ). For 5J  , the rank of the Jacobian matrix has to be derived on a case-

to-case basis.  

 Next, consider a situation where L J  number of utility functions have the alterative-

specific attribute in a stochastic form along with the random coefficient and the remaining J L  

utility functions do not include the corresponding attribute even in the deterministic form. For 

example, the waiting time variable is not relevant (as the waiting time is zero) for the walk mode 

and personal vehicle modes. Similarly, transfer time variable may be zero for non-transit modes, 

but a stochastic variable for transit modes. In such situations, the rank of the Jacobian matrix for 

determining the number of estimable parameters of the L  stochastic alternative attributes can be 

derived as 
( 1)

2

L L 
 for any J .   
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Stochastic alternative-specific attribute and its coefficient follow lognormal distribution 

Consider that *
qiTT   ~   2,i iLN    or  * expqi i i qiTT z   , where qiz  is a standard normal 

variate, and qy  ~   2,y yLN   . The parameters  ,y y   describing qiy  are estimable (therefore, 

known) using SP data and the parameters  ,i i   describing *
qiTT  need to be estimated using RP 

data. For these distributional assumptions, the utility functions can be written as: 

 
*

0

0 exp( )exp( )

qi i q qi qi

i y y qy i i qi qi

U y TT

z z

 
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    
 (B11) 

For the resulting utility functions, i  cannot be separated out from the random component of the 

utility. Therefore, i , as with i ,  should be considered as an unknown parameter in the variance-

covariance matrix of utility differences.  

For the above utility structure, the variance-covariance elements of the random components 

are as follows (assuming that *
qiTT i J , qy , and qi i  J  are all independent of each other): 
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The structure of the covariance matrix 1  of utility differences is similar to the one written in 

the case with the normal distribution assumption for the stochastic variable and its coefficient. 

Specifically, the vector of unique elements in the covariance matrix of utility differences for a 

three-alternative choice set is: 
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2
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2
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except that the terms iis  and ijs  in this matrix are defined differently from those in the matrix of 

Equation (B9) for normal distributional assumption. In this case, we have seven unknown 

parameters – three i , three 2
i , and one 2 . To make the notation compact, let 2 i

im e i  J  

and let 
2 2

var ( 1)i i
i e e i    J . Substituting these for the elements in 1( )vecu  , we have: 
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cm cm cm m g
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Further, let 2 2var (var 1)i i is i   J . The Jacobian of the above vector with respect to the seven 

unknown parameters is given below:  
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The rank of the above Jacobian is:  1( ) 3.R cJack obiaa ve unn      Thus, after normalizing the 

scale of the overall model, a total of two unknown parameters can be estimated out of the remaining 

six i  and 2
i  parameters describing the alternative-specific stochastic variables.  

 Repeating the above exercise for situations with different choice set sizes ( J ), as in case 

of the normal distributional assumption, one can derive the following expression for the rank of 

the Jacobian matrix for only situations when 5J  :  1
( 1)

( )
2

R Jacobi
J J

ank veca un 


    . For 
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situations when 5J  , the rank of the Jacobian matrix has to be derived on a case-to-case basis, 

for reasons discussed earlier in the discussion for the normal distributional assumption.  

Now, let us consider situations when only L  ( L J ) of the utility functions includes 

alternative-specific stochastic attributes along with the random coefficient. In such situations, 

regardless of whether the remaining J L  utility functions include the corresponding attribute (in 

a deterministic form), one can derive the following generic expression for the rank of the Jacobian 

matrix:  1
( 1)

( )
2

R Jacobi
L L

ank veca un 


    .  That is, after normalizing the scale of the 

model, one can estimate 
( 1)

1
2

L L 
  number of parameters describing the L  alternative-specific 

stochastic attributes. 

Multiple stochastic alternative-specific attributes enter a choice alternative’s utility function 

The above discussion – for both normal and lognormal distributional assumptions – was only for 

situations when each choice alternative’s utility function has a single alternative-specific stochastic 

attribute that does not exhibit stochastic variation, albeit the number of such stochastic variables 

across all choice alternatives can be as many as J . However, there may be situations where the 

RP utility function of each choice alternative has multiple stochastic alternative-specific attributes 

without any systematic variation across individuals. Such a model would be unidentified, because 

the variance-covariance matrix of utility differences does not allow the estimation of parameters 

for multiple stochastic attributes in each alternative. 

 

Appendix C: Additional Simulation Experiments Considering Lognormal Distributed 

Alternative-specific Attributes and Random Coefficients 

Design-III: Lognormal distributed stochastic alternative-specific attribute in J alternatives with 

lognormal distributed random coefficient 

Design-III involves four modes in the choice set – bus, car, TW, metro – with stochastic travel 

times for all four modes and a generic random coefficient on travel time (i.e., 4J   and 4L  ). 

However, unlike in Design-I or Design-II, data on mode-specific inverse speeds ( qi ) are generated 

using lognormal distributions for travel times. Also, the random coefficient on travel time ( ,TT q ) 
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is generated from a lognormal distribution (negative of the lognormal distribution draws are used 

for the coefficient on travel time). The parameters of the normal distributions used to generate 

these lognormal distributions are the same as the parameters of the normal distributions used in 

Design I. Another difference between this design and Design-I is that the location parameter of the 

metro mode inverse speed is assumed to be known to the analyst (that is the analyst does not have 

to estimate this parameter). This assumption is necessary to meet the basic identification 

requirement that only utility differences matter. All other assumptions and parameters in this 

design are the same as those in Design-I in Section 4.  

Evaluation of models estimated on simulated data from Design-III 

We estimated the following two models on all simulated datasets from Design-III: Model-IV and 

Model-V. Model-IV is a mixed logit model with the same structure as the true DGP used to 

simulate data from Design-III. That is, L J  alternatives involved lognormal distributed travel 

time (lognormal distributed inverse speeds, to be precise) and a lognormal distributed coefficient 

on travel time (negative of the lognormal distribution draws are used for the coefficient on travel 

time). The location parameter of inverse speed for any one of the modes was assumed to be known 

to the analyst (since only differences in utility matter) while the scale parameters of all these 

distributions were estimated. Specifically, we assumed that the location parameter of metro inverse 

speed was known to the analyst. Model-V simplifies Model-IV by ignoring the variability in travel 

times (or inverse speeds) of all the modes (i.e., scale parameters of the parent normal distributions 

of the inverse speeds were assumed to be zero and only the location parameters were estimated). 

 Table C1 reports a summary of these estimation results. As can be observed from the results 

for Model-IV, we are able to recover the assumed true parameters accurately and precisely. This 

includes the location parameters for inverse speed distributions of 1J   alternatives, scale 

parameters of inverse speed distributions of all J  alternatives, and the parameters of the 

corresponding random coefficient. As can be noted, we could estimate the scale parameters of 

inverse speed distributions of all J  alternatives without running into parameter (un)identifiability 

issues. This is unlike in the case of normal distributed inverse speeds for which we could estimate 

only up to 1J   alternatives’ scale parameters. The likely reason behind the identification of all 

J  scale parameters is that the difference of two lognormal random variables does not yield a 

distribution with a known analytic form. Since the resulting distribution might need more than two 
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parameters to describe it fully (unlike in the case of the difference of two normal distributions), it 

may be possible to estimate one more than 1J   alternative-specific scale parameters. 

Additionally, all J  scale parameters corresponding to the alternative-specific random effects are 

identified due to the panel nature of the data. However, this result might not hold in general, that 

is, for all possible sets of true parameter values. Therefore, as discussed in Section 3.1.2, it is safer 

that at least one of the alternative-specific inverse speed scale parameters is known a priori to the 

analyst (or is assumed to be zero) and estimate the scale parameters for up to 1J   alternatives to 

be more certain of an identified model.   

Next, the results for Model-V in Table C1 indicate that the location and scale parameters 

of the random coefficient on travel time display a statistically significant bias toward zero when 

compared to the corresponding estimates from Model-IV. This finding concurs with the discussion 

and findings in Biswas et al. (2024) on bias in parameter estimates when stochasticity in alternative 

attributes with multiplicative stochasticity (e.g., lognormal distributions) is ignored. They discuss 

that in such cases, either one of the location and scale parameters or both of these may be biased 

toward zero. It is also possible that one of the two parameter estimates gets biased toward zero 

while the other gets biased away from zero. In the current simulation experiments, we observe that 

both the location and scale parameters of the coefficient on travel time are biased toward zero. In 

addition, the coefficients for the alternative-specific constants, travel cost, and the SP scale 

parameter also display a similar bias. The location parameters of the inverse speeds of car and two-

wheeler (which are also the degenerate values for the corresponding inverse speeds, given their 

scale parameters are set to be zero) display a bias away from zero while that for bus displays a bias 

toward zero. Finally, although not reported in the tables, in terms of model fit, Model-V was found 

to be inferior to Model-IV across all simulated datasets. These results, and the high bias in 

parameter estimates of Model-V, highlight the importance of recognizing stochasticity in 

alternative attributes.
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Table C1. Simulation results for mixed logit models on pooled RP-SP data (lognormal travel time and lognormal random coefficient on 
travel time) 

Variable description 
True  
value 

Model-IV Model-V 
0

ˆ:

ˆ
Model IV

Model V

H 





 

Mean 
estimate 

APB ASE FSSE 
Mean 

estimate 
APB ASE FSSE 

 

Location parameters for alternative-specific random effects (bus mode is base) 

Car 1.80 1.988 10.46 0.1874 0.0642 0.729 59.51 0.0788 0.3097 6.20 

Two-wheeler  0.30 0.315 5.05 0.1176 0.0745 0.219 26.92 0.0634 0.3175 0.72 

Metro 0.50 0.499 0.14 0.1442 0.1238 0.245 50.98 0.0569 0.3368 1.64 
Scale parameters for alternative-specific random effects (normal distributed) 

Bus  1.00 0.906 9.36 0.1296 0.0664 0.196 80.39 0.0614 0.4197 4.95 

Car 1.85 1.891 2.21 0.1548 0.1086 0.641 65.36 0.0405 0.0443 7.81 

Two-wheeler 1.55 1.395 9.98 0.1078 0.0973 0.501 67.65 0.0442 0.0419 7.67 

Metro 1.35 1.193 11.62 0.1233 0.1969 0.096 92.89 0.0416 0.3854 8.43 
Parameters of mode-specific inverse speeds (for travel times) in the RP setting  

RP bus inverse speed – Location parameter 1.85 1.687 8.79 0.0508 0.1044 1.558 15.79 0.0040 0.0088 2.54 

RP bus inverse speed – Scale parameter 0.40 0.363 9.20 0.0347 0.0442 0.000 NA NA NA NA 

RP car inverse speed – Location parameter 1.25 1.112 11.07 0.0925 0.1945 1.284 2.68 0.0045 0.0055 1.86 

RP car inverse speed – Scale parameter 0.20 0.203 1.75 0.0502 0.0850 0.000 NA NA NA NA 

RP TW inverse speed – Location parameter 1.10 0.969 11.90 0.0502 0.0209 1.275 15.93 0.0059 0.0078 6.06 

RP TW inverse speed – Scale parameter 0.30 0.278 7.25 NA 0.0522 0.000 NA NA NA NA 

RP metro inverse speed – Location parameter 1.50 (Fixed) NA NA NA NA NA NA NA NA NA 

RP metro inverse speed – Scale parameter 0.15 0.157 4.49 0.0457 0.0240 0.000 NA NA NA NA 

Coefficients on level of service variables    

Travel time – Location parameter -1.00 -1.072 7.19 0.0759 0.0456 -0.327 67.27 0.0158 0.0086 9.60 

Travel time – Scale parameter 0.15 0.146 2.93 0.0121 0.0160 0.018 87.72 0.0028 0.0375 10.28 

Travel cost  -0.45 -0.416 7.64 0.0304 0.0168 -0.147 67.36 0.0069 0.0029 8.63 

 SP scale parameter (RP scale is assumed to be 1) 0.70 0.759 8.42 0.0611 0.0360 0.258 63.13 0.0158 0.0107 7.93 

Average value across all parameter estimates NA  7.19 0.0843 0.0762  NA 54.54 0.0316 0.1384 NA 
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Appendix D: Empirical data description 

Here, we provide details on the RP data used in the empirical analysis of this study. 

Socio-demographics  

In addition to commute mode choice, the survey collected information on demographic 

characteristics such as age, gender, education level, and household income. Table D1 presents the 

relevant descriptive statistics. The sample has a considerably higher share of men (71.6%) than 

women (28.4%), which is reflective of the labor force participation trends in Bengaluru (Census 

of India, 2011). A similar trend has been documented for the entire country (National Statistical 

Survey Office, 2021). In terms of age distribution, there is a good representation of individuals 

from different age categories, with about 19.8% from the 19-25 years category, 36.9% from the 

26-35 years category, 22.7% from 36-45 years, 20.6% from 45 – 60 years, and about 3% above 60 

years. In terms of education level, around 36.5% of the sample reported an education level up to 

high school. This is not unexpected for a sample of employed individuals since approximately 

50% of the employed population in India records an education of high school and lower (National 

Statistical Survey Office, 2012). In terms of income level, 53.2% of the sample belonged to income 

category of less than Rs. 40,000 per month, 19.3% belonged to the middle- and upper middle-

income category (between Rs. 40,000 and Rs. 200,000 per month; see People Research on India’s 

Consumer Economy, 2023). Interestingly, one fourth of the sample did not reveal income 

information. In terms of vehicle ownership, more than 82% of the individuals come from 

households with a two-wheeler while about 32% come from households that own a car. The 

average commute distance in the sample is 9.85 km, with the following sample shares in different 

commute distance bands: 4% from less than 2 km, 27% from 2-5 km, 33% from 5-10 km, 20% 

from 10-15 km, 9% from 15-20 km, 5% from 20-25 km, and 1% from 25-30 km. The average 

commute distance is representative of that travelled by a typical individual in urban areas in the 

Indian context for commute trips (Nayka and Sridhar, 2019). 

Mode availability 

The assumptions used to decide the mode availability for the individuals in the sample are 

discussed here. Walk was considered a feasible alternative only when the commute distance was 

less than 5 km. The highest walk distance encountered in this data was 3.9 km. However, walk 

commute of up to an hour is feasible in the Indian context (Tiwari et al., 2016). Therefore, 

assuming that a distance of 5 km would require an hour to cover while walking at an average speed 
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of 5 km per hour, we considered the availability threshold for walk as 5 km. As a result, the walk 

mode was an available/feasible alternative for 257 individuals in our sample of 914 individuals.  

Next, public transit modes (i.e., bus and metro) were considered available (as the primary mode of 

travel), if the total first and last mile access distance between an individual’s home and workplace 

was less than 5 km. Additionally, if the OVTT of metro mode was found to be unreasonably high 

(for example, more than an hour), while the IVTT for the same was found to be low, such trip 

options were considered unavailable for travellers. Based on these considerations, bus and metro 

were considered available for 781 and 239 individuals in the sample, respectively. Personal modes 

(cars and two-wheelers) were considered feasible for an individual if the individual’s household 

owned these modes (based on the response of the individual in the RP section of the survey). Auto-

rickshaw was considered available for all the individuals in the sample, owing to the easy 

availability of the mode in Bengaluru.  

Table D1 Descriptive statistics of estimation Sample (N= 914) 
Mode shares in the sample  
  Auto- rickshaw 3.3% 
  Metro 14.7% 
  Bus 22.4% 
  Walk 2.2% 
  Two-wheeler 51.0% 
  Car 6.4% 

Exogenous variables 

Individual specific attributes 
Gender  

Male 71.6% 
Female 28.4% 

Age  

Age 19 - 25 years 19.8% 
Age 26 - 35 years 36.9% 
Age 36 - 45 years 22.7% 
Age 45 - 60 years 20.6% 
Age greater than 60 years 3.0% 

Education  

Less than 12th grade 36.5% 
Diploma 13.6% 
Undergraduate degree 35.5% 
Graduate and above 14.4% 

Employment status  

Employed in government sector 8.1% 
Employed in private sector 54.5% 
Self-employed/Business 37.4% 

Household characteristics 
Monthly income  

Less than ₹40,000 53.2% 
Between ₹40,000 and ₹100,000 17.4% 
Between ₹100,000 and ₹200,000 1.9% 
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More than ₹200,000 2.4% 
Don’t know 25.1% 

Household two-wheeler count  

Zero two-wheeler 17.4% 
One two-wheeler 51.5% 
Two or more two-wheelers 31.1% 

Household car ownership  

Zero car 68.4% 
One car 27.0% 
Two or more cars 4.6% 

Data on level-of-service (LoS) variables 

Secondary data sources and reasonable assumptions were utilized to compute the level-of-service 

(LoS) attributes – IVTT, OVTT, and travel costs for the different modes considered in the analysis. 

Specifically, for a given trip in the data, for each of the motorized modes of travel other than metro 

mode, relevant Google APIs (Application Programming Interfaces) were used to extract the IVTT 

and OVTT values between the travel origin and destination locations. Metro mode travel time was 

calculated assuming a speed of 36 kmph. Walk mode travel time was calculated based on an 

assumed walking speed of 5 kmph.  

Travel costs for the transit modes were computed from the fare charts published by the 

respective transit agencies for bus and metro models based on the distance of travel between the 

origin and destination transit stops. For the auto-rikshaw mode, the current government fare 

structure was used, albeit with an inflation factor (the inflation factor was computed based on the 

ratio of the traveler-reported costs and government stipulated fares for trips that involved the use 

of autorickshaw mode). Travel costs for the personal car and two-wheeler modes were computed 

based on the trip distance, prevalent fuel price, and assumed mileages for cars and two-wheelers 

(the average mileage of a hatchback car was assumed to be 15 km per litre in Bengaluru and that 

of a two-wheeler was assumed to be 40 km per litre and the prevalent fuel price was 90 Rupees 

per litre).  

The average travel time (and the sample standard deviation for time) and the average 

travel cost (and the sample standard deviation for cost) reported for each of the modes are 

computed by taking the average (and the sample standard deviation) across all the individuals 

for whom the respective modes are considered available. The average travel times for public 

transit modes are the highest – 42.54 minutes for the bus mode and 42 minutes for the metro 

mode, while that of car and two-wheeler (private modes) are 24 minutes and 20 minutes 

respectively. Next, the average travel cost for the bus mode is the least among the motorized 
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modes of transportation, followed by two-wheelers and metro. As expected, the average travel 

cost by private cars is at a higher end with a value of INR 65. The auto-rickshaw mode is 

reported to have the highest average travel cost with a value of just over INR 125.  

Table D2 Details of travel related attributes of modes 

Travel attributes 
Auto- 

rickshaw Metro Bus Walk 
Two- 

wheeler 
Private 

car 

 Travel time 
  Mean 26.9 42.0 42.5 36.5 20.4 24.1 
  Standard deviation 20.7 22.5 21.9 11.5 15.7 18.6 

 Travel cost 
  Mean 125.8 30.0 18.5 NA 21.4 64.9 
  Standard deviation 87.9 11.2 7.0 NA 15.2 46.9 
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