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ABSTRACT  
The COVID-19 pandemic has profoundly reshaped work patterns, with a sizable portion of 
workers now engaging in hybrid work (i.e., combining teleworking and in-person work). This 
study investigates whether hybrid workers, in the post-pandemic era, participate in out-of-home 
activities differently on their telework days relative to their in-person workdays. Using data from 
1,438 hybrid workers in California collected during fall 2023, we estimate a multivariate ordered-
response probit model with threshold shifters. Differences in participation across six out-of-home 
activities (shopping, errands, drop-off/pick-up, eating out, visiting friends and family, and exercise) 
between telework and in-person workdays are jointly modeled. Workers show greater overall 
activity participation on telework days, with considerable heterogeneity among individuals. On 
telework days, women and older workers tend to have lower participation in out-of-home activities. 
Flexible work schedules are associated with higher participation in social activities. Greater time 
savings (from not having to physically commute) lead to higher overall participation. The results 
underscore the importance of policies that support flexible work arrangements, considering their 
potential to positively impact lifestyle and productivity. Additionally, teleworking at non-home 
locations is linked to higher activity participation overall, suggesting potential trip-chaining or 
unique activity allocation strategies that warrant further investigation. Our study contributes to the 
literature on post-pandemic teleworking and activity participation, and offers valuable insights into 
urban planning, transportation policy, and remote-work policies. 
 
Keywords: Remote Work; Activity-Travel Patterns; COVID-19 Pandemic; Multivariate Ordered-
Response Probit   
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1. INTRODUCTION   
Telework occurs when individuals work from a location different from where their supervisors or 
employers are based (1). Although telework has existed for decades, a significant shift from 
conventional in-person work to telework occurred during the COVID-19 pandemic. Between early 
2020 and late 2021, teleworking, which involves using information and communication 
technology (ICT) solutions such as computers and internet connection, became commonplace 
(while the term “remote work” is sometimes used distinctly from telework in that remote work can 
happen even without ICT, the ubiquitous availability of the internet today has made the terms 
“remote” work and telework almost synonymous; in this paper, we will use the two terms 
interchangeably). The share of U.S. workers who teleworked at least part of the workweek rose 
from 8% in 2019 to over 70% in 2020 (2). As pandemic-related restrictions on social interactions 
and mobility were lifted, the rate of full-time teleworkers dropped from its pandemic peak. Hybrid 
work arrangements, which combine telework and in-person work across different workdays, have 
gained prominence since. Recent estimates indicate that a substantial portion of the workforce, 
ranging from 30% to 53%, now engages in such a hybrid work arrangement (2–4).  

The continued prevalence of hybrid work arrangements, even after the worst of the 
pandemic is behind us, has motivated many recent investigations into the long-term effects on 
daily activity-travel patterns (5, 6). However, as Asmussen et al. (7) point out, many studies 
examining telework effects consider a single aggregate category of non-work activities; they 
proceed to emphasize the need to distinguish between different types of non-work activities. In 
particular, focusing on non-work activities at a granular scale helps explore the implications of 
teleworking on work-life balance, participation in community building, well-being, and life 
satisfaction (8, 9).  

Further, and perhaps, at least in part because of the lack of granularity in non-work purposes 
and different data collection approaches, the findings on the impact of teleworking on activity-
travel patterns have been mixed. For example, evidence from Wang et al. (10), Huang et al. (11), 
and Obeid et al. (12) supports the notion that higher levels of teleworking are associated with more 
frequent non-work trips. Conversely, Caros et al. (13) found that frequent teleworking was linked 
to less frequent non-work travel. Instead, they found that hybrid workers make non-work trips 
most frequently, followed by fully in-person workers. A similar finding was reported by Asmussen 
et al. (7), who noted that those who teleworked 1-3 times a month or once a week were associated 
with more weekly non-work stops (both for maintenance and leisure) than those who never 
teleworked/teleworked less than once a month, as well as those who teleworked four or more days 
in the week. Readers are referred to Asmussen et al. (7), for a comprehensive review of studies on 
the telework-activity relationship in terms of the activity dimension considered (episode frequency, 
time-use, or person/vehicle miles of travel), the type of data used, the time unit of analysis (whether 
daily or weekly or monthly), and the decision unit of analysis (individual or household).   

In the current paper, we contribute to the above telework-activity pattern linkage literature 
by analyzing data collected between August and November 2023 from 1,438 hybrid workers in 
California. There are several salient aspects of our paper. First, unlike many post-COVID studies, 
we examine teleworking effects on six non-work out-of-home activities. The out-of-home 
activities include three maintenance activities (shopping, running errands, and transporting others) 
and three discretionary activities (social, visiting friends and family, and exercising). To identify 
factors influencing changes in participation in these non-work activities, we employ a multivariate 
ordered-response probit model with threshold shifters that captures the interrelated nature of out-
of-home activity participations across different non-work purposes.  



 

2 

Second, unlike almost all earlier studies, we focus on intra-individual variations in non-
work trips across telework days and in-person workdays, rather than on inter-individual variations 
in non-work trips over a certain time unit of analysis (such as a day or a week); that is, instead of 
comparing teleworkers and non-teleworkers in their non-work patterns, we study the behavior of 
the same worker on different workdays based on teleworking or not. Obeid et al. (12) is the only 
other study we are aware of that takes a similar approach, though it focuses on a single aggregate 
non-work category.  

Third, we analyze revealed preference (self-reported) data in a post-pandemic setting. 
During the pandemic, as examined by Obeid et al., travel was heavily influenced by health 
concerns, which limited activities such as recreation. Thus, pandemic-era studies conflated the 
effects of teleworking with those of travel restrictions (14). In contrast, the post-pandemic era 
offers greater latitude for workers to decide whether to telework or not (of course, within the 
constraints of their employment arrangement). In particular, the population of teleworkers is now 
larger and more diverse, with hybrid arrangements becoming the “new norm.” These changes 
warrant a fresh examination of the relationship between teleworking and activity patterns.  

Finally, we use a multivariate ordered-response probit model that is well-suited for 
studying multiple out-of-home activities (15). This joint model accounts for correlated unobserved 
attributes that influence multiple activities by specifying an appropriate error correlation structure. 
Few existing studies have jointly modeled participation in out-of-home activities. Our joint model 
also incorporates threshold shifters to address bivariate clustering, a tendency of certain activities 
to increase or decrease together. This captures rare or common combinations of activities, better 
reflecting the complex interdependencies among different non-work activity participations.  

The rest of the paper is organized as follows: Section 2 discusses the data and variables and 
describes the sample and methodology. Section 3 presents the modeling results. Section 4 provides 
the results of the analysis of the average treatment effects and discusses the policy implications of 
our findings for urban planning. Section 5 concludes the paper and presents opportunities for future 
research. 

 
2. THE DATA AND METHODOLOGY  
2.1. The Survey 
This study is based on data collected from the latest survey wave of the California Mobility Panel, 
which includes a series of surveys conducted between 2018 and 2023, to analyze the evolving 
trends in travel behavior and activity patterns of California residents. The survey elicited 
information on individual socio-economic and demographic traits, worker/student status and work 
arrangements (including days of teleworking, location of teleworking, commute time, and work 
timing flexibility), and a subjective ordinal response of whether individuals made fewer, the same, 
or more trips on telework days relative to in-person working days for each of six non-work activity 
purposes (16).  

Four approaches were used to recruit participants for the 2023 survey wave: (1) inviting 
previous panel study participants, (2) collecting a quota-based sample from a third-party opinion 
panel, (3) using various listservs and social media posts to invite respondents with a convenience 
sampling approach, and (4) targeting random California addresses with an oversample of 
disadvantaged households with a stratified random sampling approach. At the conclusion of the 
survey, the research team performed thorough data quality checks, as discussed in detail in Circella 
et al. (16).  
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To study differences in non-work activities between telework and in-person workdays, we 
first identified workers who teleworked at least once a week as the target group for our analyses. 
We excluded those who teleworked every day (i.e., they had zero in-person workdays), since it is 
not possible to compare their activities on telework vs. in-person workdays. After screening out 
those with missing responses for key variables (including race, income, commute time), we 
converged to a usable sample of 1,438 workers who engaged in hybrid work, teleworking at least 
once a week but not exclusively.  

Figure 1 shows the key survey question asking if the respondent pursued specific activities 
more or less on telework (i.e., remote-work-only) workdays relative to in-person workdays, using 
a five-point Likert scale from “very much less” to “very much more.” 

 

 
Figure 1 Survey question about alternative trip patterns on telework days (compared to in-person 
workdays) 
 
2.2. Sample Characteristics 
Table 1 presents the distributions of sociodemographic attributes of interest in the sample 
(N=1,438) and compares them with the 2022 5-year American Community Survey (ACS) 
estimates for California. The sample has a slightly higher proportion of individuals aged 18 to 34, 
and a lower proportion of those aged 65 and older. The percentage of women respondents and 
respondents who identify as white is also higher in the sample as is the percentage of individuals 
with a bachelor’s, graduate, or professional degree. Conversely, the share of individuals with lower 
educational attainment is lower. The proportion of individuals living in households earning 
between $50,000 and $199,999 annually is also higher, while the other income groups are 
underrepresented. These differences in age, race, education, and household income likely stem 
from the use of a web-based survey platform, the focus on teleworkers, and the impact of a person’s 
occupation on telework capability.  
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Table 1 Sample Characteristics Compared to 2022 5-year ACS Estimates for California (N = 1,438) 

Variable Frequency Share in the sample 
(%) 

Share in the 
population (%) 

Age    
18-34 548 38.1 31.4 
35-64 804 55.9 49.4 
65 or older  86 6.0 19.2 

Gender Identity    
Woman 788 54.8 49.9 
Man 650 45.2 50.1 

Race    
White 1,050 73.0 48.1 
Asian or Pacific Islander 210 14.6 15.5 
African American  67 4.7 5.6 
Other* 111 7.7 30.8 

Education    
Less than a bachelor’s degree 338 23.5 64.1 
Bachelor’s degree 643 44.7 22.1 
Graduate degree 379 26.4 11.2 
Professional degree 78 5.4 2.6 

Household Income    
Less than $25,000 44 3.1 13.2 
$25,000 to $49,999 124 8.6 14.7 
$50,000 to $74,999 203 14.1 13.7 
$75,000 to $99,999 207 14.4 12.0 
$100,000 to $149,999 401 27.9 17.8 
$150,000 to $199,999 233 16.2 10.7 
$200,000 or more 226 15.7 17.9 

* Other races include Native American and any other race, or combinations thereof, specified by the respondent in 
a text box. 

 
Table 2 presents work arrangement attributes and other sample characteristics for which 

ACS comparisons are not available. The weekly frequency of working from home also varies 
considerably, with about half the sample working at least sometimes from temporary or alternative 
work locations. Most participants (86.1%) reported some or complete flexibility in their work 
schedules. The sample shows a range of travel time savings, with nearly half of the respondents 
saving more than 80 minutes. The majority of respondents (64.6%) reported working full-time for 
pay, with a notable proportion employed part-time for pay (12.8%). The label of “Other” worker 
types in Table 1 includes individuals working multiple jobs (with no clear distinction between full-
time and part-time work arrangements) and those engaged in unpaid work. Households with 
minor(s) are most common in the sample. Lastly, urban and suburban areas are well-represented, 
with fewer respondents from small towns or rural areas.   
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Table 2 Work Arrangement, Household Composition, and Geographic Characteristics (N=1,438) 

Variable Frequency Share in the sample 
(%) 

Teleworking Frequency From:   
Home    

1-2 days/week 673 46.8 
3-4 days/week 397 27.6 
5+ days/week 368 25.6 

Alternative Work Location   
Never 684 47.6 
Up to 3 days/month 432 30.0 
1-2 days/week 128 8.9 
3-4 days/week 151 10.5 
5+ days/week 43 3.0 

Temporary Location (e.g., cafes)   
Never 716 49.8 
Up to 3 days/month 327 22.7 
1-2 days/week 298 20.7 
3-4 days/week 57 4.0 
5+ days/week 40 2.8 

Temporal Flexibility of Work*   
No flexibility 200 13.9 
Some flexibility 971 67.5 
Complete flexibility 267 18.6 

Travel Time Savings    
Less than 80 minutes 699 48.6 
80-119 minutes 368 25.6 
120+ minutes 371 25.8 

Employment Status**   
Full-time worker (for pay) 929 64.6 
Part-time worker (for pay) 184 12.8 
Self-employed 67 4.7 
Other worker types 258 17.9 

Household Composition   
Couple without minor(s) 458 31.8 
Household with minor(s) 615 42.8 
Others (e.g., living with roommates) 182 12.7 
Live alone 183 12.7 

Residential Area Type   
Urban 551 38.3 
Suburban 724 50.4 
Small town or Rural 163 11.3 

*   Temporal flexibility of work refers to the agency employees have in scheduling their work schedules. Survey respondents 
could select one of the following options: complete flexibility, meaning they are free to work whenever it best suits them; 
some flexibility, where they must be available for colleagues or clients during specific times but can set their own schedule 
for other hours; or no flexibility, where their work hours are entirely determined by their employer or direct supervisor. 

**  Employment status is based on each participant’s response to the following options: working full-time for pay, working part-
time for pay, self-employed/an independent contractor for pay, and an “other” category corresponding to multiple paid jobs 
(with no clear demarcation between full-time and part-time work) and unpaid work. The survey did not define these options 
for respondents. However, according to the U.S. Bureau of Labor Statistics (17), employees are classified as full-time or part-
time as defined by their employer, with full-time generally being 35 hours or more per week and part-time less than 35 hours 
per week. 
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2.3. Endogenous Outcomes 
We now turn to the focus of the study: the workers’ out-of-home activities on days they telework 
vs. days they work in-person. We excluded three activity purposes from our analysis — paid work, 
unpaid work, and religious/community meetings — as they showed little variation across telework 
and in-person workdays. We also dropped the “Other social, recreational activities” category due 
to a lack of responses. For ease in presentation, we will use the following compact labels: 
“Shopping” for “Grocery shopping”; “Drop-off/Pick-up” for “Dropping off/picking up others”; 
“Social” for “Eating/drinking out”; “Visit” for “Visiting friends/relatives”; and “Exercise” for 
“Physical exercise out of home”. Furthermore, we collapsed the original five-point scale into three 
levels because of relatively low percentages in the two extreme categories. We thus evaluate the 
shift in time allocation between telework and in-person workdays across six different out-of-home 
activities on a three-tier ordinal scale.  
 Figure 2 provides a descriptive visual of the endogenous outcomes. For all purposes, except 
running errands, the highest fraction of individuals report that their trip-making was about the same 
on telework and in-person workdays (see the percentages at the center of the horizontal bar 
diagrams above). Also, for all purposes, a higher fraction of respondents report participating in 
more activities on telework days than in-person workdays (relative to participating in fewer 
activities on telework days than in-person workdays), with the asymmetry being particularly 
pronounced for shopping and errands.  
 

 
 
Figure 2 Out-of-home activity participation: On telework relative to in-person workdays 
(Endogenous Outcomes) 
 
2.4. Methods 
We use a multivariate ordered-response probit model with threshold shifters (MORP-TS) to 
analyze changes in participation in six out-of-home activities at three levels (less, same, more). 
This approach extends the traditional MORP model by incorporating threshold shifters based on 
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the innovation proposed in Anderson et al. (15), modifying thresholds to accommodate the 
observed multivariate clustering in the data across activity purposes. Specifically, based on 
bivariate cross-tabulations across six activities, we identified three clusters: same-same, where one 
activity purpose, if undertaken at the same level on telework and in-person workdays leads to the 
same level of participation in another activity purpose on telework days relative to in-person 
workdays; less-less; and more-more. For instance, individuals maintaining the “same” level of 
drop-off/pick-up activities on their telework days relative to their in-person workdays also tend to 
maintain the “same” levels for shopping, errands, and social purposes on their telework days 
relative to their in-person workdays (Cluster 1). Reduced shopping on telework days relative to in-
person workdays clusters with reduced social visits on telework days relative to in-person 
workdays (Cluster 2), while more errands correlate with more shopping and social purposes 
(Cluster 3).  

The “threshold shifters” function as flexible decision boundaries within the model, 
capturing complex patterns beyond correlations in latent variables. Figure 3 illustrates this with 
Person A and Person B. Person A does not choose the “same” level for drop-off/pick-up on 
telework and in-person workdays, while Person B does choose the “same” level for drop-off/pick-
up. Horizontal lines represent the propensities for drop-off/pick-up (top) and errand (bottom) 
activities. The 𝜓𝜓  and 𝜇𝜇  notations refer to thresholds for drop-off/pick-up and errand outcomes, 
respectively.  

For Person A, using the traditional MORP approach, the thresholds for errands are as 
shown, and errand category probabilities depend on where propensities fall relative to these 
thresholds. For Person B, using the new MORP-TS approach, the second threshold for errands (𝜇𝜇2) 
shifts rightward (to 𝜇𝜇2′). This shift increases the probability that Person B will also report the 
“same” level of errand activities, reflecting the observed Cluster 1 pattern where individuals with 
“same” drop-off levels are likely to have the “same” errand frequency level on telework days 
(relative to in-person workdays). Shifting the threshold enhances the model’s accuracy in 
predicting the relationship between drop-off/pick-up and errand activities, capturing 
interdependencies missed by the standard MORP model. 

Introducing activity-specific threshold shifters in our model does not create endogeneity 
bias, as potential interdependencies, such as those between drop-off and errands, are addressed by 
the multivariate framework’s unobserved correlation effects. This ensures that the MORP-TS 
approach accurately reflects observed patterns while maintaining statistical validity. While the 
detailed mathematical formulation is important, it is beyond this paper’s scope. For a 
comprehensive discussion of the MORP-TS approach, see Anderson et al. (15).  
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Figure 3. Illustration of the multivariate ordered-response probit model with threshold shifters 
(MORP-TS) approach 
 
3. RESULTS 
The final model specification was defined by systematically testing various combinations of 
explanatory variables and removing those that were not statistically significant. Some variables 
that were not statistically significant at the 95% confidence level, but significant at the 85% 
confidence level or higher, were retained because of their intuitive relevance and empirical 
importance. Such variables are expected to provide valuable insights for future studies with larger 
sample sizes. But note that the magnitude of these coefficients remained stable under several 
different specifications, providing further credibility to their effect size. In addition to the 
statistically significant variables reported in Table 3, we also tested variables such as race, 
education level, vehicle availability, and industry type, as well as factors related to teleworking, 
including the desire to telework and the positive perceptions of teleworking. These variables were 
not found to be statistically significant even at the 85% level after controlling for other exogenous 
variables and were therefore omitted from the final model specification. 

Additionally, we tested both categorical and continuous functional forms for the numerical 
age variable, but the non-linear categorical specification yielded much better results. For 
teleworking frequency at various locations, we considered the original categorical frequency 
variable in the most disaggregated form of dummy variables and combined these dummy variables 
as appropriate based on statistical tests. Consequently, the base categories and levels reported for 
telecommuting frequency variables in Table 3 vary across locations and do not match the levels 
reported in Table 2.  
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3.1. Model Fit 
To assess the improvement in data fit by jointly modeling time allocation to activities using the 
modified model with threshold shifters, we compare the results of the MORP-TS model (86 
parameters) with those of a traditional MORP model (80 parameters) and an independent model 
of all six activities that does not account for jointness (65 parameters). The MORP-TS considerably 
outperforms the traditional MORP and independent models in all conventional goodness of fit 
measures. The MORP-TS model has a convergent log-likelihood value of -6321.35, while the 
corresponding values for the traditional MORP and independent models are -6383.53 and -7496.52, 
respectively. The adjusted likelihood ratio index (�̅�𝜌2) with respect to the thresholds-only model 
for the MORP-TS model is 0.20, relative to a value of 0.19 for the traditional MORP model and 
0.06 for the independent model. Nested likelihood ratio tests yield values of 124.36 (with respect 
to the MORP model) and 2350.35 (with respect to the independent model), which are far higher 
than the corresponding table chi-squared values of 22.46 (with six degrees of freedom for the 
traditional MORP) and 46.80 (with 21 degrees of freedom for the independent model) at even the 
0.99 level. Additionally, the average probability of correct prediction is higher for the MORP-TS 
model (0.75) as compared to the traditional MORP model (0.67) and the independent model (0.22).  
 
3.2. Effects of Explanatory Variables 
We now discuss the results from the estimation of the MORP-TS model presented in Table 3. In 
this model, the coefficients reflect the change in the propensity of activity participation levels 
between telework days and in-person workdays, rather than absolute participation levels on 
telework or in-person workdays. In this regard, as also discussed in Section 2, our focus is on 
understanding the relative variation in activity patterns across telework and non-telework days, 
and how this relative variation itself may vary across population groups. Specifically, positive 
coefficients for an activity indicate higher propensity levels of participation on telework days 
compared to in-person workdays, while negative coefficients indicate the reverse.  
 
3.2.1. Work Arrangement Effects 
High levels of home-based teleworking (5+ days/week), compared to lower levels of teleworking 
(<5+ days/week), lead to lower propensities of errands, drop-off/pick-ups, and social trips on 
telework days relative to in-person workdays, while the reverse holds for exercise trips. The result 
for social and exercise activities remains even at the intermediate level of home-based teleworking 
(3-4 days per week) relative to a low level of home-based teleworking (1-2 days per week). This 
may be explained by the opportunities for trip-chaining for errands, drop-offs/pick-ups, and social 
activities when working from out-of-home. On the other hand, exercise activities appear to be the 
preferred activity as a “step out of home” during telework days.  
 Working at alternative “permanent” out-of-home locations other than the primary 
workplace on three or more days a week (relative to working at alternative locations less than three 
days a week) is generally linked to a higher propensity of non-work activity (on telework days 
compared to in-person workdays) for all purposes, except errands and exercise. For errands, the 
higher intensity on telework days relative to in-person workdays applies specifically to the 
intermediate level of working at an alternative location (3-4 days a week), while there is no 
difference in exercise trips between telework and non-telework days based on the intensity of 
working from an alternative location.  

In contrast to the intensity-specific effects of alternative “permanent” work locations, 
teleworking from a temporary location (such as cafes) at any intensity level of one or more days a 
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week (compared to less than once a week) leads to a higher propensity of drop-off/pick-up and 
social activity on telework days relative to in-person days, which is reasonable because individuals 
are likely to choose temporary locations that facilitate drop-off/pick-up in particular.  

Temporal flexibility in work schedules intensifies participation on telework days (relative 
to in-person workdays) in drop-off/pick-up, social, and visitation activities, suggesting that such 
temporal flexibility helps employees better balance work, household responsibilities, and personal 
leisure. Also, not surprisingly, longer commutes, which equates to greater time savings when 
teleworking, are linked to an overall increase in all out-of-home non-work activity purposes except 
for exercise. Finally, in the group of work arrangement effects, relative to those working full time, 
part-time workers tend to have a higher propensity to make shopping trips and drop-off/pick-up 
trips on their telework days, but a negative propensity for exercise trips (18).  

 
3.2.2. Individual-Level Sociodemographic Effects 
The oldest age group (65 years or more) has the lowest propensity to participate more in non-work 
activities on their telework days, relative to their younger peers, possibly because of a 
reinforcement of the general tendency of older adults to be involved in in-home reading and related 
activities, especially given they have not gone out to work during their telework days (19, 20). On 
the other hand, the youngest group (34 years or less) has the highest predisposition to partake in 
non-work activities on their telework days, again consistent with the generally higher intensity of 
out-of-home non-work participation among this younger age group (19, 20).   

 Women are known to exhibit different travel patterns than men at all stages of life (21), 
and they tend to engage less in most out-of-home activities on their telework days (18, 19). This 
may suggest that, women, when teleworking, try to compartmentalize and focus on work, and 
leave participation in other non-work activities during trip-chains on their in-person workdays (21). 
Interacting the gender identity variable with the presence of children in the household did not 
reveal any significant relationships.  

 
3.2.3. Household- Level Sociodemographic and Geographic Effects 
Individuals from higher-income households (relative to those from lower-income households) are 
generally more likely to engage in activities of all purposes, except visitations, on their telework 
days. While telework frees up time for all workers, the relative affluence of high-income 
individuals supports the pursuit of more activities. Household composition also plays a role in 
activity participation. On telework days, those who live in families with minors (relative to couples 
without minors) participate more in shopping, drop-off/pick-up, and social activities. This pattern 
may reflect a desire to undertake household maintenance activities to take advantage of the extra 
time available on telework days, while also engaging in activities that foster family interactions 
and allow for some “together time”.  

Also, compared to couples without minors (base category), and similar to families with 
minors, households in other living arrangements, such as those living with roommates or living 
alone, participate more in shopping and socializing on their telework days. Only individuals living 
alone are likely to do more exercise on telework days, likely enabled by fewer household 
responsibilities.  

Finally, in terms of exogenous variable effects, individuals living in urban and suburban 
neighborhoods (compared to those in small town or rural neighborhoods) have a higher propensity 
for social activities on their telework days than their in-person workdays, perhaps simply a 
reflection of better access to restaurants, cafes, and bars in non-rural areas.  
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3.3. Thresholds, Threshold Shifters, and Correlations 
The middle panel in Table 3, titled “Thresholds,” presents the unadjusted threshold values and 
threshold shift effects. The unadjusted thresholds do not have substantive interpretations on their 
own. Several threshold shift effects are statistically significant. Although the magnitudes of these 
shift effects lack direct substantive interpretations, their directions are informative. The positive 
shift effect corresponding to those choosing the “same” ordinal category for drop-off/pick-up on 
the shopping threshold between the “same” and “more” ordinal categories has the impact of 
pushing this shopping threshold rightward, thus increasing the probability of the “same” ordinal 
response for shopping (as depicted in Figure 3). The implication is that those who do not have any 
change in drop-off/pick-up activity participations on their telework days (compared to their in-
person workdays) tend to have a higher propensity to also participate in the “same” level of 
shopping on their telework days. Similar “same-same” clustering effects are evident between drop-
off/pick-up, errands, and social purposes. Also, the positive shift corresponding to the “less” 
shopping ordinal category on the social “less-same” threshold implies that those who shop less on 
their telework day also socialize less on their telework day. The final threshold shift effect implies 
that the chance of selecting “more” for shopping and social activities increases when errands also 
show increased participation on telework days. These shifts help capture the interrelationships 
between participation levels across different activity types on telework versus in-person workdays, 
while also improving the data fit of the model. 

In terms of correlation effects, strong positive correlations are evident among the 
propensities of partaking in any pair of activity purposes. This suggests that individual-specific 
unobserved factors, such as extroversion, tend to manifest themselves in increased participation in 
all out-of-home activities, given extra time during the day as appropriated from commute time. 
Overall, these correlations provide insights into how intertwined the activity patterns of 
teleworkers are and highlight the importance of considering jointness in activity participation. 
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Table 3 Model Estimation Results for Multivariate Ordered-Response Probit with Threshold Shifters (N=1438) 
Variables  Shopping Errands Drop-off/Pick-up Social Visit Exercise 
Exogenous Variables       
Work Arrangement Effects 
Teleworking frequency from:  

Home (base: 1-2 days/week) 
3-4 days/week -0.104 -(1.88)    -0.117 (-2.60) **  -0.099 -(1.83)  
5+ days/week  -0.152 (-2.79) ** -0.098 (-1.54) -0.117 (-2.60) **  -0.099 -(1.83)  

Alternative Work Location,  
e.g., client’s site (base: ≤2 days/week) 
3-4 days/week -0.495 -(5.54) *** -0.430 -(3.77) *** -0.376 -(3.70) *** -0.459 -(4.49) *** -0.645 -(7.16) ***  

5+ days/week -0.495 -(5.54) ***  -0.376 -(3.70) *** -0.459 -(4.49) *** -0.645 -(7.16) ***  
Temporary Location,  

e.g., cafes and libraries (base: 0 days/week) 
1+ days/week   -0.146 -(2.36) * -0.304 -(4.71) ***   

Temporal Flexibility of Work (base: no flexibility) 
Some or complete flexibility   -0.144 -(1.90)  -0.139 -(2.05) * -0.125 -(1.57)  

Commute Travel Time Savings (base: < 80 minutes) 
80-119 minutes -0.131 -(2.22) * -0.175 -(3.53) ***     

120+ minutes -0.207 -(2.95) ** -0.175 -(3.53) *** -0.130 -(1.77) * -0.115 -(1.71) * -0.205 -(2.98) **  

Employment Status (base: full-time worker) 
Part-time worker -0.196 -(2.03) *  -0.280 -(2.48) *   -0.369 (-3.71) *** 

Individual-Level Sociodemographic Effects 
Age (base: 18-34 years) 

35-64 -0.167 (-3.16) ***  -0.128 (-2.05) * -0.250 (-4.33) *** -0.308 (-5.28) *** -0.100 (-1.71)  
65 or more -0.570 (-3.84) *** -0.356 (-2.48) * -0.534 (-3.55) *** -0.410 (-2.99) ** -0.672 (-4.75) *** -0.382 (-2.57) * 

Gender Identity (base: man) 
Woman -0.111 (-1.89)  -0.122 (-2.16) * -0.254 (-4.27) *** -0.222 (-4.14) *** -0.202 (-3.30) ***  

Household-Level Sociodemographic and Geographic Effects 
Household Income (base: < $50,000) 

$50,000 to $74,999 -0.173 (2.82) **     -0.187 -(1.99) * 
$75,000 to $99,999 -0.173 (2.82) ** -0.251 -(4.26) *** -0.170 -(2.80) **   -0.187 -(1.99) * 
$100,000 to $199,999  -0.251 -(4.26) *** -0.170 -(2.80) ** -0.112 -(2.09) *  -0.168 -(1.75)  
≥ $200,000  -0.251 -(4.26) *** -0.170 -(2.80) ** -0.112 -(2.09) *  -0.403 -(3.53) *** 
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Variables  Shopping Errands Drop-off/Pick-up Social Visit Exercise 
Exogenous Variables       
Household Composition (base: couple without minor(s)) 

Household with minor(s) -0.182 -(3.19) **  -0.372 -(6.27) *** -0.178 -(3.18) **   

Others (e.g., living with roommates) -0.213 -(3.26) **   -0.178 -(3.18) **   

Live alone -0.213 -(3.26) **   -0.178 -(3.18) **  -0.156 -(1.90)  
Residential Area Type (base: small town and rural) 

Urban or Suburban    -0.104 -(1.77)   

Thresholds  
Unadjusted Thresholds 

Threshold between less and same -0.340 (-3.84) *** -0.398 (-5.31) *** -0.193 (-1.77)  -0.036 (-0.84)  -0.346 (-3.35) *** -0.342 (-3.49) *** 
Threshold between same and more  0.445 -(4.73) *** -0.242 -(3.21) ***  0.902 -(7.97) ***  0.576 -(8.05) ***  0.474 -(4.88) ***  0.482 -(4.80) *** 

Threshold Shifts 
Drop off/pick-up “Same” Level Shift Effects             

Threshold between same and more -0.210 -(3.22) **    -0.226 -(4.20) *** -0.319 -(5.10) ***   
Shop “Less” Level Shift Effects             

Threshold between less and same         -0.227 -(2.75) **   
Errand “More” Level Shift Effects             

Threshold between less and same             
Threshold between same and more  -0.191 (-2.82) **    -0.097 (-1.59) **      

Correlations Between Activities 
 Shopping Errands Drop-off/Pick-up Social Visit Exercise 
Shopping -1.000 -0.792 (41.67) *** -0.604 (22.58) *** -0.640 (23.92) *** -0.620 (21.61) *** -0.595 (22.71) *** 
Errands  -1.000 -0.644 (26.76) *** -0.619 (21.38) *** -0.628 (24.05) *** -0.625 (25.40) *** 
Drop-off/Pick-up   -1.000 -0.549 (19.30) *** -0.596 (22.49) *** -0.506 (17.48) *** 
Social    -1.000 -0.684 (30.45) *** -0.517 (17.92) *** 
Visit      -1.000 -0.549 (19.47) *** 
Exercise      -1.000 
Note: Cell values are coefficient estimates (with two-tailed t-statistic in parentheses); * = estimates statistically significant at the 0.05 level, ** = estimates 
statistically significant at the 0.01 level, *** = estimates statistically significant at the 0.001 level; Travel time = sum of self-reported two-way commute time and 
grooming time. 
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4. POLICY IMPLICATIONS USING AVERAGE TREATMENT EFFECTS 
As a post-estimation data analysis, the average treatment effect (ATE) metric measures the model-
predicted change in the outcome of interest for an individual if their value for an exogenous 
variable changes from a base level (X) to a treatment level (Y). This metric allows analysts to 
compare the magnitude of the effects of different exogenous variables. To calculate ATEs, we 
categorize individuals in the sample according to specific levels of the exogenous variable in 
question and then, using the model estimates, predict the probabilities of increased (or decreased) 
participation in each activity purpose on telework days relative to in-person workdays. For instance, 
we first assign all individuals to the gender identity “man” (base level) and compute their 
probabilities of participating in each of the six out-of-home activities, averaging these probabilities 
across all individuals. We then repeat this process by assigning all individuals to the gender 
identity “woman” (treatment level). The difference in two average probabilities, expressed as the 
percentage change from the first average probability, indicates the percentage change in the 
probability of engaging in the activity of interest, resulting from the change in gender identity from 
man to woman.  

The selection of base and treatment levels for our analysis varies by exogenous variable 
type. For binary variables, such as gender identity (man/woman) or employment status (full-
time/part-time), we designated one category as the base level and the other as the treatment level. 
We applied a similar approach to multi-category variables that were consolidated into binary 
categories during estimation based on statistical significance patterns. These include temporal 
flexibility (no flexibility as base, and some or complete flexibility as treatment), teleworking 
frequency at temporary locations (0 days/week as base, 1+ days/week as treatment), and residential 
location (small town/rural as base, urban/suburban as treatment).  

For variables with more than two categories or levels, such as teleworking frequency from 
home and an alternative work location, commute travel time savings, age groups, and household 
income brackets, we generally designate the lowest extreme category as the base level and the 
highest extreme category as the treatment level. Of course, the ATE effects can be computed 
between any two states of these exogenous variables, but that would lead to an explosion in the 
number of ATE effects. To reduce clutter and present overall trends of effects, we provide the 
ATE effects between the two extreme states for variables with more than two categories of levels. 
For example, in the case of commute travel time savings, we selected individuals saving less than 
80 minutes per day as the base level (representing the minimum level in our estimation) and those 
saving 120 minutes or more as the treatment level (representing the maximum level). With age 
groups, we set the category under 35 years as the base level and over 65 years as the treatment 
level. For income, however, while we use the lowest income category as the base level, we consider 
the income level of ≥$100,000 as the treatment state because the estimates in Table 3 are identical 
for five of the six activity purposes for income levels of $100,000 or more.  

The selection of base and treatment levels for teleworking frequency was based on careful 
consideration of statistical significance patterns across different activities. We consistently used 
the reference category (lowest ordinal category) in modeling as the base level (1-2 days/week for 
teleworking frequency from home and ≤2 days/week for teleworking frequency from an alternative 
location). The treatment levels, however, were selected based on which teleworking frequency 
categories showed significant effects for each activity type in Table 3. Focusing on teleworking 
frequency from home we chose 3-4 days per week as the treatment level for shopping activities, 
since this was the only frequency category showing significant effects. For errands and drop-
off/pick-up activities, we selected 5+ days per week as the treatment level, as this was the sole 
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category demonstrating significant effects. A unique pattern emerged for social and exercise 
activities, where both 3-4 days and 5+ days per week categories showed significant, but equal 
effects. As a result, the average treatment effects (ATEs) for social and exercise activities were the 
same when comparing 1–2 days per week with either 3–4 days per week or 5+ days per week (see 
the two rows for “Home” in Table 4). The same logic applies to the ATE analysis of teleworking 
frequency from alternative work locations. In contrast, it does not apply to the temporary location 
variable because of its binary nature, as discussed before. 

Table 4 presents the results. For instance, the numeric entry Gender Identity (social: -
19.9%) indicates that women, compared to men, are 19.9% less likely to engage in social activities 
on telework days relative to in-person workdays. Other entries may be similarly interpreted. The 
ATEs in Table 4 shed light on how work arrangements and sociodemographic factors account for 
the changes in the engagement in maintenance and discretionary activities on telework days 
relative to in-person workdays. These findings inform planning and policy efforts directed toward 
estimating “induced” demand for non-work trips due to teleworking, as well as identifying travel 
equity concerns. For instance, those frequently working at alternative or temporary locations (e.g., 
client sites, cafes, and libraries) tend to engage in more activities on telework days. This behavior 
suggests trip chaining or unique activity allocation strategies between telework and in-person 
workdays. Transportation planners need to monitor these temporal and spatial shifts in congestion 
and peak-hour traffic due to the induced demand.  

Employers play an important role in adopting flexible work policies. As indicated in Table 
4, flexible work schedules lead to increased participation in social activities on telework days, 
highlighting the potential for such policies to enhance work-life balance. Telework policies should 
also be tailored to different employment types (part-time vs. full-time). Offering part-time workers 
access to similar resources and support as full-time employees can help ensure that all remote 
workers benefit from enhanced work-life balance initiatives. 

In the category of work arrangement ATEs, commute travel time savings due to 
teleworking lead to increased participation in a range of activities during telework days. Reduced 
commuting times can positively impact work-life balance, and policies that encourage telework 
(and thus reduce or eliminate commute times) can help workers reallocate time to personal and 
social activities, enhancing quality of life. 

Within the group of sociodemographic variables, women and the elderly are found to 
engage less in non-work-related out-of-home activities on telework days. They make fewer trips 
for discretionary activities on those days. Further research is warranted to determine to what extent 
these lower levels of activity engagements on telework days are by choice (e.g., activity allocation 
strategies across days of the week) versus because of constraints (i.e., unmet demand under 
constraints). Social norms on the role of different genders or lack of reliable transportation options 
in combination with poor access to activity locations may be at play.  

Household income significantly influences activity participation, with those in households 
earning $100,000 or more per year being likely to have higher engagement levels in both 
mandatory and discretionary activities on telework days relative to non-telework days. Financial 
resources enable affluent individuals to participate in their preferred activities and improve work-
life balance. Policymakers could support lower-income teleworkers by providing better access to 
fitness centers, wellness programs, and social opportunities. Additionally, individuals in urban or 
suburban neighborhoods tend to engage more in social activities on teleworking days compared to 
those in small towns and rural areas. This calls for renewed efforts to integrate land use and 
transportation planning to facilitate social activity participation of individuals on their telework 
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days, which can then improve work-life balance and enhance quality of life. Supplementing 
telework policies with mixed land-use (even in rural areas) and denser developments can not only 
reduce commuting stress, but also benefit individuals’ mental and physical health, potentially 
contributing to a healthier, happier, and more productive workforce. Of course, while mixed land-
use and denser developments may bring social benefits, they would also induce new trips. But, 
with accessibility-friendly planning, such as encouraging the use of active transportation and 
public transit, these additional trips can be made shorter and greener, even if they do not necessarily 
result in a net improvement in transportation efficiency from a traffic flow standpoint. 
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Table 4. Average Treatment Effects 
 Shift in the probability of participating in out-of-home activities (%) 

Variables Base level Treatment level Shopping Errands Drop-off/ 
Pick-up Social Visit Exercise 

Work Arrangement Effects 
Teleworking frequency from: 

Home 1-2 days/week 3-4 days/week 8.5   -11.0  10.4 
Home 1-2 days/week 5+ days/week  -11.8 -10.1 -11.0  10.4 
Alternative Work Location ≤2 days/week 3-4 days/week 42.3 35.6 46.9 52.7 88.0  
Alternative Work Location ≤2 days/week 5+ days/week 42.3  46.9 52.7 88.0  
Temporary Location Less than weekly 1+ day/week   16.8 34.6   

Temporal Flexibility of Work No flexibility Some or complete 
flexibility   17.3 15.3 14.8  

Commute Travel Time Savings < 80 minutes 120+ 
minutes 18.0 15.1 14.8 11.9 24.3  

Employment Type Full-time Part-time 16.1  33.4   -33.6 
Individual-Level Sociodemographic Effects 
Age < 35 years > 65 years -40.2 -27.4 -46.7 -34.5 -55.0 -33.9 
Gender Identity Man Woman -8.5 -9.3 -24.1 -19.9 -19.7  
Household-Level Sociodemographic and Geographic Effects 
Household Income < $50,000 ≥ $100,000 15.4 23.6 20.7 11.9  19.9 
Residential Area Type Small town or rural Urban or suburban    11.1   
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5. CONCLUSIONS 
This study utilized a post-pandemic dataset of hybrid workers in California to explore how non-
work activity participation on telework days differs from in-person workdays for individuals with 
a hybrid work location arrangement. The estimation of a multivariate ordered-response probit 
model with threshold shifters revealed that participation patterns across activity purposes are 
highly interrelated and vary significantly by work arrangements, as well as by socioeconomic and 
demographic attributes. Specifically, our results indicate activity participation differences based 
on location-specific teleworking frequencies, individual demographics, and household 
income/composition. These results highlight the need to improve urban transit infrastructure, 
promote mixed-use development and reduce commute times, support flexible work arrangements, 
and tailor initiatives to different employment types and sociodemographic groups. By addressing 
these factors, policymakers can create a more equitable and productive telework landscape and 
enhance work-life balance. 
 Our study has some limitations. First, our analysis uses ordinal data, which only allows us 
to provide qualitative insights into differences in activity participation levels (frequencies). 
Cardinal data could offer more tangible insights into impacts on trips by purpose (and by mode) 
and on miles traveled. Integrating such a “cardinal-level” analysis with trip data would enable an 
assessment of emissions, vehicle miles traveled, and trip rates. Second, including attributes such 
as job and residential density and points of interest in future models would also allow us to evaluate 
their impact on activity patterns. Third, future studies should investigate how the influence of 
socioeconomic and demographic attributes varies by teleworking type, frequency, and location 
through testing interaction effects and predicting changes for different clusters/types of workers.  

Finally, teleworking is a multifaceted phenomenon that impacts transportation decision-
making at various timescales—short-term (day-to-day decisions such as whether to telework, its 
location, and timing), medium-term (weekly or monthly decisions, such as activity routines studied 
in this paper), and long-term (over several months or years, such as housing choices). 
Consequently, as post-pandemic patterns evolve, transportation planners should continue to 
monitor traffic trends and update travel demand models with the latest data and insights to better 
forecast future transportation scenarios.  
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