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ABSTRACT 
While there is broad interest in understanding electric vehicle (EV) adoption patterns, many existing studies 
are confined to an examination of stated adoption intentions rather than revealed behaviors. Accordingly, 
we use a survey of 1,098 California households to examine the ways that demographics, lifestyle 
preferences, and perceptions of EV characteristics impact revealed adoption behaviors. In addition, the 
survey asked current EV owners to rank the importance of a set of factors that influenced their adoption 
decision, enabling an investigation of the motivations for EV ownership. By modeling EV adoption and the 
motivations in a joint binary-ranked choice framework, we account for sample selection effects, enabling 
us to generalize these motivations to the population at large and identify policy measures to encourage 
adoption among those who have yet to adopt. This approach provides insights into the implementation of 
EV incentive policies, deployment of EVs, and development of EV charging infrastructure. 
 
Keywords: Revealed Preference, Revealed EV Behavior, Rank-Ordered Model, Joint Mixed Model, EV 
Adoption Latent Perceptions 
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1. INTRODUCTION  
The transportation sector is one of the largest contributors to greenhouse gas emissions and accounts for 
nearly 45% of global oil demand, primarily due to the widespread use of internal combustion engine 
vehicles (ICEVs) (IEA, 2023). In fact, while the United States has seen an overall reduction of greenhouse 
gas emissions of around 3% since 1990, emissions in the transportation sector have increased by over 20% 
in the same period (EPA, 2024). In addition to climate impacts, vehicle emissions have been shown to cause 
increased risks of respiratory and cardiovascular diseases, lung cancer, and childhood asthma (Brugge et 
al., 2007; Luo et al., 2022). Thus, there is growing recognition of the need to reduce transport-related 
emissions, and policymakers have increasingly looked to electric vehicles (EVs) as an important tool to do 
so.  
 While EVs have broad potential to combat climate change and provide significant benefits for 
individual owners, adoption rates have, thus far, remained relatively low (EIA, 2023). This situation has 
created a “chicken-and-egg” problem; while there is interest in better understanding why adoption rates 
have been low (and how EVs can be promoted) through a study of actual individual-level adoption 
behaviors, the low uptake of EVs has made such investigations of individual-level behaviors difficult. In 
particular, most existing EV adoption studies have been confined to an examination of stated intentions 
rather than revealed behaviors (see Pamidimukkala et al., 2024). Notably, while stated intentions are often 
viewed as good antecedents of future behaviors, there is also empirical evidence from a wide range of 
contexts that stated intentions do not always align well with revealed behaviors (Fifer et al., 2014; Z. Li et 
al., 2020). This has also been shown in an aggregate sense in the context of EV adoption (Jia and Chen, 
2021). For instance, while younger adults generally have a stronger intention to adopt EVs compared with 
older adults, counties with larger shares of older, retired, individuals tend to have more registered EVs (see 
Jia and Chen, 2021).  

A study of EV adoption revealed behaviors at the individual decision-making level would be 
valuable to add fresh insights regarding the future of the EV market. Fortunately, recent growth in EV 
adoption in parts of the United States has made such a study possible. Specifically, EV sales have grown 
steadily in California, making up 25% of all light-duty vehicle sales in 2023 (California Energy 
Commission, 2024). Accordingly, in this study, using data from California (collected between November 
2022 and January 2023), a state which accounts for nearly 37% of registered electric vehicles in the United 
States (EIA, 2023), we examine the ways that demographics, lifestyle preferences, and perceptions of EV 
characteristics impact revealed EV adoption behaviors.1 For the purposes of our study, we consider plug-in 
EVs, which includes battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). We 
focus on these technologies as they are emerging as the most prevalent and likely replacements for ICEVs 
in the transition to sustainable passenger transportation. In addition to the binary adoption decision, using 
information elicited from a survey that asked current EV owners to rank the importance of a set of factors 
that influenced their adoption decision, we are able to investigate the motivations for EV ownership and the 
ways these reasons translate into actual EV adoption behavior (also referred to as purchase behavior in this 
paper). Importantly, by modeling EV adoption and the motivations in a joint framework, we account for 
sample selection effects. This allows us to generalize the motivations for EV adoption to the population at 
large (including current non-EV owners), and in turn identify potential policy measures that may promote 
EVs in the overall marketplace and encourage EV adoption among those who have yet to adopt EVs. In 
particular, our model provides important insights for the deployment of EVs, the development of EV 
charging infrastructure, and the implementation of information and incentive policies to promote EV 
adoption. 

The next section provides an overview of the existing literature on EV adoption. Section 3 presents 
the characteristics of the dataset along with the generalized heterogeneous data modeling (GHDM) 

 
1While our discussion references results and literature from a variety of contexts with different geographic, temporal 
social, and economic characteristics to provide a broad picture of EV adoption patterns, the dataset employed in this 
study was collected strictly from California homeowners, and caution needs to be exercised in any generalization from 
our study to other geographic, social, and economic contexts. 



2 

framework employed to jointly analyze the binary EV adoption decision and the ranked choice of the 
motivations from current EV owners. To our knowledge, this is the first application of the GHDM 
framework to a sample selection framework where the outcome equation takes the form of a rank-ordering 
(this corresponds to the motivations for EV adoption in our empirical context), while the selection equation 
takes the form of a binary choice (whether or not an individual currently is an EV adopter). Section 4 
presents the model estimation results and interpretations as well as the model fit and the approach used to 
compute the effect-sizes of each exogenous variable on EV adoption. Section 5 discusses several 
implications of this research for EV incentives and policies, vehicle development and marketing, and 
planning and infrastructure development. Finally, Section 6 concludes the paper with a summary of 
important findings and identification of future research directions. 

 
2. LITERATURE OVERVIEW  
Much of the existing EV adoption related literature has focused on two areas: (1) studies of the intention to 
buy an EV using stated (not revealed) preference surveys, and (2) examinations of aggregate (not 
individual) trends in EV ownership levels across geographic areas. Each of these areas has relevance for 
the current study, as the first captures the characteristics and attitudes that impact adoption intentions and 
the second accounts for the revealed aggregate behaviors of EV owners. Additionally, while there are many 
ways that determinant variables have been grouped in existing EV adoption studies, we do so in a specific 
way by grouping into four categories that highlight the importance of individual attitudes and perceptions: 
(1) psychological factors, (2) contextual (or political/structural) factors, (3) technological (or situational) 
factors, and (4) demographic factors. This grouping is consistent with those used in several existing EV 
studies (see Li et al., 2017; Singh et al., 2020 for comprehensive reviews using similar groupings of 
determinant variables). The framework also aligns with the Theory of Planned Behavior (TPB; Ajzen, 1991) 
and the Technology Acceptance Model (TAM; Davis, 1989; Venkatesh and Davis, 2000). In particular, TPB 
identifies (a) attitudes toward a behavior, which are well aligned with the first set of “psychological factors” 
in our grouping, and (b) subjective norms or the general views of people, which are closely tied with our 
second set of “contextual factors.” Additionally, the TAM identifies perceived usefulness and perceived 
ease of use as important elements in technology adoption, both of which are closely tied to our third set of 
“technological” (or situational) factors. The last set of “demographic factors” are included because they 
influence attitudes, perceptions, and subjective norms, but also because they serve as proxies for perceived 
behavior control as identified by the TPB (that is, whether a new product/technology such as EVs is viewed 
as being within the technology skill set level for operation by an individual, which can itself depend on 
such demographic factors of the individual as age, gender, income, and formal education level).  Of course, 
we will also readily admit that there is some overlap in the four categories of variables identified and close 
connections between the variables grouped into the four categories. But our grouping provides a useful 
structure to discuss the broad range of factors at play in EV adoption decisions.  
 
2.1 Individual Adoption Intentions 
2.1.1 Psychological Factors 
Recent research has suggested that perceptions of EVs play a large role in determining EV adoption, 
typically even more than objective EV factors (see, for example, Zhang et al., 2022; Rye and Sintov, 2024; 
Pamidimukkala et al., 2024), potentially resulting in misconceptions about the value of EVs (Junquera et 
al., 2016; He et al., 2018). For instance, studies (Ayetor et al., 2023; Rye and Sintov, 2024) have indicated 
that, for individuals who are not too knowledgeable about EV technology, there is a perception that EVs 
entail higher maintenance costs than ICEVs. In contrast, for those with specific knowledge about EV 
maintenance costs, the more objective reality of the economic competitiveness of EVs over the long run 
appears to contribute to EV adoption. Similarly, greater knowledge of EVs and practical experience with 
EV charging have been shown to improve attitudes towards EV adoption, particularly by helping alleviate 
range anxiety, which generally impacts perceptions of BEVs more so than PHEVs, regardless of whether 
individuals live in areas with high or low public charging station availability (Ackaah et al., 2022; Ju and 
Hun Kim, 2022). Additionally, perceptions regarding non-ionizing radiation from electric vehicles have 
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been shown to influence consumer choices, reducing intentions for PHEV adoption (Tchetchik et al., 2024). 
For these reasons, it is important to consider how individuals perceive EVs, not solely their objective 
characteristics (Pradeep et al., 2021; Ayetor et al., 2023). Beyond perceptions of EVs themselves, 
psychological and attitudinal characteristics (such as individual-level attitudes towards climate change, 
comfort with technology, and views of vehicle ownership) directly influence EV adoption intentions. For 
instance, feelings about the importance of sustainability are a crucial predictor of adoption, particularly due 
to the widespread portrayal of EVs as a climate change solution (Adnan et al., 2018; Zhang et al., 2018; 
Asadi et al., 2021; Kautish et al., 2024). Similarly, driving hedonism has been shown to impact vehicle 
preferences, as driving experience differs in vehicles with different fuel types, with individuals with high 
levels of driving hedonism generally choosing ICEVs or PHEVs rather than BEVs (Tchetchik et al., 2020). 
Finally, social expectations and peer influences have significant impacts on EV adoption, particularly as 
attitudes toward the role of the vehicle (as primarily functional or as a status symbol) relate to these peer 
effects (Burs et al., 2020; Cui et al., 2021; Xia et al., 2022; Deka et al., 2023; Buhmann et al., 2024). 
 
2.1.2 Contextual Factors 
Contextual factors include the local infrastructure and policy incentives that are available. The availability 
of EV charging infrastructure is one of the most commonly cited barriers to EV adoption, particularly for 
BEVs compared with PHEVs (Hardman et al., 2018; Dutta and Hwang, 2021; Buhmann et al., 2024; 
Pandita et al., 2024). Although most individuals report that they intend to charge primarily at home or the 
workplace (see White et al., 2022; Hanni et al., 2024), the lack of charging infrastructure in public spaces 
limits the flexibility of BEV users and reduces adoption intentions (Dong et al., 2020; Pandita et al., 2024). 
Economic factors such as gas and electricity prices have also been shown to affect adoption intentions, as 
consumers in areas with low electricity prices and rising gas prices may favor EV adoption (Javid and Nejat, 
2017; Rye and Sintov, 2024), though consumers may be less sensitive to changes in electricity prices than 
gas prices (Bushnell et al., 2022). Similarly, government subsidies and policy incentives, particularly 
financial incentives, have been shown to contribute to the perceived economic value of EVs and increase 
adoption intentions (Kim et al., 2018; Xia et al., 2022). Other policy incentives that have been shown to 
positively influence adoption intentions (though generally to a lesser extent in the United States) include 
special privileges for EV owners, such as parking privileges (Wolbertus et al., 2018; Lashari et al., 2021), 
driving privileges in carpool or bus-only lanes (Lu et al., 2020), and license plate lottery incentives (She et 
al., 2017). Finally, the environmental efficiency of EVs is different for BEVs and PHEVs, and depends 
significantly on the energy source mix used to produce electricity, so the local electricity system and 
government policies on greenhouse gas emissions in the electricity sector may impact adoption intentions 
(L. Li et al., 2020; Ben Ali and Boukettaya, 2023).  
 
2.1.3 Technological Factors 
Technological factors include the broad set of economic and technological considerations that influence EV 
performance compared with that of ICEVs. The high purchase cost of EVs (particularly BEVs) has been 
shown to be a significant barrier to adoption intentions, resulting in significantly lower adoption rates for 
low-income populations (Park et al., 2018; Mandys, 2021). Lower fuel and maintenance costs can make 
EVs economically competitive with ICEVs in the long term, but they are still only feasible for those who 
can afford the high initial cost to reap these longer-term rewards (Plötz et al., 2014; Pradeep et al., 2021). 
A wide range of technological factors also influence adoption, including road performance, driving range, 
safety, and environmental impact. Concerns about battery range have been shown to be a significant barrier, 
though less so for PHEVs which provide the flexibility of using the gas engine (Higueras-Castillo et al., 
2021; Ju and Hun Kim, 2022; Wang et al., 2022). Charging speed and range are also particularly important 
for those intending more long-distance travel, who are particularly reliant on the availability of charging 
stations (Haustein et al., 2021; Jang and Choi, 2021; Krishnan and Koshy, 2021; White et al., 2022). Other 
vehicle features including initial acceleration rate, noise, driving smoothness, and ease of use can also 
influence adoption and differ significantly between different types of EVs (Tu and Yang, 2019; Zhang et 
al., 2022; Bhat et al., 2024).  
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2.1.4 Demographic Factors 
Younger drivers show high levels of interest in EVs, perhaps due to their interest in environmental benefits 
as well as in new technologies in general (Sovacool et al., 2018; Huang and Ge, 2019; Chen et al., 2020). 
However, the first adopters of EVs tend to be middle aged, largely due to the high initial costs that are pose 
a barrier for younger adults (Habich-Sobiegalla et al., 2019; Lashari et al., 2021). Gender differences in EV 
interest related to different EV features are also evident; Men show more interest in the technological 
advancements in EV technologies (and particularly so for BEVs) and perceive greater advantages to EV 
ownership (Wang et al., 2021; Ali and Naushad, 2022), while women prioritize the environmental benefits 
associated with EVs but may be more wary of difficulties associated with charging, leading to a stronger 
preference for PHEVs among women (Ziefle et al., 2014; He et al., 2018). In California, evidence suggests 
that existing EV owners are predominantly male (Lee et al., 2019). In addition, individuals with more 
education tend to be more inclined towards both PHEVs and BEVs, due to increased environmental concern 
and greater awareness of the potential technological and economic benefits of EVs compared to ICEVs (Li 
et al., 2017; Kim et al., 2019; Habich-Sobiegalla et al., 2019). At a household level, income has also been 
shown to influence adoption intentions, as high-income households can more easily afford the higher 
purchase prices needed to achieve the long-term economic and non-economic benefits of EVs (Plötz et al., 
2014; Ramos-Real et al., 2018; Krishnan and Koshy, 2021; Munshi et al., 2022; Osipenko, 2024). Finally, 
findings related to the impacts of home ownership and housing type on EV purchase intention have been 
mixed. However, studies have generally found that access to a consistent parking and charging location 
(whether in-home or provided by an apartment complex) is important for EV adoption, and particularly so 
for BEV adoption since there is no alternative to charging (Egnér and Trosvik, 2018; Lashari et al., 2021). 
 
2.2 Aggregate EV Ownership Trends 
Models of aggregate trends in EV ownership have largely focused on contextual and demographic factors. 
Several aggregate studies have reported that many of the contextual factors significantly impacting 
individual adoption intentions also manifest themselves in actual aggregate adoption patterns (for a more 
detailed review of studies in this area, see Austmann, 2021). For instance, aggregate models do point to a 
significant relationship between of EV charging infrastructure and EV adoption levels, finding much higher 
adoption rates (particularly for BEVs) in areas with developed public EV charging infrastructure (Mersky 
et al., 2016; Adhikari et al., 2020; Bhattacharyya and Thakre, 2020). Similarly, aggregate studies have 
assessed the impacts of financial incentives on EV adoption and found that acquisition subsidies, tax 
incentives, electricity subsidies, and added taxes for fossil fuels are all significantly related to higher EV 
adoption rates (Sierzchula et al., 2014; Hardman et al., 2017; Wee et al., 2018; Xue et al., 2021). In fact, 
these financial incentives, particularly those that impact initial purchase prices, seem to play an even larger 
role in actual adoption patterns than suggested by studies of stated intentions (Clinton and Steinberg, 2019; 
Jia and Chen, 2021; Künle and Minke, 2022). Similarly, other local conditions, such as gas prices (Chandra, 
2022), non-economic incentives (Jenn et al., 2018), different modes of electricity generation (Mekky and 
Collins, 2024), and local climate conditions (Yang et al., 2023) have been associated with EV adoption 
rates.  
 As far as demographic trends, aggregate adoption studies have observed that EVs are adopted first 
in areas with higher median incomes and higher levels of educational attainment (Xue et al., 2021; He et 
al., 2022). Adoption is also more prevalent in suburban areas with high home ownership rates and relatively 
well-developed infrastructure (Mukherjee and Ryan, 2020; Gehrke and Reardon, 2022). Further, these 
aggregate studies have suggested that individuals living in multifamily homes or apartments are less likely 
to adopt BEVs than those living in single-family homes, likely due to challenges associated with home 
charging. Finally, several studies have shown that EVs tend to be adopted in dense clusters, even after 
accounting for policy and infrastructure changes, due perhaps to peer effects that result in significantly 
higher adoption rates once others begin to adopt EVs near an individual’s home or workplace (Liu et al., 
2017; Chakraborty et al., 2022). 
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2.3 Study in Context 
Motivated by the need to better understand revealed EV adoption behaviors at an individual level, our study 
contributes to the literature in several important ways. First, we examine the factors that lead to EV adoption 
using individual-level revealed preference data, as opposed to earlier studies that have predominantly used 
stated intentions or aggregate spatial trends. Only a few existing studies have modeled adoption behavior 
using revealed data (see Nazari et al., 2019; Brückmann et al., 2021), and our study is the first to 
comprehensively also model the reasons for EV adoption using data from actual adopters. Second, we 
model the importance of a set of reasons for the adoption of EVs using a rank-based approach. While several 
studies have examined the characteristics of existing EV owners and their reasons for adopting EVs using 
descriptive methods, none have modeled these behaviors systematically (see, for example, Vassileva and 
Campillo, 2017; Anfinsen et al., 2019). We consider a comprehensive set of factors that motivate EV 
adoption, including economic factors (such as concerns about rising gas prices and the availability of 
incentives), EV interest and experience (such as overall interest in EV technology, interest in a specific 
brand or model, and experience through test drives), social influence through friends or family, the ability 
to charge at home, and concerns about climate change. Further, the use of a ranked preference design rather 
than a first-choice preference design allows more information to be determined from each individual’s 
selection and is more behaviorally appropriate for a context where the decision may not be driven by a 
single motivation (Nair et al., 2018, 2019), as is the case with EV adoption. Third, we include a 
comprehensive set of exogenous variables to accommodate heterogeneity in EV preferences based on 
individual demographics (such as age, race, gender, and educational attainment), household characteristics 
(including household composition, income, and home ownership status), and characteristics of the home 
location (including population density, intersection density, and charging density). This allows us to 
determine how overall adoption patterns vary across demographic groups, as well as capture differences in 
the motivations across individuals, thus enabling the design of customized EV adoption policies directed 
toward specific population groups. Fourth, we consider how attitudes and EV perceptions impact adoption 
using four latent constructs. Two of these correspond to psychological/lifestyle-related latent constructs: 
(a) green lifestyle propensity (GLP) and (b) vehicle functionality preference (VFP) (VFP refers to the 
intensity with which vehicles are viewed as serving a functional role rather than serving as a social status 
symbol). Both of these factors have been shown in existing studies to influence adoption behaviors (Adnan 
et al., 2018; Deka et al., 2023; Buhmann et al., 2024). The other two latent constructs are more closely 
associated with the contextual and technological factors discussed earlier: (a) EV (relative to ICEV) cost 
and maintenance perception (CMP), and (b) EV battery range and charging perception (BRP). Given that 
several studies have found widespread misconceptions about EV features (see He et al., 2018; Kautish et 
al., 2024), considering individual perceptions associated with contextual/technological factors directly is 
more likely to reflect how individuals are actually making adoption decisions. Fifth, we model the adoption 
dimension and ranked importance of factors contributing to adoption together in a joint model that 
accommodates unobserved correlation effects between adoption and the ranked importance of factors. This 
allows for the possibility of “self-selection” effects among EV owners (that is, existing EV owners may be 
more likely to prioritize some reasons for choosing EVs than those who have yet to adopt), enabling us to 
identify the importance of EV adoption motivation factors for any individual in the general population, 
regardless of whether an individual currently owns an EV or not. For instance, an individual who has an 
intrinsically elevated preference for sustainability (say an unobserved factor) will be more likely to adopt 
EVs overall, and to do so specifically because they have concerns about climate change. If the EV adoption 
and EV adoption motivation reasons are modeled independently ignoring the correlation due to the 
“sustainability preference” unobserved factor, concerns about climate change (as a motivating reason for 
EV adoption) would be overestimated for any random individual in the population (who would not be as 
sustainability-concerned as an EV adopter). At an aggregate population level (of current EV owners and 
current EV non-owners), the result would then be an overestimation of the true benefits of highlighting 
environmental benefits as a way to promote EV adoption, potentially leading to misinformed policy 
investments. By estimating the EV adoption and EV motivating factors jointly (that is, accounting for the 
sample selection in EV motivating factors based on EV adoption, as caused by common unobserved 
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effects), however, we are able to more accurately identify the EV motivating factors for any member of the 
general population, allowing informed policy investments to promote EV adoption. Sixth, as another 
methodological advance, we consider the latent constructs themselves to be endogenous to the 
adoption/motivation outcomes by allowing correlation effects between the stochastic terms embedded in 
the latent constructs and the error terms in the adoption/motivation equations. This is important because 
many unobserved attitudes and lifecycle factors (not considered by themselves as latent constructs because 
of a lack of indicators in the survey) that influence the latent constructs may also influence the EV 
adoption/motivation outcomes. For instance, individuals who generically are curious about technology (say 
an unobserved individual variable, as in the current study) may be higher on the BRP latent construct scale 
(because they would be more likely to seek out information about EV battery technology) and, at the same 
time, be intrinsically more likely to buy an EV. If such a correlation does exist, but is ignored, it would lead 
to an overestimate of the effect of the BRP latent construct on EV adoption. Similarly, these same 
generically technology-curious individuals who load higher on the BRP latent construct may also be more 
likely to rank “high gas prices” as a top motivator for EV adoption. If this correlation exists, but is ignored, 
it would again lead to an overestimate of any positive effect of the BRP latent construct on choosing “high 
gas prices” as an EV adoption motivator. Finally, we translate model estimates into average treatment effects 
of exogenous individual/household-level variables on EV adoption, further disaggregating these effects 
based on indirect effects (through the latent constructs) and a direct effect, providing deep insights into 
ways that EV adoption may be promoted in the general population.  
 
3. METHODOLOGY  
3.1 Data Description  
The data for this study are drawn from a survey of California households conducted between November 
2022 and January 2023. Households were selected into the sample in two ways (for a detailed discussion 
of the survey collection, please see Firestone, 2022). First, households with EV charging permits and solar 
panel permits were identified using the BuildZoom data platform (BuildZoom, 2022). From this sampling 
frame, 2,000 randomly selected households with solar-only permits, 2,000 randomly selected households 
with EV-only charging permits, and all 1,073 households that had both a solar and EV charging permit were 
invited to participate in the study. Invitations were mailed to each household, addressed to the listed 
homeowner, inviting them to take the survey online. Of these, a representative from each of 561 households 
responded to the survey online. Second, a general population survey of California homeowners was 
conducted by YouGov (YouGov, 2022). 2,948 individuals from the YouGov active California panel were 
invited to participate, of whom 810 complete responses (from a single individual to represent each 
household) to the online survey were received. Subsequently, YouGov performed census matching to reach 
a final sample of 750 homeowners. Across the two data collection efforts, a total sample size of 1,311 
households resulted. Of these, 213 additional respondents with incomplete data were removed, leaving a 
final sample size of 1,098 for the analysis (important to note is that the labels “household” and “respondent” 
or “individual” are synonymous, given a single individual from each household provided information 
related to the entire household). Of course, one limitation of this approach is that attitudes/opinions are only 
collected from a single adult to represent those of the entire household, while, in reality, these vehicle 
ownership decisions are likely made at the household level based on the need, attitudes, and opinions of all 
household members. Still, the use of this individual-level data to represent the attitudes/opinions of the 
entire household is supported by evidence from sociological and psychological literature (Davis and 
Rusbult, 2001; Levy et al., 2008; Li et al., 2025) suggesting that, because household-level decisions are 
made through negotiation and collaboration among household members, any individual who reports 
motivating factors would provide information representing those of the household as a whole.  
 The survey was undertaken as part of a larger research project on the co-adoption of EVs and 
rooftop solar panels. The survey instrument was designed based on the literature, intuition, and semi-
structured interview with EV-only adopter, solar-only adopter, and EV-solar co-adopters undertaken in the 
first phase of the research project (Bull et al., 2025). As part of the survey, respondents were asked about 
their current ownership of EVs as well as attitudes and opinions relating to vehicle ownership and vehicle 
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characteristics, barriers to adoption of EVs, and environmentally friendly practices and technologies in 
general. The survey also collected individual- and household-level demographics as well as dwelling unit 
and residential location characteristics. Finally, of particular importance for the current study, the survey 
asked current EV owners (that is, the individual respondents from households that own EVs) to rank the 
importance of a set of motivating factors that led them to consider buying an EV. The set of motivations 
included were based on the results of the semi-structured interviews in the previous phase of the data 
collection as well as aligning with five classes of values from the Theory of Consumption Values (Sheth et 
al., 1991): Functional, Emotional, Social, Epistemic, and Conditional (see Bull et al., 2025 for a detailed 
discussion of the semi-structured interview results and theoretical background that led to the development 
of this set of motivating factors). Specifically, participants were asked to rank the top three choices from 
the following list of factors: (1) Rising gasoline prices, (2) To take advantage of available incentives, (3) 
Interest in the technology, (4) Interest in specific brand/model of electric vehicle, (5) Test drove one, (6) 
Heard about EVs from friends/family or colleagues, (7) The ability to charge/"refuel" at home, (8) Concerns 
about climate change, (9) To increase household electricity consumption as we were planning to get solar 
panels, (10) Media/advertising, (11) Passenger in one, (12) Saw one at work or others with one, and (13) 
Something else (please specify). Because of the handful of respondents who selected the final five factors, 
we removed these and modeled only the responses for the first eight factors, retaining only those current 
EV owners who had at least one of the eight alternatives selected.2 The net result is that, while every EV 
owner had a top ranked alternative, only a subset had a second ranked response, and a further subset had a 
complete set of three ranked responses.  

An important point needs mention here. Due to the retrospective nature of this motivational 
question (asking respondents to recall the motivations at play during the adoption decision), we must 
acknowledge the potential that these responses may be influenced by recall bias. However, there are several 
reasons to believe that such recall biases will be relatively small in the current empirical context. First, the 
questions ask about general summative motivations and feelings surrounding EV adoption rather than finer 
aspects of behaviors/actions such as specific dates of EV purchase or precise tradeoff calculations that may 
have been made before purchasing an EV. The general survey literature (see Abadie et al., 2021; Helm and 
Reyna, 2023) has established that summative feelings are more easily recalled and ranked than finer aspects 
of decision making, the latter being more prone to inaccurate recall, scale effects, and telescoping. Second, 
the broad motivational factors align with how individuals store and retrieve memories, and the use of choice 
categories for response helps to facilitate memory retrieval (Müggenburg, 2021). Third, the decision to 
adopt EVs is not a daily or routine decision, but more of a one-off major purchase decision that is made 
with careful and considerable deliberation. In such non-routine and relatively one-off kinds of contexts, 
respondents are more easily able to recall and contextualize motivations even after a long stretch of time 
since making the choice (Dilevski et al., 2021; Kraemer et al., 2022). 
 In addition to the survey responses, additional geographic data were appended to the dataset based 
on each respondent’s zip code. First, population statistics were included using the EPA Smart Location 
Database (Chapman et al., 2021). Second, EV charging station prevalence by zip code was determined 
using the U.S. Department of Energy Alternative Fuels Data Center (National Renewable Energy 
Laboratory, 2024).  
 
3.1.1 Exogenous Variables  
Descriptive statistics of the sample are shown in Table 1, along with a comparison to 2022 American 
Community Survey 5-year estimates for the state of California (U.S. Census Bureau, 2023). The sample 
underrepresents younger individuals (especially in the age group of 18-34 years), non-white individuals, 
women, employed individuals, and those with lower levels of educational attainment. For household-level 

 
2Note that the order of the factors included here is not the same as the order shown in the survey. Additionally, each 
of the final five factors (which were removed from the analysis) were ranked in the top three motivating factors by 
less than 6.5% of current EV owners. Only five households were removed because they did not select at least one of 
the top eight alternatives.  
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demographics, there is an overrepresentation of households with two or more adults, high-income 
households, households without children, and those living in single-family (detached) homes. We 
categorize household type as either single-family (detached) homes or multifamily homes (including 
apartments and attached dwellings; this segment is made up primarily of duplexes in the current sample). 
The over-representation of households living in single family homes is unsurprising given that the sampling 
frame was based, in part, on solar panel ownership and building permits and consisted solely of 
homeowners. Finally, two metrics are used to characterize the residential location of each respondent. First, 
respondents are considered to be in either high population density areas (more than 9,597 people per mile) 
or low population density areas (equal or fewer than 9,597 people per mile), based on the population 
weighted average density of all zip codes in the state. Second, the density of electric vehicle charging 
stations is determined by the number of publicly available stations (at any charging level) per square mile 
in each zip code as of January 2023 and is categorized into three levels of low (10 or fewer stations per 
square mile), medium (between 10 and 50 stations per square mile), and high (more than 50 stations per 
square mile). Individuals living in areas with high charging station density are overrepresented compared 
with population weighted estimates from the U.S. Department of Energy Alternative Fuels Data Center, 
which is again unsurprising given that respondents were selected in part on EV ownership. 
 The observed skews in the exogenous variables are to be expected in this sample due to the choice-
based sampling mechanism used in data collection. This choice-based sampling approach implies that an 
unweighted estimation approach would lead to biased parameter results (see Wooldridge, 1995; Solon et 
al., 2015). Therefore, to accommodate the choice-based sampling, a series of sampling weights were 
generated using iterative proportional fitting based on overall EV ownership and solar panel ownership 
levels in California (see California Energy Commission, 2024) to avoid estimator inconsistency. This 
weighted exogenous sample maximum likelihood (WESML) estimator is consistent under very general 
conditions for a choice-based sample, though it also requires the computation of a robust sandwich 
covariance matrix to obtain parameter standard errors (Manski and Lerman, 1977). 
 
3.1.2 Endogenous Outcomes 
The main outcomes in this study include a binary outcome for EV adoption and a rank-ordered outcome 
representing the motivating factors that prompted existing EV owners to consider buying an EV. Of the 
1,098 individuals/households included in the sample, 417 (38.3%) individuals/households owned an EV 
using the unweighted shares (this includes all individuals who owned either a BEV or PHEV at the time of 
the survey). After applying the sampling weights, the EV share in the sample corresponds with a weighted 
share of 5.17%, aligning with overall EV ownership levels in California in early 2023. In our analysis, 
because of the small number and weighted share of EV-owning households, we make a distinction in 
preference between BEV and PHEV ownership solely based on individual/household demographics and 
latent constructs, maintaining the same kernel error term for both BEVs and PHEVs. We achieve this by 
defining a PHEV-ownership indicator and interacting this indicator with the remaining exogenous variables 
as well as the latent constructs. Effectively, the assumption here is then that, while the overall error term 
distributions in the BEV and PHEV utilities do differ because of the interactions of the PHEV indicator 
with the stochastic latent constructs, conditional on the latent constructs, the determinant factors not 
considered in our analysis are identical in the BEV and PHEV utilities.  In this model structure, the main 
exogenous/latent construct effects in the adoption equation represent the effects for BEV adoption, while 
the interaction effects represent the difference in the preferences for PHEV adoption relative to BEV 
adoption. Where no interactions are present, the coefficients indicate an effect for EV adoption in general 
(with no statistically significant difference between BEV and PHEV adoption).3  

 
3For completeness and preciseness, we should note that the sample included 285 households owning only a BEV, 79 
households owning only a PHEV, and 53 households owning both a BEV and PHEV (for the total of 417 EV owners). 
Our PHEV indicator took the value of 1 for the total of 132 (79+53) households that owned a PHEV. Thus, to be 
fastidious, the interaction effects represent the difference between households that own a PHEV relative to households 
 



9 

The distribution of responses to the rank-ordered outcome is presented in Table 2 for both the 
unweighted and weighted shares. This question was only asked of current EV owners. Additionally, as 
discussed before, since only the eight most selected reasons were retained, not all EV owners have a full 
set of three rankings. Of the 417 EV owners, 285 had a full set of three ranked responses, 108 had only two 
ranked responses, and 24 had only a single ranked response (the percentages shown in Table 2 for the second 
and third columns in each panel are based on the number of participants with at least two or three ranked 
reasons, respectively, so all the columns sum to 100%). The sampling weights do not seem to significantly 
influence the distribution of motivating reasons that influence adoption, an unsurprising result given that 
they are only available for current EV owners. As may be observed from the table, concern about climate 
change is the most significant factor leading to EV adoption, with 34.5% of the sample selecting this factor 
as the most important. Interest in EV technology and rising gasoline process also appear to be important at 
this aggregate level. In contrast, having a test drive or hearing about EVs from friends or family members 
do not seem to be particularly important (with less than 5% of respondents ranking each of these reasons 
first). “Taking advantage of available incentives” and “The ability to charge/’refuel’ at home,” while not 
appearing as the top rank frequently, do appear frequently as the second or third rank in motivation. Overall, 
EV adoption, based at least on this aggregate descriptive analysis, appears to be driven more by climate 
change concerns and benefits of the technologies overall rather than peer effects or test drive experiences.  
 
3.1.3 Latent Constructs  
As discussed earlier in Section 2.3, we consider four stochastic latent constructs that are likely to impact 
EV adoption, two associated with psychological/lifestyle-related factors (green lifestyle propensity or GLP 
and vehicle functionality preference or VFP), and two associated with contextual and technological factors 
(EV cost and maintenance perception or CMP and EV battery range and charging perception or BRP). 
These constructs are latent and stochastic because they are not directly observed, but indicators for these 
underlying lifestyle and technology preferences/perceptions are available. The four constructs are also 
consistent with the TPB framework and the TAM model, discussed in Section 2, that emphasize the 
importance of attitudinal/lifestyle factors, subjective norms, as well as perceived usefulness factors in the 
context of technology uptake. Regarding the psychological constructs, extensive studies in transportation, 
information science, technology adoption, and the more general psychology/ethnography fields have 
validated the use of psycho-social identities of individuals in explaining the adoption of emerging 
technology (Astroza et al., 2017; Foroudi et al., 2018; Gunden et al., 2020; Marikyan et al., 2019). The two 
selected for inclusion in the current study (GLP and VFP) have been shown in existing research to be closely 
aligned with motivations for EV adoption, and GLP has emerged in existing work as particularly pivotal, 
as EVs have been positioned as important contributors to climate change mitigation (see Biresselioglu et 
al., 2018; Buhmann et al., 2024). Regarding the two latent constructs associated with contextual and 
technological perceptions of EVs, as discussed in Section 2.1, perceptions of EV characteristics are critical 
to adoption patterns, possibly even more so than their objective characteristics (Shrestha et al., 2022; Zhang 
et al., 2022). Further, results regarding these two perception-related constructs have clear implications for 
practical EV adoption policies, as determining how these perceptions (to battery technologies and charging 
stations as well as EV costs) are formed and how they contribute to adoption have direct implications for 
technology and infrastructure development, information campaigns, and incentive policies.4 Each of the 
latent constructs is discussed briefly below. 

 
that own only a BEV. But, given the small number of households that own both a BEV and PHEV, we will glaze over 
this nuance in our results discussion and interpret the interaction effects as the preference difference between BEV 
and PHEV ownership. 
4The dataset did include a larger set of indicators related with additional lifestyle preferences and perceptions of EVs. 
Based on these indicators, other latent constructs, including those associated with symbolic values, moral norms, 
emotional factors, and additional perceived usefulness factors were also constructed and considered. But an analysis 
of “between construct” and “within construct” variances (based on the battery of indicators), along with a 
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Many previous studies (Asadi et al., 2021; Kautish et al., 2024) have observed that environmental 
consciousness is closely associated with intentions to adopt electric vehicles, so it is expected that GLP will 
significantly and positively impact EV adoption and be most closely aligned with “concern about climate 
change” as the motivating reason for EV adoption. The second latent construct of VFP helps locate 
individuals on a continuum between individuals who view vehicles as a status symbol or signaling device 
versus individuals who view vehicles as primarily intended for functional purposes and mobility (see Burs 
et al., 2020; Buhmann et al., 2024). The VFP is constructed such that higher values of VFP refer to a higher 
preference of functionality over status signaling. Given that EVs remain high-cost investments and have 
often been marketed as a luxury product, it is likely that they appeal to some individuals as a status symbol 
(Sovacool and Axsen, 2018). At the same time EVs represent a functional advance in vehicle technology 
which may be attractive to some others. In our analysis, we are able to estimate the effect of VFP on 
adoption and motivating reasons and also capture variations in this effect across individuals by interacting 
VFP with demographic variables. The third CMP latent construct refers to the perception of the value of an 
EV (relative to an ICEV) over its lifespan, with higher values of CMP corresponding to more favorable 
views of an EV over an ICEV. We would expect that individuals with a high CMP would be more likely to 
adopt EVs and cite economic considerations (such as “rising gas prices” and “take advantage of incentives”) 
as important motivating factors in the adoption decision. Finally, the last BRP latent construct refers to the 
relative ease of using an EV for long distance trips and charging an EV (out of home) compared with fueling 
an ICEV, with the natural expectation that BRP would positively affect EV adoption and the consideration 
of such motivating factors as “interest in a specific brand/model” (given that individuals with a high BRP 
would not be so concerned about charging/functionality issues and can place greater emphasis on the type 
of EV vehicle they would like).  
 Figure 1 presents the list of indicators for each latent construct and the distribution of responses to 
each of the indicators based on weighted shares. Individuals appear to lie relatively uniformly on the green-
ness scale (the GLP scale), even if skewed slightly more toward being green overall. They appear to be 
more focused on functionality than status signaling (high VFP) in vehicle adoption/use, though the 
distribution of individuals on the specific indicator question of “A vehicle provides status and prestige” is 
more balanced. The distribution of the indicators for CMP shows that there may be more uncertainty, in 
general, about the relative difference in cost and maintenance between EVs and ICEVs, with a large number 
of respondents selecting “about the same” for the CMP indicators. Finally, respondents seem to be more 
skeptical of EV range, with most respondents indicating that EVs are “somewhat worse” or “much worse” 
that ICEVs for the BRP indicators.  
 
3.2 Analytic Framework  
The generalized heterogeneous data model (GHDM) framework developed by Bhat (2015) is used for this 
analysis. Figure 2 presents a visual representation of this framework. The annotations by the arrows between 
the many boxes correspond to the equation notations used in the next section on model formulation. Bhat’s 
GHDM model is adapted here to include a single endogenous binary choice outcome for EV adoption and 
one endogenous rank-ordered outcome for the factors motivating EV adoption (shown toward the right side 
of Figure 2). As mentioned in Section 3.1.2, we distinguish between BEV and PHEV ownership based only 
on individual/household demographics and latent constructs, while maintaining the same kernel error term 
for adoption of each type of EV. Thus, in the model structure, a single combined utility equation can be 
used to represent the binary EV adoption decision, where the utility differences between BEVs and PHEVs 
are identified through interactions between the PHEV indicator and the exogenous variables/latent 
constructs, while maintaining a single kernel error term. 

A set of individual- and household-level variables (left side of the figure) influence each of these 
outcomes in two different ways: (1) directly through the arrows at the top and bottom of the figure going to 

 
comprehensive testing of this larger set of developed constructs using a combination of exploratory and confirmatory 
factor analyses, resulted in only the four latent constructs used here turning up being statistically relevant. This was 
because of overlapping sets of indicators across the many theoretically-developed latent constructs. 
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each outcome (labeled “MEM” for the measurement equation model component of the GHDM), and (2) 
indirectly through the effects of these exogenous variables on a set of stochastic latent constructs (GLP, 
VFP, CMP, and BRP), positioned in the center of Figure 2 (this arrow from the exogenous variables to the 
latent constructs is labeled “SEM” for the structural equation model component of the GHDM). The four 
stochastic latent constructs are loaded on a set of observed indicator variables (positioned at the center-
bottom of the figure) as well as effecting the set of endogenous outcomes to estimate (impute) the SEM 
component of the GHDM. These loadings and effects are identified by arrows originating from the box 
containing the latent constructs in the figure (these arrows are labeled “MEM” as these relationships are 
estimated as part of the measurement equation model component of the GHDM). In addition to capturing 
attitudes and perceptions that influence EV choices, the inclusion of the stochastic latent constructs 
facilitates a parsimonious correlation structure among the main outcome variables (see the two-headed 
arrow at the top of the box containing the stochastic latent constructs identifying the correlations among the 
latent constructs). Essentially, if a stochastic latent construct impacts both the EV adoption and an EV 
adoption motivating reason, the result immediately is a correlation between EV adoption and the EV 
adoption motivating reason (because of the stochasticity of the latent construct; that is, the unobserved error 
term embedded in the latent construct). This accounts for the self-selection bias caused by the fact that 
motivations for EV adoption are only observed for current adopters, as discussed earlier in Section 2.3. For 
example, if the GLP stochastic latent construct (which includes an unobserved component, say 
sustainability preference) positively affects EV adoption as well as the motivating reason of “concern about 
climate change,” as we observed in our empirical results discussed later, the net result is a positive 
correlation between these two dimensions that accommodates for self-selection effects.  

Finally, the latent constructs are also allowed to be co-endogenous with the main EV outcomes (see 
the two-headed arrows connecting the stochastic latent constructs with each of the main outcomes in Figure 
2), allowing for correlations between the latent lifestyle preferences and perceptions and the main outcomes 
of interest, again as discussed earlier in Section 2.3.  

 
3.3 Model Formulation  
As mentioned above, the main outcomes in this study consist of one binary outcome and one nominal rank-
ordered outcome. Although the rank-ordered outcome is only available for current EV owners, the 
mathematical formulation of the GHDM model presented below is shown for an individual with an EV 
(who has an available set of rank-ordered reasons for adoption). For individuals who do not own EVs, the 
procedure needs only a slight modification to marginalize over the rank-ordered outcome such that only the 
EV ownership outcome (and the latent constructs along with their indicators) is relevant. In the presentation 
below, we suppress the index for individuals for ease in presentation. Also, note that each individual does 
have the possibility of owning an EV (in either of the BEV or PHEV variant forms), since both BEVs and 
PHEVs are available in the marketplace. Similarly, because of the fact that, for current EV owners, all the 
adoption motivating reasons were presented to respondents in the survey, all of these reasons are de facto 
available to be chosen within the top three reasons.   

To begin, let l  be the index for the stochastic latent constructs ( 1, 2, , )l L=  . In this case 4,L =  
corresponding to the two attitudinal constructs and two EV perceptions. Then, denote the underlying latent 
construct *

lz , and write it as a function of covariates in the SEM model component: 
*
l l lz η′= +wα   (1) 

where w  is a ( 1)D×  vector of observed variables (excluding a constant), lα  is a corresponding ( 1)D×  

vector of coefficients, and lη  is a random error term. The error vector lη  is assumed to be standard normally 
distributed and captures the effects of unobserved factors that influence the stochastic latent constructs, 
after controlling for observed demographics. We also define the ( )L D×  matrix 1 2( , ,..., )L ′=α α α α , and 



12 

the )1( ×L  vectors * * *
1 2( , ,...,  )Lz z z ′=*z  and 1 2( , , , ) 'Lη η η=η  . Thus, we may write Equation (1) in 

matrix form as: 
= + η*z αw   (2) 

In order to accommodate interactions among the unobserved latent variables, we allow a multivariate 
normal (MVN) correlation structure for η . ~ [ , ]L LMVN 0 Γη , where L0  is an )1( ×L  column vector of 
zeros, and Γ is an ( )L L×  correlation matrix (see the two-headed arrow at the top of the box containing 
the stochastic latent constructs in Figure 2).  

Now,  consider N  ordinal outcomes (including the indicator variables for each of the latent 
constructs as well as ordinal main outcomes) and denote the index for the ordinal outcomes as n  
( 1, 2,..., )n N= . In our current context, we include the binary variable for EV adoption in the model as an 
ordinal main outcome (because a binary outcome can be considered as a special case of an ordinal outcome 
with two categories). This is done simply so that the formulation of the GHDM includes only ordinal 
variables and the ranked outcome (rather than needing an additional separate binary outcome). It has no 
other implications for model specification or results. Therefore, 13N = , corresponding to a total of 12 
indicators of the four latent constructs (three indicators for each latent construct) and the single ordinal main 
outcome. Also, let nJ  be the number of categories for the nth ordinal outcome ( 2)nJ ≥  and let nj  be the 

corresponding index ( 1,2,..., )n nj J= . Also, for each ordinal outcome, let *
ny  be the underlying latent 

variable whose horizontal partitioning leads to the observed outcome. Next, assume that the individual 
chooses the th

na  ordinal category. Then, we can apply the usual ordered response formulation, for the 
individual, to write: 

*
n n n ny ε′ ′= + +

 

*γ x d z   (3) 

with *
, 1 ,n nn a n n ayψ ψ− < <  , and where x is an ( 1)A×  vector of exogenous variables (including a constant) 

as well as possibly the observed values of other endogenous variables (included in a recursive fashion), nγ  
is a vector of corresponding coefficients to be estimated, nd  is an ( 1)L×  vector of loadings of each latent 

construct on the ordinal outcome, the ψ~  terms represent thresholds to be estimated, and nε~  represents the 
standard normal random error for the ordinal outcome. For the indicators, however, the x vector will not 
appear on the right side of Equation (3). Additionally, identification conditions are needed regarding the 
number of non-zero elements of nd  that are possible in each indicator equation (and across all indicator 
equations; see Bhat (2015) for additional details). For each ordinal outcome, the thresholds must be ordered 

,0 ,1 ,2 , 1 ,...
n nn n n n J n Jψ ψ ψ ψ ψ−< < < <     , with ,0nψ = −∞ , ,1 0nψ = , and , nn Jψ = +∞ . Let 

,2 ,3 , 1( , ,..., )
nn n n n Jψ ψ ψ − ′=   ψ  and 1 2( , ,..., ) .N′ ′ ′=ψ ψ ψ ψ     Stack the N underlying continuous variables *

ny  into 

an ( 1)N ×  vector *y~ , and the N error terms nε~  into an ( 1)N ×  vector ε . Define the ( )N A×  matrix 

1 2( , ,..., )N ′=γ γ γ γ     and the ( )N L×  matrix ( )1 2, ,..., ,N=   d d d d and let NIDEN  be an identity matrix of 

dimension N that represents the correlation matrix of ε . Finally, stack the N lower thresholds for the 
decision-maker , 1nn aψ −

 into an ( 1)N ×  vector lowψ  and the N upper thresholds , nn aψ  into another vector 

upψ . Then, in matrix form, the measurement equation for the ordinal outcomes for the individual may be 
written as: 

, low up= + + < <

     

* * *y γx dz ε ψ y ψ   (4) 
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Next, consider a single nominal rank-ordered outcome variable for an individual. Let I  be the 
number of alternatives available for ranking and let i  be the corresponding index ( 1,  2,  3,...,  )i I= . In 
our context, 8I =  for the eight factors included in the model. However, we present the framework for any 
number of ranked alternatives because the presentation simplicity is not affected by using a general 
formulation. Consider the ranked variable and assume the usual underlying random utility structure for each 
alternative i . 

( )i i i i iU ς′ ′= + +*b x β zϑ   (5) 

where x is an ( 1)A×  vector of exogenous variables as earlier, ib  is an ( 1)A×  column vector of 

corresponding coefficients, and iς  is a random normal error term. Further, iβ  is an ( )iN L×  matrix of 
exogenous variables that interact with the latent constructs to influence the utility of each alternative, and 

iϑ  is a ( 1)iN ×  column vector of corresponding coefficients which capturing the effects of the latent 
constructs and their interaction effects. If each latent construct impacts the utility of each alternative purely 
through a constant shift in the utility function (with no interaction effects), iβ  will be an identity matrix of 

size L , and each element of iϑ  will capture the effect of one of the latent constructs on the constant specific 
to alternative i  of the ranked variable. Define the ( 1)I ×  vector 1 2( , ,... ) ,Iς ς ς ′=ς  with 

~ ( , )I I IMVN 0 IDENς . Note, however, that because of the stochasticity of the latent constructs that 
affect the utilities of alternatives, the overall utilities are both non-independent and non-identical across 
alternatives. When introducing alternative-specific constants and exogenous variables that do not vary 
across alternatives, the usual identification restriction is imposed such that one of the alternatives serves as 
the base (although this base alternative may vary for different exogenous variables). To proceed further, 
define the ( 1)I ×  vector 1 2( , ,..., )IU U U ′=U , the ( )I A×  matrix 1 2( , ,..., )

hI ′=b b b b , and the 

1

I

i
i

N L
=

  ×  
  
∑  matrix 1 2, ,..., )I′ ′ ′ ′= (β β β β . Also, define the 

1

I

i
iI N

=

  ×  
  
∑ matrix ϑ , which is initially 

filled with all zero values. Then, position the 1(1 )N×  row vector 1′ϑ  in the first row of ϑ  to occupy 

columns 1 to 1N  , position the 2(1 )N×  row vector 2′ϑ  in the second row of ϑ  to occupy columns 1( 1)N +  

to 1 2( )N N+ , and so on, until the (1 )IN×  row vector I′ϑ  is appropriately positioned in the final row of 
ϑ . Further, define the ( )I L×  matrix ( )= βϖ ϑ . Then, in matrix form, we may write Equation (5) as: 
= + +*U bx zϖ ς .  (6) 

Thus, the components of the model framework may be written compactly with the vector equation for the 
latent constructs (Equation (2)) constituting the structural equation system and the vector equation for the 
ordinal indicators and outcomes (Equation (4)) along with the vector equation for the ranked outcomes 
(Equation (6)) constituting the measurement equation system.  

Finally, we consider the correlations between the four latent constructs and the main outcomes. 
That is, we consider η  to be correlated with both ε  and ς , but continue to maintain the independence 
assumption between ε  and ς . Let the ( )L× N  matrix LNΩ  contain the correlation elements between 
each of the stochastic latent constructs and ordinal outcomes, and let the ( )L× I  matrix LHΩ  contain the 
correlation elements between each of the stochastic latent constructs and the alternatives of the rank-ordered 
outcome in differenced form (see the two-headed arrows connecting the latent constructs and main 
outcomes in Figure 2).  

To develop the reduced form equations for the GHDM modeling system, replace *z  in Equations 
(4) and (6) with the right side of Equation (2) to obtain the following system: 



14 

( )

( )
= + + = + + + = + + +

= + + = + + + = + + +   

      

*

* *

U bx z ς bx αw η ς bx αw η ς

y γx dz ε γx d αw η ε γx dαw dη ε
ϖ ϖ ϖ ϖ

 (7) 

Now, consider the (( ) 1)N I+ ×  vector of ordinal and ranked outcomes (including the indicators for the 

latent constructs) 
 

=  
 



*y
yU

U
. Define 

 +
=  

+ 



γx dαwB
bx αwϖ

 and LN LN LH LN

LN LH LH LH

N

I

′ ′ ′ ′ ′ ′+ + + + +
=

′ ′ ′ ′ ′ ′+ + + + +

 
 
 

Γ Ω Ω Γ Ω Ω
Ω

Γ Ω Ω Γ Ω Ω

     

 

d d IDEN d d d d
d d IDEN

ϖ ϖ

ϖ ϖ ϖ ϖ ϖ ϖ
. 

Then the multivariate joint distribution of the main outcomes and indicators of the latent constructs is 
( , )N G+ ΩyU ~ MVN B .  

Sufficient conditions for identification are the same as those listed in Section 3.3 of Bhat and 
Mondal (2022). These are many and we refer the reader to Bhat and Mondal. Basically, the way we are able 
to identify the correlations between the latent construct themselves and the main endogenous outcomes (EV 
adoption and EV motivating factors) is by requiring that the latent constructs are identified solely and 
entirely based on the indicators without depending on the endogenous outcomes themselves as indicators. 
For this, given we have more than one latent construct in our model system, a sufficient condition is that, 
for each latent construct, there are at least two indicator variables (not considering the endogenous 
outcomes) that load only on that latent construct and no other latent construct (that is, there are at least two 
factor complexity one indicator variables for each latent construct; see Reilly and O’Brien, 1996; note also 
that, as indicated earlier, for the indicator variables, there are no exogenous variables on the right side of 
Equation (3)). In our case, we have three indicator variables loading solely on each latent construct, 
providing for additional stability. Further, there should not be any correlation between the error terms 
underlying the two indicator variables and the error term of the latent construct on which they load. Much 
improved stability is obtained by having all correlations between the indicator variables and the latent 
constructs restrained to zero (as we maintain in our analysis) as well as having variables that affect each 
latent construct but not the endogenous outcomes that the latent construct impacts.  
 
3.4 Model Estimation  
For model estimation, define a contrast matrix IM  for the ranked outcome. Specifically, define a contrast 

matrix based on the observed ranking r  of alternatives (the contrast matrix IM  will vary across individuals 
because different individuals will rank alternatives differently; however, here we again suppress the index 
for individuals and develop the construction of the contrast matrix for a specific individual with a specific 
ranking of the alternatives). Let the first ranked alternative of the ranked outcome be 1r , the second 2r , 
and so on until the last-ranked alternative kr , where k  ( )k I≤  is the lowest-ranked alternative selected 
by the participant (in our empirical case, 3k ≤  since each participant ranked at most three alternatives). 
Then, the following ( 1)k −  inequalities should hold: 2 1 3 2 10, 0, 0k kr r r r r r

U U U U U U −− < − < − < , and 

the following ( )I k−  inequalities should hold: 1 20, 0, 0k k k k I kr r r rr r
U U U U U U+ +− < − < − < . Stack the 

( 1)I −  utility differentials above, ordered as above based on the observed rank ordering, into a vector 
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( ) ( ) ( ) ( ) ( ) ( )( )3 11 22 1 2, , , , ,k k kk k kk Irr r r r r r r rr r r
U U U U U U U U U U U U+ +−

′
= − − − − − − u . Also, 

define the (( 1) 1)N I+ − ×  vector 
 

=  
 



*y
yu

u
. 

In vector notation, we can write the inequalities using a contrast matrix IM  with ( 1)I −  rows for 
each inequality and I columns for each alternative. To start, fill all the elements of the contrast matrix with 
zeros. Then, starting with the first row, place a value of negative one in the column corresponding to the 
first-ranked alternative, and a value of one in the column corresponding to the second-ranked alternative 
(this row corresponds to the first inequality shown above). Moving to the second row, place a value of 
negative one in the column corresponding to the second-ranked alternative, and a value of one in the column 
corresponding to the third-ranked alternative (this row corresponds to the second inequality shown above). 
Continue this procedure for each row, until placing a value of negative one in the column corresponding to 
the thk alternative, and a value of one in the column corresponding to the final unranked alternative 
(corresponding to the last inequality above).  
 Then, define a larger matrix M of size ( )( 1) ( )N I N I+ − × + , initially filled with zeros. For the 

ordinal outcomes, place an identity matrix of size ( )N N×  into the first N rows and N columns of matrix 
M. Then for the ranked outcome, place the contrast matrix IM  in rows 1N +  to 1N I+ −  and columns 

1N +  to N I+ . Thus, in the case of 2N =  and 4I = , if the individual’s ranking for two ranked outcomes 
(from the top choice to the last choice) is 4 1>  (with alternatives 2 and 3 unranked), then the M matrix for 
this individual is as below: 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0
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Using the contrast matrix M, we can develop the distribution of the vector yu  from that of yU  

because M( )yu = yU . Specifically, 1( , ),N I+ − Ωyu ~ MVN B  where =B B M , ′Ω =MΩM . 

Next, define the two ( )( 1) 1N I+ − ×  threshold vectors 
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1I −−∞  represents a ( )( 1) 1I − ×  column vector of negative infinities, and 1I −0  represents a ( )( 1) 1I − ×  
column vector of zeros. Collect the set of parameters to be estimated into the vector 

LN LH[Vech( ),Vechup( ),Vech( ),Vech( ), ,Vech( ), ,Vechup( ),Vechup( )] ,=δ Γ Ω Ω

 α γ d ψ b ϑ  where 
the operator Vech( )⋅  vectorizes all the non-zero elements of the matrix/vector on which it operates and 
Vechup( )⋅  vectorizes all the non-zero upper diagonal elements. Then the individual-level likelihood 
function may be written as: 

1( ) Pr  ( | , )
r

low up N I
D

L f dr+ − = ≤ ≤ =  ∫δ Ω 

ψ yu ψ r B  (8) 

where the integration domain { : }r low upD = ≤ ≤
 r ψ r ψ  is the multivariate region of the elements of the 

yu  vector determined by the observed ordinal outcomes, and the range 1 1( , )I I− −−∞ 0  for the utility 
differences taken with respect to the utility of the ranked preference for the rank-ordered outcome. The 
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likelihood function for the entire sample of decision-makers is obtained as the product of the individual-
level likelihood functions.   

The likelihood function shown in Equation (8) involves the evaluation of an ( 1)N I+ −  
dimensional integral for each decision-maker. Given that this calculation is computationally expensive, we 
evaluate this integral using Bhat’s (2018) matrix-based approximation method for evaluating the 
multivariate normal cumulative distribution function. 
 
4. RESULTS AND DISCUSSION 
The final model specification is based on an iterative process of including exogenous variables in various 
forms and testing alternative combinations of exogenous variables based on statistical fit. Categorical 
variables included in the model were considered in the most disaggregate form available and iteratively 
combined to yield parsimonious specifications based on statistical tests. Additionally, several continuous 
variables were tested in various forms, but the best representation in each case was in the form of dummy 
variables (for instance, population density was best captured as a single dummy variable indicating whether 
the respondent lived in an area with a density above the population weighted average density of all zip 
codes in the state).  In the model estimation process, we used a t-statistic threshold of 1.65 (corresponding 
to a 0.1 level of significance or 90% confidence level) to retain variables for the EV ownership dimension 
and SEM model component. Due to the limited number of EV owners with a ranked set of factors 
motivating adoption, a lower t-statistic threshold of 1.28 (corresponding to a 0.2 level of significance or 
80% confidence level) was used to retain variables impacting these ranked outcomes.5 The final estimation 
results are shown in Table 3 and Table 4. A “—” entry in the results tables indicates that the row exogenous 
variable does not have any statistically significant impact on the column latent construct (for Table 3) and 
endogenous outcome (for Table 4).  
 The results are organized into several sections. Section 4.1 presents the results of the effects of 
exogenous variables on the four latent constructs (constituting the SEM component of the model) as well 
as the loadings of the latent constructs on the set of indicators (constituting part of the MEM component of 
the model). The results of the MEM model component corresponding to the effects of exogenous variables 
and latent constructs on the main endogenous outcomes are presented in Section 4.2. Then, Section 4.3 
discusses the model fit in relation to a restricted GHDM model that does not consider the correlations 
between the stochastic latent constructs and the main outcomes and an independent model that ignores all 
jointness among the outcomes. Finally, Section 4.4 presents the approach used to compute the effect-sizes 
of each exogenous variable on EV adoption.  
 
4.1 Latent Constructs 
Table 3 displays the results for the determinants of the four latent constructs. All the explanations of the 
results in this section and beyond refer to general tendencies, rather than absolute statements.  

The results of the SEM model component (shown in the upper panel of Table 3) reveal that gender 
impacts green lifestyle propensity (GLP), vehicle functionality preference (VFP), and cost and maintenance 

 
5Several important considerations underlie our use of an 80% confidence level for variables impacting the ranked 
adoption motivation outcome. In empirical modeling situations, analysis must balance concerns regarding Type I 
errors (falsely attributing significance to irrelevant variables) and Type II errors (rejecting variables incorrectly and 
overlooking meaningful relationships). Selecting a confidence level inherently involves a tradeoff between these risks. 
As emphasized by the American Statistical Association (ASA) (see Wasserstein and Lazar, 2016; Wasserstein et al., 
2019), researchers must exercise context-specific judgements about the appropriate thresholds to use in any empirical 
application rather than adhering rigidly to the typically used 95% level of confidence (or 0.05 level of significance). 
In our current application, with a relatively modest sample size and particularly limited number of respondents with a 
full set of ranked outcomes for the motivating reasons for EV adoption, we prioritized reducing the probability of 
Type II errors compared with a standard 0.05 level of significance. This allows us to identify variables that still seem 
to be relatively significant in our current dataset and help inform future specifications using larger samples, and 
particularly larger samples of actual EV owners, even if this allows for a slightly higher probability of a Type I error. 
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perception (CMP). The gender influence on GLP is well documented in existing literature, as women exhibit 
a greater overall inclination toward environmental awareness and sustainable behaviors (see Anfinsen et 
al., 2019; Bloodhart and Swim, 2020). Women also tend to view vehicles more in terms of functionality, 
while men are more likely to see them as status symbols, which would explain the positive impact of 
identifying as female on VFP. Indeed, earlier literature indicates that women are more interested in the 
mobility control provided by vehicle ownership, while men associate vehicle ownership with technological 
interest, self-identity considerations, and driving enjoyment. This difference itself has been associated with 
financial disparities and gendered mobility roles that historically have led to lower level of mobility among 
women compared with men (Kawgan-Kagan, 2020), leading to a greater interest in mobility control and 
vehicle functionality among women (Hjorthol, 2008). In contrast, men are more likely to take vehicle 
ownership for granted and focus on the specific interests in technology innovation and public image when 
considering vehicles, associating vehicles with societal expectations of masculinity (Sovacool et al., 2019). 
The gender effect on CMP, which suggests that men are more likely to perceive EVs to be cost effective 
and easy to maintain, may again relate to the greater feelings of financial autonomy among men, as they 
exhibit less concern with initial purchase price (Egbue and Long, 2012), as well as a greater interest in, and 
greater awareness of the relative maintenance requirements of, EVs and ICEVs (Sovacool et al., 2019; Jia 
and Chen, 2021).  

Age impacts VFP and battery range and charging perception (BRP), with older adults viewing 
vehicles as primarily functional, while also being less convinced than younger adults about the suitability 
of EVs for long-distance trips. The first result is consistent with literature suggesting that younger adults 
enjoy driving more and are strongly motivated by symbolic and affective concerns, while older adults focus 
more directly on the mobility provided by vehicle ownership and the functional aspects of the vehicle such 
as safety and fuel efficiency (Steg, 2005; Koppel et al., 2013). The second finding relates to a lower level 
of trust for new technologies among older adults. While older individuals tend to be slower to adopt new 
technologies because of a lower overall level of technology savviness (Berkowsky et al., 2017; Pang et al., 
2021), this finding may also reflect the higher risk aversion among older adults, which has been shown in 
the case of EVs to cause them to perceive range and charging concerns to be a bigger barrier than it is for 
younger individuals (Jin et al., 2024). Relatedly, retired individuals, compared with employed individuals 
also have a higher CMP, likely because they generally feel a greater sense of financial freedom (particularly 
in early retirement), have more financial literacy that younger adults, and have the resources to make large 
up-front investments for purchases like vehicles (Collins and Urban, 2020).  
 In contrast to the findings of several recent studies suggesting that Hispanic individuals exhibit 
higher levels of pro-environmental behaviors (see Macias, 2016; Pearson et al., 2018; Naiman et al., 2023), 
we find that Hispanic individuals exhibit a lower GLP compared with non-Hispanic individuals. This result 
is likely due to the framing of the indicators in terms of “personal obligation” and “guilt” which are likely 
to align with the motivations of non-Hispanic white individuals rather than collectivist values of 
environmental justice which are more likely to motivate Hispanic individuals (see Naiman et al., 2023). 
Further, the type of environmentally conscious attitude more common to Hispanic individuals seems to be 
aligned more towards routine pro-environmental practices as well as a focus on the connections with other 
interrelated social issues, rather than larger symbolic actions (such as EV ownership) that are more directly 
aligned with an individualistic-oriented environmental preference and signaling (Tam and Chan, 2017; Liu 
and Segev, 2017; Naiman et al., 2023). Hispanic individuals also exhibit a higher VFP, a focus on vehicle 
functionality that is aligned with the values of collectivism. Regarding cost perceptions, Hispanic 
individuals have a lower CMP overall, supporting existing evidence that Hispanic individuals place a lower 
valuation on the cost to fuel or charge their vehicle and even more so on the cost to maintain the vehicle, 
while, at the same time, ascribing a higher valuation on initial purchase price (see Findley et al., 2022). 
Finally, Hispanic individuals, as well as non-white individuals manifest more positive perceptions of EV 
range. This result is surprising, given that Black and Hispanic individuals generally have less access to EV 
chargers compared with non-Hispanic white individuals (Hsu and Fingerman, 2021). However, there is 
evidence that these populations are more likely to develop fixed charging routines (particularly for charging 
at the workplace), take greater numbers of short urban trips, and exhibit more adaptability to charging 
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options, each of which provides increased range security (Chen et al., 2024; Lou et al., 2024). These results 
highlight the importance of considering charging perceptions alongside physical access to charging 
infrastructure, as the need for charging infrastructure varies according to intended use.  

In terms of educational attainment, individuals with a higher level of formal education tend to have 
an elevated GLP, presumably because those with more formal education are more aware of the negative 
consequences of environmentally harmful actions (see Liu et al., 2020). Those with higher formal levels of 
educational attainment also have a more positive perception of EV technologies in terms of both cost and 
maintenance requirements and battery and charging technologies, perhaps because these individuals are 
likely to have specific knowledge of EV features as well as to maintain an increased awareness of their own 
spending habits, making EVs seem like a more feasible alternative (Memushi, 2014; Habich-Sobiegalla et 
al., 2019). Similar results hold for income, with individuals living in high-income (greater than $200,000 
per year) households having a higher GLP, concordant with Maslow’s (1943) hierarchy of needs that short-
term existential needs precede longer-term planetary livability considerations. Further, while EVs can 
provide long-term financial benefits, those with higher incomes are better able to afford the higher initial 
purchase prices, explaining the positive influence of income on CMP (see, for example, Ramos-Real et al., 
2018).  
 Those living in multifamily units or apartments (relative to those living in single-family homes), 
and those in areas with higher EV charging station density, have higher positive perceptions of EV ranges 
and battery technology. Although those living in multifamily dwellings may have less control over charging 
availability in their parking spaces, there is evidence that the provision of dedicated spaces with charging 
access at apartment complexes may promote positive perceptions of EVs (see Lashari et al., 2021). 
Additionally, those living in multifamily dwellings may be more aware of the availability of local public 
charging stations, providing them with more confidence in using their EVs for long distance trips where 
home charging is unavailable (see Lee et al., 2020). Similarly, the availability of EV charging stations in a 
respondent’s neighborhood promotes a positive perception of range capabilities, consistent with many 
existing studies (see, for example, White et al., 2022; Pandita et al., 2024).   
 The central panel of Table 3 includes the loadings of the latent constructs on the indicator variables, 
corresponding to the MEM model component. The signs on the latent constructs for all indicators take the 
expected sign, consistent with the discussion earlier in Section 3.1.3. The lower panel of Table 3 includes 
the correlations between the latent constructs (see Γ  near the top of Figure 2). A small positive correlation 
between GLP and VFP is expected since individuals who prioritize sustainable behaviors will likely also 
prioritize vehicle performance over status effects. Stronger positive correlations exist among GLP, CMP, 
and BRP; that is, those with more interest in sustainability are likely to seek out more information about 
EVs, which generally improves perceptions of maintenance requirements and range (see R. Liu et al., 2020). 
The high correlation between CMP and BRP may also be due in part to the co-location of EV charging 
infrastructure and EV financial incentives, leading individuals living in specific areas to have more positive 
views of each of these features of EVs (for instance, residents of the San Francisco Bay Area have greater 
access to local public charging stations than those in many of the surrounding areas and have access to 
additional financial incentives for EV purchases through the Clean Cars for All program; Bay Area Air 
Quality Management District, 2023).  Finally, smaller positive correlations between VFP and CMP as well 
as between VFP and BRP likely relate to the knowledge about EVs and EV infrastructure stemming from 
a greater interest in EVs and the various aspects of EV functionality.  
 
4.2 Main Estimation 
Table 4 presents the estimation results for the main outcome dimensions. The coefficients refer to the impact 
of each variable on the underlying utilities for each alternative. The constants in the first row of the table 
do not have any meaningful interpretations but are simply estimated to match the observed choice 
proportions (for the adoption dimension) and ranked proportions (for the ranked adoption reasons).  
 



19 

4.2.1 Effects of Latent Constructs  
As expected, individuals with a high GLP are more likely to buy an EV overall and do so because of 
concerns regarding climate change, while those with low GLP are less likely to buy an EV but more likely 
to cite the ability to take advantage of available incentives as a reason for adoption. These effects are even 
stronger for older individuals and those from higher income households (see the two graphs on the left side 
of Figure 3, which show the average probability of EV adoption given an individual’s age/income and level 
of GLP). These individuals are better able to act on their green lifestyle preferences because they are at a 
life stage where they have the financial wherewithal to afford the high up-front purchase cost. In contrast, 
younger individuals and those from lower-income households may not be as influenced by their level of 
GLP because they tend to actualize environmental preferences through other less financially burdensome 
means rather than through investments in sustainable technologies (similar tendencies have been 
demonstrated for other types of environmental practices, such as energy conservation practices; see Brunner 
et al., 2012; Liu et al., 2019).  

Those with a high vehicle functionality preference or VFP (who emphasize functionality over 
status) seem less likely to buy a BEV overall, presumably because they do not yet see BEVs as being 
functionally competitive with ICEVs. However, this result does not seem to hold for PHEV adoption. VFP 
does not seem to have a large effect on PHEV adoption, possibly because PHEVs may be viewed as more 
functionally competitive overall with ICEVs, as they provide more flexibility in charging/fueling, while 
retaining much of the symbolic appeal of BEVs. Individuals with high VFP appear to be drawn toward EVs 
(in general) because of the ability to charge at home (which provides temporal and monetary benefits 
compared with public fueling needed for ICEVs) and the ability to take advantage of incentives. In contrast, 
those who view vehicles as a status symbol (low VFP) are drawn toward EVs because of interest in a 
specific brand or model that bring with them a perceived social status boost. The impact of VFP on the 
utility of EV adoption is stronger for older individuals; that is, for those with the same level of VFP, older 
individuals are less likely to adopt EVs relative to their younger peers (see the top-right graph in Figure 3, 
which shows the average probability of EV adoption given an individual’s age and level of VFP). As will 
be discussed later, we did not find any direct effect of age on EV adoption in this sample; any effect of age 
on EV adoption is solely through its interplay with vehicle functionality versus vehicle status perceptions. 
Thus, between a younger and older individual, both of whom emphasize functionality (high VFP), older 
individuals are more likely to stay away from EV adoption, potentially because of inertia in moving away 
from the ICEV vehicles they have driven for a long period of time (corresponding to their driving lifespan). 
However, there is less of a difference between younger and older individuals in their EV adoption tendency 
for those who view EVs as a status symbol (low VFP). A similar interaction effect is observed with respect 
to income  (see the bottom-right graph in Figure 3, which shows the average probability of EV adoption 
given an individual’s income and level of VFP), with individuals from high-income households with a high 
VFP being much more unlikely to adopt EVs relative to their low-income peers with a similar high VFP, 
while income differences play much less of a role in EV adoption among individuals who place substantial 
weight on EV prestige/status considerations (low VFP). This finding highlights the successes that EV 
companies have had in directing their information campaigns to consumers based more on the status and 
prestige (rather than cost/functionality) afforded by owning an EV (see Noel et al., 2019). In essence, 
individuals who view EVs as primarily a status symbol are uniformly more likely to adopt EVs, regardless 
of age and income. In contrast, households with children are uniformly more likely to buy EVs if they 
consider the primary purpose of the vehicle to be functional, highlighting the need for manufacturers to 
emphasize the practical benefits of EVs to better connect with market segments focused primarily on 
functionality. 
 Our analysis also reveals significant impacts of EV perceptions, as both cost and maintenance 
perception (CMP) and battery range and charging perception (BRP) impact the utility of adoption. Those 
who perceive EVs to be more cost effective and easier to maintain relative to ICEVs (high CMP) are more 
likely to be adopters and are attracted to EVs for economic reasons (including rising gas prices and the 
ability to take advantage of incentives, though, expectedly less so for individuals from high-income 
households relative to those from lower-income households), as well as interest in the technology and ability 
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to charge at home. The overall effect of CMP on EV adoption is even stronger for PHEVs relative to BEVs. 
This may be because PHEVs are more similar to traditional ICEVs, so that cost-effectiveness matters more 
for PHEV acceptance. Families with children also place much more of a premium on CMP in their EV 
adoption propensity relative to families without children, suggesting that any awareness campaigns with an 
EV cost-effectiveness and hassle-free maintenance emphasis would be more effective if directed toward 
families with children. Finally, those with positive perceptions of EV battery technology and range (high 
BRP) are more likely to adopt EVs. The main motivating factors for such individuals in terms of draw 
toward EVs is personal experience through test drives and because they heard about EVs from family 
members or friends. This result suggests that experience with EV technology may serve as an important 
tool to alleviate range anxiety, possibly providing familiarity with EV range and knowledge of charging 
stations that helps to ease these concerns (Rauh et al., 2015). These individuals are also more likely to cite 
interest in a specific brand or model, likely because charging availability is impacted significantly by EV 
brand and the types of charging stations that are available in different areas, leading to an interest in specific 
EV brands with higher charging availability (Haustein et al., 2021). The effects of BRP on EV adoption are 
stronger for those living in multifamily (attached) homes or apartments. This is an intuitive result given that 
these families generally have fewer home charging options, so may be more reliant on (and thus, more 
influenced by the availability of) public charging infrastructure (Lee et al., 2020; Kuby et al., 2024).  

A general note is in order here about the effects of demographics. The effects of gender and age on 
EV adoption are through their interaction effects with latent constructs, rather than as direct effects (see the 
next section). On the other hand, many studies that consider attitudes/lifestyles in the form of latent 
constructs introduce such constructs purely as main effects on the outcomes of interest. Our results suggest 
the importance of exploring interaction effects of latent constructs with individual/household-level 
variables, as also discussed at length in Bhat and Mondal (2022).  
 
4.2.2 Effects of Individual Demographics 
The effects of the exogenous variables shown in Table 4 provide the direct effects of the variables, beyond 
the indirect effects through the latent constructs. After accounting for the indirect effects, we find no 
additional difference in overall propensity to purchase EVs between men and women. However, men, in 
general, are drawn toward EVs because of interest in the technology and the ability to charge at home, 
consistent with the EV literature (Wang et al., 2021; Salari, 2022). Similarly, after accounting for the latent 
construct effects and interactions, there is no direct effect of age on EV adoption. However, older individuals 
are more drawn to EVs (relative to their younger peers) due to government incentives for EV purchase, 
interest in a specific brand, and positive test-drive experiences. These findings align with consumer research 
suggesting that older consumers may be more responsive to policy incentives and brand loyalty in their 
vehicle choices (Mittal and Kamakura, 2001; Jørgensen et al., 2016).  
 Non-white and Hispanic individuals have a lower propensity to buy EVs overall, although there 
are no significant differences among these groups in the factors that motivate EV adoption in the first place 
(after accounting for the differential effects through the latent constructs). The disparity in EV adoption 
may be a result, at least in part, of (a) marketing strategies of EV companies, which have primarily focused 
on white male demographics, and (b) generally lower level of technology uptake by minority populations 
due to lower levels of technology awareness, itself associated with the relatively sparse knowledge networks 
among minority groups (Warschauer et al., 2004; Hsu and Fingerman, 2021). For similar reasons, those 
with lower levels of formal educational attainment also appear less inclined to adopt EVs, even after 
accounting for differences through the latent constructs.  
 
4.2.3 Effects of Household Demographics and Location 
Among household characteristics, single adult households adopt EVs less than multi-adult households and 
invoke the ability to charge at home and hearing about EVs from friends and family as adoption motivators. 
Larger families, in contrast, are likely to be attracted to EVs due to purchase incentives. In addition, the 
presence of children in the household positively influences adoption, although this seems to be primarily 
for adoption of PHEVs, which provide more flexibility in terms of charging/fueling, an issue that is likely 
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to be particularly important for families with children. Both households with 2+ adults and those with more 
children also tend to have more vehicles in general to accommodate the transportation needs of more 
household members, making it easier to include an electric vehicle in the mix (Chen et al., 2015; Munshi 
et al., 2022). In addition, this finding may reflect a more recent trend of EV models being designed with 
larger families in mind (Higgins et al., 2017; Lučić et al., 2024).  

Although many stated preference surveys have found that income has a moderate impact on EV 
adoption, primarily due to sensitivity to initial purchase price (see Ramos-Real et al., 2018; Xue et al., 2021; 
He et al., 2022; Yang et al., 2023; Pandita et al., 2024), other findings are mixed (see Helveston et al., 2015; 
Ferguson et al., 2018). We find a significant positive effect of household income on EV adoption, even after 
accounting for effects through the latent constructs. Individuals from high-income households are 
particularly motivated by interest in specific brands or models of EVs, experience, and social influence. 
This finding highlights the successes of EV manufacturers in marketing luxury EVs to high-income 
segments. In contrast, individuals from low-income households cite rising gas prices as the main motivator 
for considering EVs.  

A negative direct effect between living in a multifamily dwelling and BEV adoption, as revealed in 
Table 4, moderates the positive effect of housing type on EV adoption through BRP (the indirect effect, 
calculated as (0.53 + 0.99) × 0.28 = 0.43, is moderated by the direct effect of  -0.46). Essentially, while 
those living in multifamily homes or apartments are more likely to adopt EVs (in general) because they 
have more positive perceptions of out-of-home charging and EV range, they seem to be just as likely to 
adopt BEVs overall as those living in single-family (detached) homes. However, those living in apartments 
or multifamily dwellings seem more likely to adopt PHEVs compared with those living in single family 
homes (as a positive interaction between PHEVs essentially negates the overall direct housing type effect, 
leaving only the indirect effect through BRP). Those living in multifamily dwellings are also less likely to 
cite home charging as a reason for adoption, an unsurprising result given the lack of control of charging 
infrastructure for these dwellings.  
 Household location also significantly influences EV adoption. Those living in high density areas 
are more likely to adopt EVs and are attracted to EVs for economic reasons and greater concerns of climate 
change, while those living in lower-density areas are drawn to EVs because of the ability to charge at home. 
These different motivations for adoption in different areas may be traced to higher gas prices in urban areas 
and the higher ability to own homes in rural areas (Mukherjee and Ryan, 2020; Chandra, 2022). Finally, 
individuals living in areas with high charging densities are also more likely to adopt EVs. The fact that 
these individuals also report that hearing about EVs from friends and family attracts them to EVs suggests 
that improving charging infrastructure may also be an important way to increase awareness about EVs, 
beyond the direct impacts on actual charging abilities (see Bailey et al., 2015). 
 
4.2.4 Correlations Between Main Outcomes and Latent Constructs  
In addition to the correlations among the stochastic latent constructs (discussed in Section 4.1) and the 
correlations among the main outcomes engendered by the latent constructs, we consider the latent constructs 
themselves to be endogenous with the main outcomes. Six of these correlation terms turn out to be 
significant. EV ownership is positively correlated with GLP (correlation of 0.13 with a t-statistic of 1.92), 
suggesting that additional unobserved factors influence both EV ownership and green lifestyle preferences. 
Positive correlations are also found between EV ownership and CMP (correlation of 0.19 with a t-statistic 
of 2.62) as well as between EV ownership and BRP (correlation of 0.11 with a t-statistic of 2.80). These 
positive correlations indicate that intrinsic factors, such as interest in technology, may not only influence 
how individuals perceive specific EV characteristics, but their overall propensity for adoption as well. Since 
each of these correlations between the latent constructs and the EV ownership dimension match the signs 
of the direct effects, the implication is that if they were ignored in estimation, the magnitude of the direct 
effects would be overestimated. Three correlation terms between the stochastic latent constructs and the 
error differences in the ranked motivating reasons outcome are also significant. For the rank-ordered 
outcome only error differences are estimable, so the correlations are estimated for the errors differenced 
with “rising gas prices.” We observe positive correlations between VFP and with both the “ability to charge 
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at home” (correlation of 0.22 with a t-statistic of 1.81) and “take advantage of available incentives” 
(correlation of 0.25 with a t-statistic of 1.44). This suggests that underlying attitudes lead some individuals, 
such as those with higher interest in consumer innovation, to focus more on vehicle functionality (as they 
have higher performance expectations) while also prioritizing being able to charge at home or take 
advantage of incentives in their purchase decision (as they are more likely to have high appreciation for 
these specific features and seek out information about available government support). Ignoring this 
correlation would lead to overestimation of the effects of VFP on these specific motivating reasons. The 
final significant correlation is between GLP and the error term for “take advantage of incentives” 
(correlation of 0.19 with a t-statistic of 1.97). This correlation indicates that unobserved factors influence 
both sustainability preferences and the ability to take advantage of financial incentives, possibly linked to 
differential access to incentives based on location and self-selection effects that tend to lead people to co-
locate based, in part, on lifestyle preferences, like those for sustainability (see Guan et al., 2020; 
Chakraborty et al., 2022).  
 
4.3 Model Fit 
To assess the overall fit of the proposed joint GHDM model, it is compared with two restricted models. 
First, while the significant correlations between the stochastic latent constructs and the main outcomes 
(discussed in Section 4.2.4) already point to the need to consider these correlation terms, the proposed 
GHDM is compared with another GHDM model that ignores the correlations between the stochastic latent 
constructs and the main outcomes. Several disaggregate fit metrics are used to compare these models as 
shown in the top panel of Table 5. The Bayesian Information Criterion (BIC) is calculated as  

( ) ( )– 0.5 #    ˆ( ) log  BIC of model parameters sample sizeθ= +Z  (9) 

where ˆ( )θZ  represents the log-likelihood at convergence and the adjusted likelihood ratio index is 
calculated as  
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where ( )cZ  represents the log-likelihood for the constants-only model and M is the total number of 
parameters (excluding constants) estimated in the model. Since the BIC is lower for the proposed GHDM 
and the adjusted likelihood ratio index is higher for the proposed GHDM than the GHDM model that 
ignores the correlations, it is the preferred model. Further, since the restricted GHDM without correlations 
between the latent constructs and main outcomes is a nested version of the proposed GHDM, the two can 
be compared with a formal likelihood ratio test using the log-likelihood at convergence for each of the two 
models. The likelihood ratio test statistic is greater than the chi-square value with six degrees of freedom at 
any reasonable level of significance.  

Second, the predictive power of the proposed GHDM model can be assessed by comparing a similar 
set of metrics based only on the prediction of the main outcomes. The proposed model is compared again 
with the GHDM model that ignores the correlations between the latent constructs and the main outcomes, 
as well as with a restricted independent heterogeneous data model (IHDM) that ignores any jointness 
between the main outcomes (does not consider any correlation between the main outcomes in the model). 
As jointness in the GHDM is engendered through the stochastic latent constructs, the IHDM model ignores 
the latent constructs (and the interactions of the latent constructs with individuals/household demographics). 
Thus, for this comparison, we evaluate the predictive log-likelihood solely for the EV adoption and ranked 
adoption motivation dimensions using the complete set of coefficients for the GHDM model. Then, for the 
IHDM, we estimate an independent model for the same main outcomes, without the inclusion of the latent 
constructs but including the determinants of the latent constructs as exogenous variables in the main 
outcome equations.  

For these models, the Bayesian Information Criterion (BIC) calculated using the predictive log-
likelihood is lowest for the proposed GHDM model while the predictive adjusted likelihood ratio index is 
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highest for the proposed GHDM model. Then, comparing the proposed GHDM and the GHDM that ignores 
correlations between the latent constructs and main outcomes using an informal predictive likelihood ratio 
test again favors the proposed GHDM model. Since the IHDM is not a nested model (as the IHDM lacks a 
mechanism to incorporate latent constructs), the informal predictive non-nested likelihood ratio test is used 
to compare the proposed GHDM and the IHDM. For this test, the probability that the difference between 
the predictive adjusted likelihood ratio index for the GHDM model ( 2

GHDMρ ) and the index for the IHDM 

model 2( )IHDMρ  could have occurred by chance is no larger than 
2 2 0.5( ) ( ) ( )] }GHDM Independent GHDM Independentc M Mρ ρ−Φ{−[−2 + −Z  (11) 

Given the small value of this probability for the two models, the proposed GHDM model is preferred 
because it has a larger value of the adjusted likelihood ratio index. Finally, the three models can be compared 
informally by computing the average (across individuals) probability of correctly predicting the observed 
EV adoption outcome and set of motivating reasons for adoption (where appropriate). The average 
probability of a correct prediction at this two-variate level is higher for the proposed GHDM model than 
either restricted model, again demonstrating the superior fit of the GHDM model in comparison with either 
restricted model. 

In addition to the disaggregate measures, the three models can be compared based on their 
aggregate fit. The bottom panel of Table 5 shows the observed (weighted) and predicted (using each of the 
three models) shares of individuals adopting EVs and selecting each of the motivating reasons for adoption 
as their top-ranked choice. Then, in each case, the absolute percentage error is calculated based on the 
difference between the observed and predicted shares, and an average of the absolute percentage errors for 
each factor is taken, weighted by the observed share. This weighted average percent error (WAPE) is lowest 
for the proposed GHDM compared with both restricted models, demonstrating the higher predictive power 
of the proposed model. Together, these results demonstrate (at both an aggregate and disaggregate level) 
that the proposed GHDM model outperforms the restricted GHDM model that ignores the correlations 
between the latent constructs and the main outcomes as well as the IHDM model that ignores any jointness 
between the main outcomes themselves, confirming the importance of using the joint estimation approach.  
 Finally, the predictive performance of the three models is compared on various market segments of 
the estimation sample (Ben-Akiva and Lerman, 1985, refer to such tests as market segment prediction tests). 
These additional tests are performed across market segments to ensure that the performance of the joint 
model does not simply result from overfitting on the estimation sample. Using the same methods as the 
evaluation for the complete sample, the predictive power of the proposed GHDM model is compared with 
the GHDM model that ignores the correlations between the latent constructs and the main outcomes by 
evaluating the predictive log-likelihood solely for the EV adoption and ranked adoption motivations and 
comparing the models using an informal predictive likelihood ratio test. Similarly, the predictive power of 
the proposed GHDM model is compared with the IHDM model using the informal predictive non-nested 
likelihood ratio test, as before. Finally, at an aggregate level, the weighted average percent error (WAPE) is 
calculated for all three models for comparison. These data fit metrics are shown in Table 6 for 12 market 
segments (for each exogenous variable, the data fit for the market segment with the greatest number of 
observations is presented). The results in Table 6 support the superiority of the proposed GHDM model 
over both restricted models (based on both aggregate and disaggregate metrics) within each market 
segment, providing additional verification of the robust data fit of the proposed model which is not merely 
attributable to overfitting.  
 
4.4 Average Treatment Effects 
The main estimation results presented in Section 4.2 provide important insights into the effects of the 
exogenous variables on the underlying propensity associated with EV adoption and the utilities of the 
ranked reasons for adoption. However, these results do not provide the magnitude effect of each variable 
on the actual binary adoption decision or the magnitude influence that indirectly results through each of the 
latent constructs. For this, we use Average Treatment Effects (ATEs), which characterize the impact on an 
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outcome variable of a change of state of an antecedent variable. For instance, if the intent is to compute the 
effect of gender on EV adoption, we begin by setting the gender of all individuals in the dataset to “Male” 
without changing the values of any other exogenous variables. Then we compute, for each individual, the 
bi-variate probability predictions for each combination of EV adoption outcome and first-ranked reason for 
adoption (for a total of 16 combinations of outcomes). By marginalizing over the combinations, we can 
obtain the probability that each individual would adopt an EV for the base level of the exogenous variable 
(“Male”). The same procedure is adopted for the treatment level of the exogenous variable by setting the 
gender of all individuals in the dataset to “Female” without changing the values of any other exogenous 
variables and calculating the probability that each individual would adopt an EV as before. The change in 
the share of adopters provides the magnitude and direction of the total ATE of the “Gender” variable on EV 
adoption. For exogenous variables with more than two levels (such as age), we compute the ATEs for a 
change between only the highest and lowest levels. Essentially, these ATEs are computed using 
counterfactual simulations by changing variable values from the observed values.  
 In addition to this total ATE effect, we also partition the ATE into five sub-components based on 
the contributions through each of the four latent constructs and a direct effect. To compute the relative 
magnitude of the contributions we compute each sub-effect separately. For instance, we compute a direct 
effect of one exogenous variable by maintaining the values of all other exogenous variables as well as fixing 
the values of each of the latent constructs to those calculated as all variables are in the data. Then, for the 
mediating effects through the latent constructs, we maintain the values of all variables as they are in the 
data for the purposes of the main outcome variables but change the value of the exogenous variable of 
interest only in the equation for a single latent construct. To compute the relative magnitudes of the 
contribution of each ATE sub-component, we compute percentages of the sum of the absolute values of 
these sub-components (ignoring the directionality of each sub-effect). Then, the sign associated with each 
contribution illustrates whether the corresponding effect increases the total ATE (+) or decreases the total 
ATE (-). 
 The final ATE effects for EV adoption are shown in Table 7. The entry in the final column of the 
table shows the total ATE of each exogenous variable on EV adoption. For instance, the first entry of              
“-0.0668” for gender indicates that, in a pool of 100 women, one may expect about 7 fewer individuals to 
adopt EVs relative to a pool of 100 men. The five columns to the left of the “Total ATE” column provide 
the percentage splits of the ATE sub-components originating through each of the latent constructs and 
through a direct effect. For example, the total ATE for gender is attributable to an increased adoption rate 
among women due to a higher GLP (contributing +22%) that is surpassed by a reduced adoption rate among 
women due to a higher VFP (contributing -17%) and lower CMP (contributing -61%). There is no direct 
ATE for gender or mediating effect through BRP. In the following section, we discuss the implications of 
our results based on the ATE calculations shown in Table 7 combined with the reasons for EV adoption 
shown in Table 4.  
 
5. IMPLICATIONS 
5.1 Implications for Financial Incentives and Policies 
The variables that have the largest overall ATE impact on EV adoption are level of formal educational 
attainment and household income. For instance, we find that in a pool of 100 “graduate degree holders” 
there would be approximately 34 additional EV owners compared to a pool of “less than bachelor’s degree 
holders,” while in a group of 100 “$200,000 or more income” earning households there would be 23 
additional EV owners compared to a group of 100 “less than $100,000 income” earning households. 
Although many studies have confirmed the importance of level of education (Kim et al., 2019; Singh et al., 
2020), the results of stated preference studies regarding income have been mixed. While some studies have 
found income to positively influence EV interests (Axsen et al., 2016; Kumar and Alok, 2020), others have 
found insignificant, or even negative, effects (Helveston et al., 2015; Ferguson et al., 2018). The large 
positive impact of income in our revealed preference dataset suggests that, even though lower income 
individuals may have interest in EVs, that does not currently translate into actual adoption behaviors. The 
importance of household income as a determinant of EV adoption may point to the early stage of the EV 
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market, high purchase prices of EVs, and the necessity of providing incentives that meet the needs of middle 
and lower-income households. Expanding the availability of incentive structures directed toward low-
income consumers, which provide point-of-sale support and are specifically targeted towards lower-cost 
vehicles, will more effectively incentivize adoption for a broader population. At the same time, the 
development of a robust secondary market for EVs represents an important pathway for expanding adoption 
among lower-income households, who might otherwise be excluded from the EV market due to the high 
initial purchase price of new vehicles. Thus, strategies specifically designed to facilitate the development 
of a healthy used (pre-owned) EV market through mechanisms such as battery warranty programs and 
certified pre-owned initiatives that reduce the risks for consumers (Zou et al., 2024) may be more effective 
for lower-income households and should be implemented alongside existing incentive programs for new 
EVs. Supporting lower-income households could also include providing incentives to help cover the costs 
of home charger installation and supporting and developing programs that install chargers in multi-unit 
housing. 

Further, we are able to partition the education and income effects into several attitudinal pathways 
that reveal how attitudes influence adoption. In particular, higher EV adoption rates for those living in 
higher-income households and those with more formal education are due in large part to higher CMP and 
GLP. The importance of cost perceptions for EV adoption decisions (which may improve as EV buyers 
learn more about cost savings after adoption) points to the need for targeted educational campaigns that 
emphasize total cost of ownership advantages, especially in regions with lower electricity rates, for 
households who have not yet adopted an EV. Specifically, given that lower-income individuals seem to be 
motivated more by the rising cost of gas prices, these campaigns should emphasize the financial benefits of 
EV charging relative to fueling ICEVs. Similarly, given the substantial influence of GLP, the importance of 
environmental consciousness to the EV adoption decision should not be overlooked. Concurrently, higher 
income individuals are more heavily influenced by their level of GLP (as seen by the interactions in Table 
4) while lower-income individuals are more motivated by more immediate economic concerns even if they 
have high levels of GLP. Therefore, information provision strategies should be designed to highlight the 
immediate environmental benefits of EVs, placing these impacts in the context of specific communities. 
This is especially so for older individuals, who are much more likely to adopt EVs overall and due 
specifically to the motivation of concerns of climate change, when they have a higher level of GLP. 
Providing targeted information in this way may help to improve the perceived benefits of EVs for those 
who place less emphasis on the broader long-term environmental consequences. However, since not all 
consumers are motivated by pro-environmental attitudes, at some point developing other forms of 
messaging to appeal to those who are not interested in the environmental benefits will become increasingly 
necessary. 
 
5.2 Implications for Vehicle Developers and Marketing 
EV developers and manufacturers can use the results of this study to tailor their marketing toward specific 
population segments. For instance, while focusing marketing on environmental benefits may be effective 
for high income and highly educated populations, who have higher GLP, focusing on improvements to other 
features of the technology may be more effective for other groups. Those who consider vehicles primarily 
to serve a functional purpose, such as women, older adults, and Hispanic individuals, are less likely to adopt 
BEVs, suggesting a misalignment between current EV offerings and the perceived practical needs of 
significant market segments. The lack of interest in BEVs among those whose decisions are more 
functionally driven could also be indicative of the early stage of the EV market, and particularly a lack of 
confidence in BEVs compared with PHEVs. Developers should prioritize addressing the specific concerns 
of these individuals, such as enhancing battery performance and range capabilities to alleviate anxieties 
prevalent among older adults or highlighting the longer-term maintenance benefits for women or Hispanic 
individuals. Additionally, given that those with higher levels of VFP are more likely to adopt due to the 
ability to charge at home, emphasizing the benefits of home charging, ensuring that charging processes are 
simplified and easy to use, and providing mechanisms to familiarize those who are uncomfortable with the 
technologies to the charging process would be beneficial. Simultaneously, marketers should craft targeted 
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messaging that emphasizes the real-world functionality of BEVs, moving beyond the longer-term 
environmental appeals to demonstrate how these vehicles can integrate into the daily lives of potential 
adopters. Specifically, given that low-income individuals may be more likely to be motivated to buy EVs 
due to economic factors, like rising gas prices (see the motivating reasons for adoption in Table 4), 
continuing to improve these qualities of EVs and emphasizing these benefits in messaging may be effective 
strategies to improve adoption rates for a broader segment of the population. Additionally, in contrast to 
most other individuals, families with children seem to be slightly more likely to adopt EVs when they 
consider the role of the vehicle to be practical rather than social. This may be due to the different functional 
needs of families with children, including prioritization of safety as well as additional space in the interior 
of the vehicle. Vehicle manufacturers should emphasize these attributes more heavily, particularly when 
marketing to parents, but also when addressing broader populations who have an interest in vehicle 
functionality but may be less likely to seek out information about these specific attributes.  

Furthermore, the results of the motivating reasons for adoption (see Table 4) demonstrate the 
important role of practical experience in EV appeal. The significant influence of hands-on experience in 
mitigating range anxiety and fostering adoption, particularly among high-income individuals and older 
adults, points to the potential efficacy of experiential marketing techniques. Implementing widespread test 
drive programs, interactive demonstrations, and community-based EV sharing initiatives could provide the 
practical exposure necessary to demystify EV technology and address misconceptions across a broader 
spectrum of potential adopters. By combining pointed messaging with opportunities for direct engagement, 
the EV industry can create a more inclusive narrative that addresses the diverse concerns and preferences 
of various consumer segments, potentially spurring a more rapid and widespread transition to electric 
mobility. 
 
5.3 Implications for Planning and Infrastructure Development 
Several results relating to charging station availability as well as perceptions of EV batteries and range have 
important implications for transportation planning and infrastructure development strategies. We find that 
about 44% of the total ATE of charging station density on EV adoption is an indirect effect through BRP, 
while the remaining 56% is through a direct effect. Although the effect of charging density may, in part, 
reflect that charging providers prioritize development in areas with high adoption rates, this shows that 
infrastructure alone does not influence EV adoption, and that perceptions of range and charging are an 
important mediator. This suggests that infrastructure deployment should be approached both as a tool for 
addressing range anxiety as well as influencing adoption in other ways. Notably, individuals living in areas 
with high charging station density tend to attribute adoption to having heard about EVs from family 
members or friends. Similarly, those with higher BRP are more likely to adopt due to the specific motivating 
reason of having heard about EVs from friends or family members. This indicates that charging 
infrastructure appears to serve a dual purpose, providing practical benefits by alleviating range concerns 
while simultaneously functioning as a form of passive marketing that normalizes EV usage within the urban 
landscape. Therefore, transportation planners should consider both the functional and psychological 
dimensions of charging infrastructure placement, prioritizing high-visibility locations that can maximize 
both practical utility and public awareness.  
 The ATE results also reveal that charging perceptions vary significantly across different populations 
with a notable disconnect between charging perceptions and actual adoption rates for non-white individuals 
and those living in multifamily dwellings. Despite having more favorable perceptions of EV capabilities, 
neither of these groups seem to adopt EVs at higher rates than others. This finding highlights an important 
gap in current charging infrastructure planning and highlights the need to consider different approaches, 
particularly in urban areas with high concentrations of apartment complexes and other multifamily units. 
These residents may have more access to public charging infrastructure but lack cheap and convenient home 
charging infrastructure more readily available for those living in single-family homes. Transportation 
planners should consider implementing comprehensive charging solutions that specifically target multi-unit 
residential developments. Such policies could include requirements for the provision of dedicated charging 
spaces within apartment complex parking facilities and the development of shared charging facilities in 
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residential neighborhoods. Additionally, innovative solutions such as removable batteries, battery swaps, 
and mobile charging services should be explored for those without regular access to electrified parking 
spaces at their residence. Further, although there is no significant difference in BRP between men and 
women, the fact that men seem more likely to adopt because of the ability to charge at home is notable and 
suggests that women may be less convinced by the in-home charging convenience of EVs even as range 
improves. It may also suggest that women, who have a higher VFP and generally desire more mobility 
control (see Hjorthol, 2008) may place a higher premium on out-of-home charging to maintain this control. 
Thus, the improvement of out-of-home charging infrastructure may be a particularly important step to 
encourage adoption among women.  
 
6. CONCLUSIONS 
This research demonstrates that electric vehicle adoption rates are influenced by a wide range of factors, 
including individual-level demographics, attitudes and lifestyle preferences, perceptions of EVs 
capabilities, and infrastructure availability. In this paper, we examine this individual-level adoption decision 
using revealed preference data from California residents. Jointly, we examine the motivations for adoption, 
revealing the multitude of pathways that lead different individuals to choose EVs. The results highlight the 
need for a multifaceted approach to promoting EVs that accounts for the different needs of diverse 
populations. Specifically, while environmental issues play a significant role in adoption decisions for many 
individuals, we find that vehicle functionality is an area that should be emphasized to better correspond 
with the interests of women, older individuals, and Hispanic individuals. We also find that income plays a 
large role in EV adoption decisions, perhaps because of the early stage of the EV market and higher prices 
for EVs compared to ICEVs, both of which highlight the need for increased incentives. In addition, charging 
infrastructure seems to play a role in EV adoption both by improving perceptions of EV range performance 
and through additional social mechanisms that make EV technologies more visible. Further, existing studies 
have noted a disconnect between the ease of home charging and heightened preferences for EVs among 
those living in single-family homes in stated preference surveys and higher adoption rates in urban areas 
with greater proportions of multifamily dwellings in aggregate studies. We explore the factors that lead to 
adoption for these two groups and find that different factors influence adoption for each group. Our findings 
confirm a heightened interest in home-charging for those living in single-family homes, while a more 
positive perception of EV range and battery technology (likely related to access to and knowledge of 
charging stations) influences those living in multifamily dwellings or apartments.  
 While this research presents new findings related to the decision to adopt an EV, there are many 
possible directions for future research. Due to the small sample of PHEV adopters, we were only able to 
model differences in propensities for BEV and PHEV adoption in a limited way. Future studies could break 
down choices based on different EV types (BEV versus PHEV) as well as examine how preferences for 
different vehicle attributes (such as body type or model) relate to the fuel type decision. Additionally, while 
our study was limited to California, future research may consider whether the decision to adopt an EV is 
related to similar factors in other US states, including regions with less EV charging infrastructure or fewer 
incentives. Considering a broader set of geographies and including a more comprehensive representation 
of local and regional charging infrastructure would provide valuable insights into the continued 
development of infrastructure at a local, national, and global level. Further, an investigation of how 
preferences for EVs are impacted by existing and planned travel needs and travel patterns (including 
commute distance) would be of interest, particularly due to the close connection between these travel 
patterns and specific needs for battery range and charging capabilities. Finally, as the EV market evolves 
and the EV secondary market grows, future research could investigate decisions regarding the adoption of 
used EVs.  
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Table 1: Descriptive Statistics of Exogenous Variables  
 

Variable Sample 
Count 

Sample 
Percent 

ACS 
Percent Variable Sample 

Count 
Sample 
Percent 

ACS 
Percent 

Individual Demographics 
Age    Gender    
18-34 173 15.8 34.5 Male 630 57.4 50.1 
35-49 241 21.9 28.7 Female 468 42.6 49.9 
50-64 360 32.8 23.4 Employment    
65+ 324 29.5 13.4 Employed 648 59.0 73.3 
Race    Unemployed 135 12.3 6.2 
White 792 72.1 48.1 Retired 315 28.7 20.5 
Not White 306 27.9 51.9 Educational Attainment   
Ethnicity    Less than bachelor’s degree 383 34.9 56.1 
Hispanic 252 23.0 39.7 Bachelor’s degree 346 31.5 30.1 
Not Hispanic 846 77.0 60.3 Graduate degree 369 33.6 13.8 

Household Demographics 
Number of Adults   Presence of Children    
1 197 17.9 23.9 Yes 393 35.8 42.6 
2+ 901 82.1 76.1 No 705 64.2 57.7 
Household Income   Household Type    
0-99,999 490 44.6 53.6 Single-family home 937 85.3 65.2 
100,000-199,999 377 34.3 28.5 Multifamily home or apartment 161 14.7 34.8 
200,000+ 231 21.1 17.9     

Residential Location 
Population Density   Charging Density    
Low 708 64.5 61.6 Low 400 36.4 49.3 
High 390 35.5 38.4 Medium 361 32.9 29.0 
   High 337 30.7 21.7 
 
 
 
 
Table 2: Distribution of Ranked Reasons for EV Purchase   
 

Reason for buying an EV 
Unweighted Shares Weighted Shares 

Top 
rank 

Second 
rank 

Third 
rank 

Top 
rank 

Second 
rank 

Third 
rank 

Rising gasoline prices 14.1 11.2 16.5 14.6 9.6 16.2 
Take advantage available incentives 8.6 15.5 18.6 9.6 15.5 16.1 
Interest in the technology 15.6 14.8 13.0 15.4 13.3 17.0 
Interest in specific brand/model of electric vehicle 11.3 9.4 9.5 11.7 10.6 10.1 
Test drove one 3.4 5.8 8.1 3.5 7.5 8.3 
Heard about EVs from friends/family or colleagues 4.1 6.9 5.2 5.1 6.7 4.6 
The ability to charge/"refuel" at home 8.4 20.4 16.8 8.2 20.7 14.5 
Concerns about climate change 34.5 16.0 12.3 31.9 16.1 13.2 
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Table 3: Determinants of Latent Variables  
 

Latent Variable Structural Equation Model 

Green 
Lifestyle 

Propensity 

Vehicle 
Functionality 

Preference 

EV Cost and 
Maintenance 
Perception 

EV Battery 
Range and 
Charging 

Perception 
Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

Gender (male)         
     Female 0.18 2.89 0.23 2.28 -0.59 -6.03 --  
Age (18-34)         
     35-49 --  --  --  -0.42 -3.07 
     50-64 --  0.27 2.16 --  -0.62 -5.02 
     65+ --  0.53 3.92 --  -0.66 -5.77 
Ethnicity (not Hispanic)         
     Hispanic -0.41 -3.75 0.31 2.26 -0.53 -4.11 0.41 3.47 
Race (white)         
     Non-white --  --  --  0.17 2.01 
Employment (employed)         
     Retired --  --  0.24 2.37 --  
Education (less than bachelor’s degree)         
     Bachelor’s degree 0.53 4.85 --  0.54 4.39 --  
     Graduate degree 0.82 6.70 --  0.73 5.76 0.22 2.07 
Household income (less than $100,000)         
     $100,000 - $199,999 --  --  0.35 3.16 --  
     $200,000+ 0.29 2.23 --  0.57 3.46 --  
Household type (single-family home)         
     Multifamily home or apartment --  --  --  0.28 2.41 
Charging station density (low)         
     Medium --  --  --  0.12 1.82 
     High --  --  --  0.23 2.71 
Latent Variable Measurement Equation Model Loading t-stat Loading t-stat Loading t-stat Loading t-stat 
I feel a personal obligation to do my part to move 

the country toward a renewable energy future  1.26 11.23 --  --  --  

I feel a personal obligation to do my part to 
address climate change 1.44 9.62 --  --  --  

I feel guilty when I waste energy 0.99 16.02 --  --  --  
For me, vehicles have practical purposes only --  0.91 10.04 --  --  
The functional quality of a vehicle is more 

important than its make --  0.89 10.34 --  --  

A vehicle provides status and prestige --  -0.83 -12.33 --  --  
EVs have a better return on investment  --  --  0.97 15.58 --  
EVs have better maintenance requirements  --  --  1.30 14.60 --  
EVs have a better operating cost  --  --  1.26 15.33 --  
EVs have a better driving range before needing to 

refuel  --  --  --  1.05 12.37 

EVs have better convenience of refueling/charging  --  --  --  0.96 11.28 
EVs are good for long-distance trips  --  --  --  1.21 15.21 

Correlations between Latent Variables   Coeff. t-stat Coeff. t-stat Coeff. t-stat 
Green Lifestyle Propensity --  0.17 2.64 0.56 10.07 0.43 7.27 
Vehicle Functionality Preference --  --  0.09 1.57 0.08 1.69 
EV Cost and Maintenance Perception --  --  --  0.54 11.09 
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Table 4: Main Estimation Results 
 

Variables (base) 
EV 

ownership 
Rising gas 

prices 

Take 
advantage of 

incentives 

Interest in the 
technology 

Interest in a 
specific 

brand/model 

Test drove 
one 

Heard about 
EVs from 

friends/family 

Ability to 
charge at 

home 

Concerns 
about climate 

change 
Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat 

Constant -1.80 -5.39 --  -3.08 -7.05 -0.47 -2.16 -1.52 -5.16 -1.99 -7.09 -2.26 -5.04 -0.81 -2.70 -1.65 -2.28 
Latent Constructs and Interactions                   
GLP 1.14 4.76 --  -0.30 -1.36 --  --  --  --  --  1.83 2.57 
    GLP * Age 35-49 0.49 2.27 --  --  --  --  --  --  --  0.32 1.32 
    GLP * Age 50-64 0.64 2.58 --  --  --  --  --  --  --  0.52 1.93 
    GLP * Age 65+ 0.72 2.15 --  --  --  --  --  --  --  0.76 2.55 
    GLP * Income $100,000 - $199,999 0.39 1.44 --  --  --  --  --  --  --  0.59 2.21 
    GLP * Income $200,000+ 0.61 1.62 --  --  --  --  --  --  --  0.61 2.35 
VFP -0.69 -4.75 --  1.00 2.34 --  -0.45 -1.28 --  --  1.20 3.79 --  
    VFP * PHEV 0.73 1.67 --  --  --  --  --  --  --  --  
    VFP * Age 35-49 -0.31 -1.72 --  --  --  --  --  --  --  --  
    VFP * Age 50-64 -0.50 -3.10 --  --  --  --  --  --  --  --  
    VFP * Age 65+ -0.55 -2.15 --  --  --  --  --  --  --  --  
    VFP * Income $100,000 - $199,999 -0.40 -2.00 --  --  --  --  --  -0.42 -1.39 --  --  
    VFP * Income $200,000+ -0.77 -2.72 --  --  --  --  --  -0.55 -1.80 --  --  
    VFP * Presence of children 0.56 3.20 --  --  --  --  --  --  --  --  
CMP 1.31 6.48 0.79 3.72 1.11 3.44 0.42 2.00 --  --  --  0.46 1.86 -0.92 -2.25 
    CMP * PHEV 0.59 1.75 --  --  --  --  --  --  --  --  
    CMP * Income $100,000 - $199,999 --  -0.27 -1.35 --  --  --  --  --  --  --  
    CMP * Income $200,000+ --  -0.32 -1.65 --  --  --  --  --  --  --  
    CMP * Presence of children 0.46 2.07 --  --  --  --  --  --  --  --  
BRP 0.99 4.19 --  -0.87 -3.35 --  1.31 3.39 0.63 2.43 0.40 1.60 --  -1.31 -3.28 
    BRP * Multifamily home or apartment 0.53 1.92 --  --  --  --  --  --  --  --  
Individual Demographics                   
Gender (male)                   
       Female --  --  --  -0.36 -2.19 --  --  --  -0.67 -2.86 --  
Age (18-34)                   
     35-49 --  --  1.15 3.74 --  --  --  --  --  --  
     50-64 --  --  1.15 3.74 --  0.30 1.32 0.42 1.74 --  --  --  
     65+ --  --  1.32 3.65 --  0.64 1.80 0.42 1.74 --  --  --  
Ethnicity (not Hispanic)                   
     Hispanic -0.38 -2.14 --  --  --  --  --  --  --  --  
Race (white)                   
     Non-white -0.29 -1.99 --  --  --  --  --  --  --  --  
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Table 4: Main Estimation Results (cont.) 
 

Variables (base) 
EV 

ownership 
Rising gas 

prices 

Take 
advantage of 

incentives 

Interest in the 
technology 

Interest in a 
specific 

brand/model 

Test drove 
one 

Heard about 
EVs from 

friends/family 

Ability to 
charge at 

home 

Concerns 
about climate 

change 
Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat Coeff.  t-stat 

Constant -1.80 -5.39 --  -3.08 -7.05 -0.47 -2.16 -1.52 -5.16 -1.99 -7.09 -2.26 -5.04 -0.81 -2.70 -1.65 -2.28 
Education (less than bachelor’s degree)                   
     Bachelor’s degree 0.52 2.14 --  --  --  --  --  --  --  --  
     Graduate degree 1.01 3.90 --  --  --  --  --  --  --  --   
Household Demographics and Location                   
Household composition (2+ adults)                   
     Single adult -0.46 -2.10 --  -0.48 -1.72 --  --  --  0.77 3.09 0.48 1.63 --  
     Presence of children * PHEV 1.21 3.29 --  --  --  --  --  --  --  --  
Household income (less than $100,000)                   
     $100,000 - $199,999 0.37 1.74 -0.79 -3.12 --  --  0.65 2.54 0.78 2.76 0.34 1.45 --  --  
     $200,000+ 1.11 3.79 -0.79 -3.12 --  --  0.84 3.20 1.07 3.71 0.93 3.45 --  --  
Household type (single family home)                   
     Multifamily home or apartment -0.46 -2.32 --  1.08 3.24 --  --  --  --  -0.38 -1.47 --  
     Multifamily home or apartment * PHEV 0.50 1.68 --  --  --  --  --  --  --  --  
Population density (low)                   
     High 0.29 1.78 0.21 1.47 0.68 3.31 --  --  --  --  -0.25 -1.31 0.73 2.77 
Charging station density (low)                   
     Medium 0.28 1.85 --  --  --  --  --  0.44 2.15 --  --  
     High 0.31 2.23 --  --  --  --  --  0.58 3.29 -0.23 -1.41 --  
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Table 5: Model Fit 
 

Disaggregate Fit Measures 

Metric Proposed 
GHDM 

GHDM 
without 

Correlations 
IHDM 

Log-Likelihood at Convergence -20216.75 -20371.97 -- 
Log-Likelihood at Constants -22977.05 -22977.05 -- 
Bayesian Information Criterion   20871.37   21005.58 -- 
Adjusted Likelihood Ratio Index 0.114 0.108 -- 
Likelihood Ratio Test between Proposed GHDM and GHDM without Correlations  310.43  
Predictive Log-Likelihood at Convergence -2300.77 -2322.80 -2753.56 
Predictive Log-Likelihood at Constants -2964.28 -2964.28 -2964.28 
Number of Non-Constant Parameters 131 125 105 
Predictive Bayesian Information Criterion   2955.38   2956.41   3149.13 
Predictive Adjusted Likelihood Ratio Index 0.180 0.174 0.036 
Informal Predictive Likelihood Ratio Test between Proposed GHDM and GHDM without Correlations   44.06 
Informal Predictive Non-Nested Likelihood Ratio Test between Proposed GHDM and IHDM -29.66 
Average Probability of a Correct Prediction 0.428 0.392 0.378 

Aggregate Fit Measures 

Outcome Combinations Observed (Weighted) Proposed 
GHDM 

GHDM 
without 

Correlations 
IHDM 

EV Adoption First Ranked Reason Shares Share APE Share APE Share APE 
No -- 94.83 94.82 0.01 93.52 1.38 93.21 1.71 
Yes Rising gasoline prices   0.75 0.99 30.74 0.87 14.61 1.12 48.59 
  Take advantage available incentives   0.50 0.60 20.25 0.62 24.06 0.55 9.85 
  Interest in the technology   0.80 0.83 4.94 0.41 49.10 0.44 44.28 
  Interest in specific brand/model of electric vehicle   0.61 0.52 14.72 1.18 95.88 1.26 108.70 
  Test drove one   0.18 0.16 12.24 0.11 37.66 0.13 27.86 
  Heard about EVs from friends/family or colleagues   0.26 0.20 23.55 0.10 61.86 0.10 60.58 
  The ability to charge/"refuel" at home   0.42 0.90 111.29 0.57 34.91 0.89 110.12 
  Concerns about climate change   1.65 0.98 40.37 2.62 58.91 2.30 39.18 
Weighted Average Percent Error (WAPE) 1.69 3.86 4.37 
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Table 6: Measures of Fit by Market Segment of the Estimation Sample 
 

Measures of Fit Proposed 
GHDM 

GHDM 
without 

Correlations 
IHDM Measures of Fit Proposed 

GHDM 

GHDM 
without 

Correlations 
IHDM 

Market Segment Age: 55-64 Market Segment Gender: Male 
Number of Observations 360 Number of Observations 630 
Predictive Log-Likelihood -702.18 -709.36 -843.35 Predictive Log-Likelihood -1304.14 -1317.96 -1541.52 
Informal Predictive LRT  14.35  Informal Predictive LRT  27.66  
Informal Predictive non-

Nested LRT   -15.95 Informal Predictive non-
Nested LRT   -21.18 

WAPE 2.14 3.78 4.26 WAPE 3.01 5.49 5.65 
Market Segment Race: White Market Segment Employment: Employed 
Number of Observations 792 Number of Observations 648 
Predictive Log-Likelihood -1616.51 -1623.09 -1921.91 Predictive Log-Likelihood -1440.58 -1457.68 -1674.43 
Informal Predictive LRT  13.16  Informal Predictive LRT  34.22  
Informal Predictive non-

Nested LRT   -24.18 Informal Predictive non-
Nested LRT   -21.02 

WAPE 1.57 3.72 4.25 WAPE 2.63 6.05 6.15 
Market Segment Ethnicity: Not Hispanic Market Segment Education: Less than Bachelor's  
Number of Observations 846 Number of Observations 383 
Predictive Log-Likelihood -1726.80 -1739.60 -2079.77 Predictive Log-Likelihood -535.69 -542.26 -612.92 
Informal Predictive LRT  25.60  Informal Predictive LRT  13.15  
Informal Predictive non-

Nested LRT   -26.08 Informal Predictive non-
Nested LRT   -10.74 

WAPE 2.47 5.45 5.72 WAPE 3.61 4.58 5.10 
Market Segment Number of Adults: 2+ Market Segment Presence of Children: No 
Number of Observations 901 Number of Observations 705 
Predictive Log-Likelihood -1839.62 -1849.58 -2207.69 Predictive Log-Likelihood -1377.85 -1385.36 -1661.72 
Informal Predictive LRT  19.93  Informal Predictive LRT  15.03  
Informal Predictive non-

Nested LRT   -26.65 Informal Predictive non-
Nested LRT   -23.28 

WAPE 2.23 4.18 4.64 WAPE 2.14 2.88 3.55 
Market Segment Household Income: < $100,000 Market Segment Housing Type: Single-Family 
Number of Observations 490 Number of Observations 937 
Predictive Log-Likelihood -918.05 -935.95 -1031.49 Predictive Log-Likelihood -1898.96 -1907.02 -2266.91 
Informal Predictive LRT  35.81  Informal Predictive LRT  16.11  
Informal Predictive non-

Nested LRT   -12.85 Informal Predictive non-
Nested LRT   -26.64 

WAPE 2.69 2.77 3.39 WAPE 1.82 4.05 4.62 
Market Segment Population Density: Low Market Segment Charging Density: Low 
Number of Observations 708 Number of Observations 400 
Predictive Log-Likelihood -1401.62 -1410.54 -1681.94 Predictive Log-Likelihood -715.94 -722.58 -868.30 
Informal Predictive LRT  17.82  Informal Predictive LRT  13.28  
Informal Predictive non-

Nested LRT   -23.12 Informal Predictive non-
Nested LRT   -16.48 

WAPE 2.01 2.82 3.60 WAPE 1.78 2.60 2.63 
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Table 7: Average Treatment Effects 
 

Variable Base Level Treatment Level 
Percent Contribution Through Percent 

Direct 
Effect 

Total 
ATE GLP VFP CMP BRP 

Gender Male Female 22 -17 -61 0 0 -0.0668 

Age 18-34 65+ 24 -39 0 -37 0 -0.0849 

Ethnicity Not Hispanic Hispanic -28 -12 -30 16 -14 -0.1490 

Race White Non-white 0 0 0 39 -61 -0.0083 

Employment Employed Retired 0 0 100 0 0 0.0293 

Education Less than bachelor’s degree Graduate degree 40 0 28 6 26 0.3379 

Number of Adults Two or more Single adult 0 0 0 0 -100 -0.0364 

Presence of Children No  Yes 0 38 38 0 24 0.0467 

Income Less than $100,000 $200,000 or more 29 -8 27 0 36 0.2281 

Housing Type Single family home Multifamily home or apartment 0 0 0 48 -52 -0.0012 

Population Density Low High 0 0 0 0 100 0.0208 

Charging Density Low High 0 0 0 44 56 0.0452 
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Figure 1: Distribution of Indicators of Latent Constructs 
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Thinking about battery electric vehicles compared to gasoline-powered vehicles, how 
would you rate battery electric vehicles on each of the following?
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I feel a personal obligation to do my part to move the
country toward a renewable energy future

I feel a personal obligation to do my part to address
climate change
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For me, vehicles have practical purposes only

A vehicle provides status and prestige

The functional quality of a vehicle is more important
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To what extent do you agree or disagree with the following?
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Figure 2: Analytic Framework of the GHDM Model
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Figure 3: Interaction Effects of Age and Income with GLP and VFP on Probability of EV Adoption 


