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ABSTRACT 

In travel choice models, variables describing alternative attributes such as travel time may have to 

be specified as stochastic because the analyst may not have accurate measurements of the attribute 

values considered by the decision-maker. Such stochasticity in alternative attributes is different 

from unobserved heterogeneity in the coefficients representing travellers’ response to those 

attributes. Specifying only one of these as random while keeping the other fixed can potentially 

result in biased parameter estimates, inferior goodness-of-fit, and distorted information for policy 

analysis. Therefore, in this study, we propose an integrated choice and stochastic variable 

modelling framework with random coefficients (i.e., an ICSV-RC framework) that allows the 

analyst to accommodate stochasticity in alternative attributes and random coefficients on such 

attributes. In addition, we show that ignoring either source of stochasticity – stochasticity in 

alternative attributes or unobserved heterogeneity in response to the attributes – results in models 

with inferior goodness-of-fit and a systematic bias in all parameter estimates. We demonstrate this 

using simulation experiments for two different travel choice settings, one involving labelled mode 

choice alternatives and the other involving unlabelled route choice alternatives. In addition, we 

present an empirical analysis in the context of truck route choice to highlight the importance of 

accommodating both sources of variability – stochasticity in travel times and random 

heterogeneity in response to travel times.  

 

Keywords: discrete choice, stochastic variables, random coefficients, identification, integrated 

choice and latent variable (ICLV) models 
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1 INTRODUCTION 

In random utility maximization (RUM)-based travel choice models, it is common to assume that 

exogenous variables entering the utility functions are deterministic. Although the exogenous 

variables come from a distribution in the population, for any given observation in the data, it is 

common to build models considering a deterministic value (i.e., an observed value) that is a 

realization from the distribution of exogenous variables. In many situations, however, it may be 

more appropriate to specify the exogenous variables as stochastic, because the analyst may not be 

able to observe the specific realization of exogenous variables relevant to the observation. This is 

due to one or more of the following three reasons: (1) analyst’s errors in measuring the true value 

of the variables, (2) travellers’ perceptions of the values of the variables (that may be different 

from the measurements that the analyst may possess), and (3) inherent stochasticity in the 

variables, such as day-to-day variability. Each of these sources of stochasticity in explanatory 

variables is briefly discussed next in the specific context of travel time, which is a level-of-service 

variable used in travel choice models such as those for mode choice, route choice, and departure 

time choice. 

The first reason for considering travel time entering the utility functions as a stochastic 

variable may be attributed to measurement errors by the analyst (Bhatta and Larsen, 2011; Ortúzar 

and Ivelic, 1987; Train, 1978). Such errors may arise due to: (a) the use of spatially aggregate 

(zone-to-zone) measures of level-of-service attributes instead of disaggregate, point-to-point 

measurements, (b) calculating travel times based on free flow speed assumptions instead of 

measuring actual speeds or other erroneous speed measurements, and (c) errors in coding of 

networks that result in erroneous travel time measurements. The second reason to treat travel time 

as a stochastic variable may originate from travellers perceiving travel times to be different from 

what may be objective travel times that the analyst might have measurements of (Daly and Ortúzar, 

1990). The third reason is that travel time in transportation networks may be inherently stochastic 

due to day-to-day and intra-day variability in travel conditions on the network (Chen et al., 2011; 

Srinivasan et al., 2014; Biswas et al., 2019). As a result, travel time might follow a probability 

distribution making it difficult for the analyst to ascertain which of the different possible values of 

travel time was considered by the decision-maker in making the choice. In summary, all the three 

sources of stochasticity discussed above can potentially lead to error in the analyst’s measurement 
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of the precise duration of travel time considered by the traveller. One way to recognize such errors 

is to treat the travel time variable entering the utility functions of RUM-based choice models as a 

stochastic variable. 1  

As discussed in Diáz et al. (2015) and Ortúzar and Willumsen (2011), ignoring 

stochasticity in explanatory variables, if present, will, in general, lead to biased parameter 

estimates and distorted marginal rates of substitution (e.g., willingness to pay) during estimation. 

Important to note also is that some or all of the above-discussed stochasticity sources, while 

invoked in the specific context of travel time, can also apply to several other exogenous variables 

used in travel choice models. For example, crowding levels in transit modes can be stochastic in 

mode choice settings because of measurement errors. Travel costs measured by the analyst may 

be different from the costs travellers pay (or perceive) due to the different time scales in which the 

different costs occur (e.g., fuel costs are paid regularly, whereas insurance costs are paid once a 

year) and due to spatial aggregation of the travel locations. 

Among the approaches used to accommodate stochasticity in variables in discrete choice 

models is the classic errors-in-variables (EIV) approach widely used in regression models 

(Stefanski and Carroll, 1985; Durbin, 1954; Gleser, 1981, etc.). Some choice modelling studies 

have adopted the EIV method through Rubin’s multiple imputation (Rubin, 1987) for cases when 

data on exogenous variables are missing or unknown beyond certain interval bounds, such as for 

travel time (Steinmetz and Brownstone, 2005). Alternatively, studies such as Conniffe and O’Neil 

 
1 In this paper, we assume that the traveller (i.e., the decision-maker) attributes a single travel time value (duration) to 

a travel choice alternative, even in situations when travel times are inherently stochastic. The main issue dealt with in 

this paper is the analyst’s difficulty in measuring the specific duration of travel time considered by the traveller, which 

can be any realization from the distribution of travel time known to the traveller. In this context, we ignore the 

possibility that the traveller might distort (or makes an estimation of) the actual distribution of travel time because of 

perception errors. There is a small but rich body of literature that accommodates how travellers deal with stochasticity 

in travel time (Liu and Polak, 2007; Polak et al., 2008; de Palma et al., 2007; de Palma et al., 2012). These studies 

draw from the literature on decision-making under risk and uncertainty, such as the classical expected utility theory 

(Von-Neumann and Morgenstern, 1947) and the prospect theory (Kahneman and Tversky, 1979; and Tversky and 

Kahneman, 1992). For example, Polak et al. (2008) use the expected utility theory where the traveller is assumed to 

work with the expected duration of travel time, but also incorporate variability in travel time through concepts of risk 

aversion. The reader is referred to papers by Rasouli and Timmermans (2014) and Li and Hensher (2011) for relevant 

reviews on these topics. Another approach is to empirically enhance the utility functions by including a measure of 

variability of travel time in addition to a central measure (e.g., average) of travel time (see, for example, Bhat and 

Sardesai, 2006; and Senbil and Kitamura, 2006). In the current study, however, we assume that the traveller associates 

a single travel time value with a given travel choice alternative. This assumption is not inconceivable, for emerging 

travel assistance/information sources provide likely durations of travel time for different travel choice alternatives 

available to the traveller. Admittedly, the current paper does not consider how travellers deal with stochasticity or 

variability in travel times, an area that needs attention in subsequent extensions of this work. 
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(2008) propose analytic expressions for estimators in the presence of missing data. Diáz et al. 

(2015) use the mixed logit approach to specify errors in variables as additional error components 

in the utility functions. A second method is the Integrated Choice and Latent Variable (ICLV) 

modelling approach (Ben Akiva et al., 2002; Alvarez-Daziano and Bolduc, 2013; Bhat and Dubey, 

2014; Vij and Walker, 2016). As the name suggests, this approach allows the explanatory variables 

in a choice model as latent and stochastic. Doing so helps in recognizing measurement errors in 

variables (Walker et al., 2010), perception errors by individuals (Varotto et al., 2017), and even 

missing data (Sanko et al., 2014). A recent study by Varela et al. (2018) accommodates 

measurement errors in travel time and travel cost variables in mode choice models using the ICLV 

approach. In doing so, they examine the magnitude of measurement errors as well as evaluate 

different distributional assumptions for specifying measurement errors in travel time and travel 

cost variables. Their analysis suggests larger magnitudes of measurement error in self-reported 

attributes vis-à-vis that in travel times computed from network-skims. In addition, they highlight 

that different degrees of measurement error in different variables in the same model could lead to 

differential biases in the corresponding coefficient estimates and hence a bias in the ratio of 

coefficient estimates such as willingness-to-pay estimates. In another study, Biswas et al. (2019) 

used the ICLV approach to accommodate stochastic travel time variables in route choice models. 

But all the above studies, while considering stochasticity in variables, maintain deterministic 

coefficients on those same variables.  

In a separate and rather large stream of literature, unobserved taste heterogeneity of 

individuals (that is, variations in the sensitivity to exogenous variables due to unobserved factors) 

has been modelled in a multitude of choice contexts. These studies specify random coefficients on 

alternative attributes through frameworks such as the mixed multinomial logit (Bhat, 2001; Bhat, 

2003; Hensher and Greene, 2003; Greene and Hensher, 2003; Batley et al., 2004; Hess and Polak, 

2005; Mc Fadden and Train, 2000; Revelt and Train, 1998; Brownstone et al., 2000; Swait, 2022) 

and the mixed multinomial probit (Bhat, 2011; Bhat and Sidharthan, 2012; Patil et al., 2017; Dubey 

et al., 2022). Regardless of the approach used to accommodate unobserved heterogeneity in 

response to exogenous variables, this stream of literature does not consider stochasticity in the 

exogenous variables themselves. In fact, to the best of our knowledge, no study has attempted to 

recognize and disentangle the two sources of variability – stochasticity in explanatory variables 

and unobserved heterogeneity in response to those variables. This is because typical mixed 



4 

 

logit/probit and ICLV model formulations do not allow the simultaneous estimability or 

identifiability of both sources of variability.  

The objective of the current research is to formulate a choice modelling framework that 

allows the analyst to accommodate stochasticity in explanatory variables and random coefficients 

on such variables. In addition, the study aims at applying the proposed framework to disentangle 

travel time variability from unobserved heterogeneity in response to travel time in travel choice 

models. To this end, we formulate an integrated choice and stochastic variable (ICSV) modelling 

framework with random coefficients (RC) in its choice model.2 We show that the ICSV-RC 

framework allows the identification of stochasticity in travel time as well as random heterogeneity 

in response to travel time – due to its ability to bring together two (or more) different data sources 

such as travel time measurements and traveller choices. In addition, we show that ignoring either 

source of stochasticity – variability in travel time or heterogeneity in response to travel time – 

results in models with inferior fit to data and a systematic bias in all parameter estimates. 

Furthermore, ignoring stochasticity in travel time can potentially lead to underestimation of 

standard errors. We demonstrate such repercussions of ignoring stochastic explanatory variables 

using simulation experiments in two distinct choice settings – one involving labelled mode choice 

alternatives and the other involving unlabelled route choice alternatives. 3 

While our formulation is generic and applicable to any choice context, the empirical 

application in this study pertains to truck route choice and travel time measurements derived from 

a large truck-GPS dataset in Florida. Using this empirical data, we demonstrate the applicability 

of the ICSV-RC framework for identifying variability in travel time and a random coefficient on 

 
2 In the field of choice modelling, the incorporation of latent psychological constructs such as attitudes and perceptions 

as explanatory variables within the random utility maximization framework assumes the form of a hybrid model that 

is typically referred to as the Integrated Choice and Latent Variable (ICLV) model (for further reading, one may refer 

to Ben-Akiva et al. (2002), Bhat and Dubey (2014), Alvarez-Daziano and Bolduc (2013) and Vij and Walker (2016)). 

In the ICLV framework, stochastic variables are typically used to represent latent psychological constructs such as 

attitudes and perceptions of the individuals making choices. In this paper, we use the more general label of Integrated 

Choice and “Stochastic” variable (ICSV) framework to recognize that individual latent attitudes/perceptions are but 

only one form of a stochastic variable within an integrated choice context; the stochasticity in the variable can also 

derive from inherent variability or measurement error or other sources. 
3 A relevant question in this context is which exogenous variables to consider stochastic. This can be tricky to decide 

and depends on the empirical context. But some general concepts can be applied. In terms of socio-demographics, it 

is not unreasonable to think that the sample used in estimation is such that the demographics (across sample 

observations) represent the population demographics at large. Thus, it may be less inappropriate to believe that we 

would get effectively similar “fixed” demographic attributes in repeated sampling. However, this is not the case for 

intra-individual travel time measures, as we discuss in the paper. Thus, reasonable assumptions may be made during 

model specification to decide on which exogenous variables to consider as stochastic. 
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travel time. We then compare the ICSV-RC model with simpler versions of it – one without random 

coefficients and one without variability in travel time – to highlight the importance of accounting 

for both sources of variability.4  

The rest of this paper is structured as follows. Section 2 discusses the ICSV-RC modelling 

framework in the context of an integrated model of traveller choice and stochastic travel time. 

Then, Section 2.2 presents a maximum simulated likelihood based simultaneous estimator for the 

proposed model. In addition, a sequential (two-step) estimator is discussed. Further, simpler 

versions of the proposed ICSV-RC model that ignore either the stochasticity in travel time or 

unobserved heterogeneity in the coefficient of travel time are derived in Section 2.3. Section 3 

discusses the reason for bias in parameter estimates (and the direction of bias) in models that do 

not incorporate variability in stochastic variables. Section 4 presents simulation experiments for 

two different travel choice settings, one involving labelled mode choice alternatives and the other 

involving unlabelled route choice alternatives. The simulations and findings for the mode choice 

setting are discussed in detail in this section, whereas those for the route choice setting are 

presented in Appendix A. Section 5 presents the empirical results and findings in the context of 

truck route choice in Florida, USA. Section 6 concludes the study and identifies directions for 

future research. 

2 MODEL FRAMEWORK 

2.1. Model Formulation 

The ICSV-RC framework is formulated to jointly model the observed travel times for the travel 

choice alternatives available to the traveller and the traveller’s choice5. The travel time component 

of the integrated model helps in characterizing the alternative-specific travel time distributions that 

 
4 The study by Biswas et al. (2019) used an ICSV framework to consider route-level travel time as a stochastic variable 

in a truck route choice model using the same empirical dataset. However, that study, like all other studies that we are 

aware of that consider stochasticity in exogenous variables, does not consider heterogeneity in travellers’ response to 

travel time. Further, there was no recognition of the importance of (or the discussion of any method) to account for 

stochasticity in travel time as well as heterogeneity in the sensitivity to travel time. In contrast, the current study 

focuses on the issue of both travel time and its coefficient being stochastic, the identification of both sources of 

stochasticity, and the repercussions of ignoring any of the two sources of stochasticity. It is also worth noting that the 

ICLV model structure in Biswas et al. (2019) study is based on a multinomial probit (MNP) structure, which is not 

easy to use for accommodating both sources of stochasticity. In the current paper, we use the logit-based kernel, which 

makes it easier to accommodate both sources of stochasticity within the ICSV-RC framework. 
5 We refer to route choice of trips and mode choice of an individual by the common term traveller’s choice. Such 

terminology is adopted to view the framework as a tool relevant to a broad range of choice settings. Further, in the 

same vein, the decision-maker is referred to as the traveller. 



6 

 

reflect variability in the travel conditions in the network, while also recognizing measurement 

errors in the travel times observed by the analyst. Simultaneous to the estimation of the travel time 

distributions, the stochastic travel time variable is used as an explanatory variable in a mixed 

multinomial logit-based model of traveller choice (route choice or mode choice) with a random 

coefficient specified on it. Note that the distributional forms of both travel time and its coefficient 

are assumed to be known a priori, but the parameters of those distributions must be estimated. 

Here, we present the notational preliminaries for the ICSV-RC model. Denote Jn = 

{1,2, … , 𝑖, … , 𝑗, … 𝐽𝑛} as the set of all alternatives available to a traveller n (or trip n), where 𝐽𝑛 is 

the total number of alternatives available to the traveller. In a route-choice setting, Jn represents 

route alternatives, and, in a mode-choice setting, Jn represents travel mode alternatives. For each 

such alternative 𝑖, we define a set 𝐌𝑛𝑖  of variables for travel time measurements, where 

𝐌𝑛𝑖 = {𝑂𝑇𝑇𝑛𝑖1, 𝑂𝑇𝑇𝑛𝑖2, … , 𝑂𝑇𝑇𝑛𝑖𝑚, …𝑂𝑇𝑇𝑛𝑖𝑀𝑖} and 𝑂𝑇𝑇𝑛𝑖𝑚 represents the 𝑚𝑡ℎ measurement (or 

observation) of travel time associated with alternative i for traveller n. Let 𝑜𝑡𝑡𝑛𝑖𝑚 denote a 

realization of 𝑂𝑇𝑇𝑛𝑖𝑚 or an observed value of 𝑂𝑇𝑇𝑛𝑖𝑚 in the data. The number of measurements 

|𝐌𝑛𝑖| may vary across choice alternatives, while some alternatives may not have any 

measurements. Let 𝑶𝑻𝑻𝑛 stack the 𝐌𝑛𝑖
′  vectors of all 𝐽𝑛 alternatives into a column vector of size 

[∑ |𝐌𝑛𝑖|
𝐽𝑛
𝑖=1 ]  ×  1. Let 𝐦𝑛𝑖 be the vector of realizations (i.e., 𝑜𝑡𝑡𝑛𝑖𝑚) of 𝐌𝑛𝑖 in the data, and let 

𝒐𝒕𝒕𝑛 stack the 𝐦𝑛𝑖
′  vectors of all 𝐽𝑛 alternatives into a column vector. Further, define 𝑦𝑛𝑖 as an 

indicator whether alternative 𝑖 was chosen by the traveller n. 𝑦𝑛𝑖 assumes the value 1 if the 

alternative i is chosen and is zero otherwise.  

2.1.1 Structural equations for the ICSV-RC model 

Define the utility (𝑈𝑛𝑖) associated with choosing an alternative i by a traveller n (or for trip n) as: 

𝑈𝑛𝑖 = 𝛾𝑛,𝑇𝑇∗𝑇𝑇𝑛𝑖
∗ + 𝜽′𝒙𝑛𝑖 + 휀𝑛𝑖 (1) 

In the above equation, 𝑇𝑇𝑛𝑖
∗  is the stochastic travel time variable for alternative i and 𝛾𝑛,𝑇𝑇∗ is its 

coefficient (which is specified as a random parameter). In the current study, we assume 𝛾𝑛,𝑇𝑇∗ =

𝜇𝛾𝑇𝑇∗ + 𝜎𝛾𝑇𝑇∗𝑧𝑛; 𝑧𝑛 ~ N (0,1), albeit one can explore several other distributions such as lognormal 

or truncated normal. Further, 𝒙𝑛𝑖 is a W×1 vector of other, deterministic (free of measurement 

errors) attributes of alternative i and 𝜽 is the corresponding vector of coefficients (some or all of 

which may be assumed as random parameters, as in the case of typical mixed multinomial choice 
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models); and 휀𝑛𝑖 is a standard Gumbel distributed error term assumed to be independent and 

identically distributed (IID) across all choice alternatives and travellers.6  

Note that the stochastic travel time variable (𝑇𝑇𝑛𝑖
∗ ) can be specified using different functional 

forms depending on the model setup. The simplest approach is to assume that travel time for any 

trip follows an a priori distribution with the same parameters. For example, Walker et al. (2010) 

represent mode-specific travel times in a mode choice model using a normal distribution whose 

parameters are estimated using available measurements of travel times. A second approach is to 

specify the mode-specific travel time distribution as a function of mode-specific inverse speed 

(i.e., the time it takes to travel unit distance) and travel distance. That is, for a mode i, the travel 

time distribution may be expressed as below: 

𝑇𝑇𝑛𝑖
∗ = 𝜃𝑛𝑖𝑑𝑛𝑖 (2) 

In the above equation, 𝑑𝑛𝑖 denotes the travel distance by mode i between the origin and destination 

of the traveller. 𝜃𝑛𝑖 is the corresponding coefficient, which can be interpreted as the inverse speed 

of mode i. Here, 𝜃𝑛𝑖 is considered random to accommodate variability in travel conditions.  

A third approach, applicable in route choice models, is to represent the travel time 

distribution using a structural equation that specifies route-level travel time as a function of the 

underlying route structure, as below: 

 
6 The exogenous variables in 𝒙𝑛𝑖 include observed route attributes, such as travel costs and tolls, socio-demographic 

and land-use variables specific to the decision-maker, and the interaction of such variables with observed level-of-

service variables. In route choice models, however, since the choice alternatives are typically not labelled, decision-

maker variables with alternative specific coefficients and alternative-specific constants are not included. In addition, 

to recognize physical overlap between different route alternatives available for a trip, it is common to correct the utility 

functions by including the natural logarithm of a route-specific path size (PS) attribute as an explanatory variable (see 

Ben-Akiva and Bierlaire (1999) for details on the path size attribute). The PS attribute accommodates correlations 

between route alternatives due to physical overlap between routes. However, correlations between route alternatives 

might also arise due to unobserved factors that are not attributable to physical overlap. For example, two routes passing 

through different sections of a major named highway may share unobserved effects due to unobserved characteristics 

specific to that named highway, even if the two routes do not overlap. To capture such correlations, one can use error 

components proposed by Frejinger and Bierlaire (2007), as illustrated below by modifying the utility function in 

Equation (1) as follows:  

𝑈𝑛𝑖 = 𝛾𝑛,𝑇𝑇∗𝑇𝑇𝑛𝑖
∗ + 𝜽′𝒙𝑛𝑖 + 𝜎𝑎√𝐿𝑖𝑛,𝑎𝜙𝑛𝑎 + 𝜎𝑏√𝐿𝑖𝑛,𝑏𝜙𝑛𝑏 + 휀𝑛𝑖. 

In this expression, 𝐿𝑖𝑛,𝑎, 𝐿𝑖𝑛,𝑏 are the distances covered by route i on the roads labelled a and b respectively. 𝜙𝑛𝑎 and 

𝜙𝑛𝑏 are independent standard normal random variables, assumed to be IID across observations. 𝜎𝑎 and 𝜎𝑏 are 

parameters to be estimated. Such an error components specification helps capture the perceptual correlations among 

route alternatives passing through a same labelled road without necessarily overlapping (Frejinger and Bierlaire, 

2007). In the rest of the formulation, we do not include these error components for simplicity in notation. But we do 

include error components in both our simulation experiments and the empirical application for route choice.  
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𝑇𝑇𝑛𝑖
∗ = ∑ 𝛽𝑛𝑙𝑑𝑛𝑖𝑙

𝐿

𝑙=1

+ ∑  𝛾𝑛𝑞𝑟𝑛𝑖𝑞

𝑄

𝑞=1

 (3) 

Here,  𝑑𝑛𝑖𝑙 denotes the length of roadway links of type l on route i (length of interstates, length of 

arterials, length of local roads, etc.) for traveller n on their trip, 𝑟𝑛𝑖𝑞 denotes the number of nodes 

of type q on route i (no. of left turns, no. of right turns, etc.), and L and Q denote the total number 

of roadway link types and stop types, respectively. Further,  𝛽𝑛𝑙 is the random coefficient on 𝑑𝑛𝑖𝑙, 

which may be interpreted as the inverse speed on roadway link of type l (i.e., the time it takes to 

traverse unit length of a roadway of type l) on route i. 𝛾𝑛𝑞 is the random coefficient on 𝑟𝑛𝑖𝑞, which 

may be interpreted as the time it takes a vehicle to cross a node of type q. The stochasticity in 

random coefficients  𝛽𝑛𝑙(𝑙 = 1,… , 𝐿) and  𝛾𝑛𝑞(𝑞 = 1,… , 𝑄) helps capture variability in 𝑇𝑇𝑛𝑖
∗  due 

to variability in travel conditions on different types of links and nodes. In vector form, the structural 

equation for 𝑇𝑇𝑛𝑖
∗  may be written as: 

𝑇𝑇𝑛𝑖
∗ = 𝑩𝑛𝑙

′𝑫𝑛𝑖𝑙 + 𝜞𝑛𝑞
′𝑹𝑛𝑖𝑞 (4) 

where, 𝑫𝑛𝑖𝑙 = [ 𝑑𝑛𝑖1, 𝑑𝑛𝑖2, … , 𝑑𝑛𝑖𝐿]
′ is the vector of lengths of roadway links of each of L types 

on the route and 𝑹𝑛𝑖𝑞 = [ 𝑟𝑛𝑖1, 𝑟𝑛𝑖2, … , 𝑟𝑛𝑖𝑄]
′ is the vector of number of nodes of each of 𝑄 types. 

Further, 𝑩𝑛𝑙  = [𝛽𝑛1, 𝛽𝑛2, … 𝛽𝑛𝐿] 
′ is the vector of random coefficients on 𝑫𝑛𝑖𝑙 and 𝜞𝑛𝑞 = 

[𝛾𝑛1, 𝛾𝑛2, … 𝛾𝑛𝑄]
′ is the vector of random coefficients on 𝑹𝑛𝑖𝑞. 

2.1.2 Measurement equations for the ICSV-RC model 

Equation (1) for the multinomial choice model involves both the stochastic travel time variable 

(𝑇𝑇𝑛𝑖
∗ ) and its coefficient (𝛾𝑛,𝑇𝑇∗), which is also random. This necessitates two separate sources of 

data to identify each of these distributions through the integrated model. The measurements used 

to identify taste heterogeneity of travellers (i.e., the distribution of 𝛾𝑛,𝑇𝑇∗) are the observed choices 

(𝑦𝑛𝑖) for each traveller n. Invoking the utility maximization theory, the measurement equation for 

the observed choices can be written as: 

𝑦𝑛𝑖 = 1, if 𝑈𝑛𝑖 > 𝑈𝑛𝑗∀ 𝐽𝑛 ∈ Jn, 𝑗 ≠ 𝑖 

      = 0, otherwise 
(5) 
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The measurements used to identify travel time variability (that is, the distribution of the random 

parameters specified in Equation (2) or Equation (3) for 𝑇𝑇𝑛𝑖
∗ ) are the observed travel times 

(𝑂𝑇𝑇𝑛𝑖𝑚) obtained from GPS data or other such data sources. Specifically, the travel time 

measurements (𝑂𝑇𝑇𝑛𝑖𝑚) may be specified as a sum of the stochastic travel time function (𝑇𝑇𝑛𝑖
∗ ) 

along with an additive noise term to represent measurement errors, as below: 

𝑂𝑇𝑇𝑛𝑖𝑚 = 𝑇𝑇𝑛𝑖
∗ + 𝜉𝑛𝑖𝑚, ∀ 𝑚 ∈ 𝐌𝑛𝑖 (6) 

Here, 𝜉𝑛𝑖𝑚 is a noise term capturing the measurement error in 𝑂𝑇𝑇𝑛𝑖𝑚 and assumed to be normally 

distributed, 𝜉𝑛𝑖𝑚 ∼ 𝑁(0, 𝜌), with variance 𝜌 to be estimated.  

As discussed in Biswas et al. (2019), the stochastic travel time function in Equation (2), 

identified due to available travel time measurements for some observations in the data, can be 

simultaneously used to impute the travel time distribution for observations without travel time 

measurements. Doing so helps in utilizing partial measurement data, where travel time 

measurements may not be available for all observations or choice alternatives, for estimating the 

integrated model.  

2.2. Model System Estimation 

Equation (1) along with the equation for the travel time function (Equation (2) or (4), depending 

on the functional form of the stochastic variable under consideration), and Equations (5) and (6) 

are brought together into an ICSV-RC framework for deriving the joint likelihood of travel time 

measurements and traveller choices in the observed data. Furthermore, distributional assumptions 

are made on the stochastic components of the formulation to derive the likelihood function for 

estimating model parameters.  

In the ICSV-RC model, let  𝚯 = {𝜇𝛾𝑇𝑇∗ , 𝜎𝛾𝑇𝑇∗ , 𝜽, 𝑉𝑒𝑐ℎ(𝑩𝑛𝑙), 𝑉𝑒𝑐ℎ(𝜞𝑛𝑞), 𝜌} denote the full 

set of parameters to be estimated in the integrated model system, where 𝑉𝑒𝑐ℎ (. ) is an operator 

used to represent the vector of the parameters inside the parentheses. For later use, define �̃� =

{𝜇𝛾𝑇𝑇∗ , 𝜎𝛾𝑇𝑇∗ , 𝜽}; �̆� = {𝑉𝑒𝑐ℎ(𝑩𝑛𝑙), 𝑉𝑒𝑐ℎ(𝜞𝑛𝑞)}; and �̅� = {𝜇𝛾𝑇𝑇∗ , 𝜎𝛾𝑇𝑇∗}. Let 𝑿𝑛 =  

[𝒙𝑛1,𝒙𝑛2,…,𝒙𝑛𝐽𝑛]′; 𝑫𝑛 = [(𝑫𝑛1′, 𝑫𝑛2′,…, 𝑫𝑛𝐽𝑛 ′), (𝑹𝑛1′, 𝑹𝑛2′,…,𝑹𝑛𝐽𝑛 ′)]′, and let 𝑻𝑻𝑛
∗ = 

[𝑇𝑇𝑛1
∗ ,𝑇𝑇𝑛2

∗ ,…,𝑇𝑇𝑛𝐽𝑛
∗ ]′ be the 𝐽𝑛×1 vector of stochastic travel times for all alternatives in the choice 

set. Next, to denote the probability density of the stochastic components, let 𝑓(.) be the PDF of 

𝑂𝑇𝑇𝑛𝑗𝑚 given 𝑇𝑇𝑛𝑗
∗ , let 𝑔(.) be the PDF of 𝑇𝑇𝑛𝑗

∗ , and let ℎ(.) be the PDF of 𝛾𝑛,𝑇𝑇∗  . Using this 
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notation, we discuss the following two approaches to estimate the model parameters in this section: 

(1) simultaneous estimation and (2) sequential estimation. 

2.2.1 Simultaneous estimation  

To simultaneously estimate all the parameters of the proposed ICSV-RC model, the joint likelihood 

for the 𝑖𝑡ℎ alternative being chosen by traveller n along with the available observed measurements 

of route-level travel time is given by: 

 ℒ (𝑦𝑛𝑖 = 1,𝑶𝑻𝑻𝑛 = 𝒐𝒕𝒕𝑛| 𝑫𝑛, 𝑿𝑛 , 𝚯) 

= ∫ ∫  ℒ (𝑦𝑛𝑖 = 1,𝑶𝑻𝑻𝑛 = 𝒐𝒕𝒕𝑛 | 𝑻𝑻𝑛
∗ , 𝑿𝑛 , �̃�, 𝜌)

𝑻𝑻𝑛
∗𝛾𝑛,𝑇𝑇∗

∏𝑔(𝑇𝑇𝑛𝑗
∗ |𝑫𝑛, �̆�)

𝐽𝑛

𝑗=1

ℎ(𝛾𝑛,𝑇𝑇∗|�̅�)𝑑(𝑻𝑻𝑛
∗ )𝑑(𝛾𝑛,𝑇𝑇∗) 

(7) 

= ∫ ∫ ℒ (𝑦𝑛𝑖 = 1 |𝑶𝑻𝑻𝑛 = 𝒐𝒕𝒕𝑛, 𝑻𝑻𝑛
∗ , 𝑿𝑛 , �̃�)

𝑻𝑻𝑛
∗𝛾𝑛,𝑇𝑇∗

×∏∏𝑓(𝑜𝑡𝑡𝑛𝑗𝑚|𝑇𝑇𝑛𝑗
∗ , 𝜌)

𝑀𝑛𝑖

𝑚=1

𝐽𝑛

𝑗=1

∏𝑔(𝑇𝑇𝑛𝑗
∗ |𝑫𝑛, �̆�)

𝐽𝑛

𝑗=1

ℎ(𝛾𝑛,𝑇𝑇∗|�̅�)𝑑(𝑻𝑻𝑛
∗ )𝑑(𝛾𝑛,𝑇𝑇∗) 

(8) 

Note that the likelihood ℒ (𝑦𝑛𝑖 = 1 | 𝑶𝑻𝑻𝑛 = 𝒐𝒕𝒕𝑛, 𝑻𝑻𝑛
∗ , 𝑿𝑛 , �̃�)  in the right side of Equation (8) can 

simply be written as ℒ (𝑦𝑛𝑖 = 1 | 𝑻𝑻𝑛
∗ , 𝑿𝑛 , �̃�). This is because conditional on the actual distribution 

(𝑻𝑻𝑛
∗ ) of the input variable, the analyst’s measurement (𝑶𝑻𝑻𝑛) of that variable does not matter to 

𝑦𝑛𝑖. That is, the choice of a route conditional on the actual route-level travel times does not depend 

on the measured travel times. Therefore, the joint likelihood may be written as: 

ℒ (𝑦𝑛𝑖 = 1,𝑶𝑻𝑻𝑛 = 𝒐𝒕𝒕𝑛| 𝑫𝑛, 𝑿𝑛 , 𝚯)  

= ∫ ∫ ℒ (𝑦𝑛𝑖 = 1 | 𝑻𝑻𝑛
∗ , 𝑿𝑛 , �̃�)

𝑻𝑻𝑛
∗𝛾𝑛,𝑇𝑇∗

×∏∏𝑓(𝑜𝑡𝑡𝑛𝑗𝑚|𝑇𝑇𝑛𝑗
∗ , 𝜌)

𝑀𝑛𝑖

𝑚=1

𝐽𝑛

𝑗=1

∏𝑔(𝑇𝑇𝑛𝑗
∗ |𝑫𝑛, �̆�)

𝐽𝑛

𝑗=1

ℎ(𝛾𝑛,𝑇𝑇∗|�̅�)𝑑(𝑻𝑻𝑛
∗ )𝑑(𝛾𝑛,𝑇𝑇∗) 

(9) 

Replacing ℒ (𝑦𝑛𝑖 = 1 |𝑻𝑻𝑛
∗ , 𝑿𝑛 , �̃�) in the above expression with the logit choice probability 

expression, the joint likelihood may be written as: 
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ℒ (𝑦𝑛𝑖 = 1,𝑶𝑻𝑻𝑛 = 𝒐𝒕𝒕𝑛| 𝑫𝑛, 𝑿𝑛 , 𝚯)  

= ∫ ∫
𝑻𝑻𝑛

∗

exp(𝛾𝑛,𝑇𝑇∗𝑇𝑇𝑛𝑖
∗ + 𝜽′𝒙𝑛𝑖)

∑ exp(𝛾𝑛,𝑇𝑇∗𝑇𝑇𝑛𝑗
∗ + 𝜽′𝒙𝑛𝑗)

𝐽𝑛
𝑗=1𝛾𝑛,𝑇𝑇∗

×∏∏𝑓(𝑜𝑡𝑡𝑛𝑗𝑚|𝑇𝑇𝑛𝑗
∗ , 𝜌)

𝑀𝑛𝑖

𝑚=1

𝐽𝑛

𝑗=1

∏𝑔(𝑇𝑇𝑛𝑗
∗ |𝑫𝑛, �̆�)

𝐽𝑛

𝑗=1

ℎ(𝛾𝑛,𝑇𝑇∗|�̅�)𝑑(𝑻𝑻𝑛
∗ )𝑑(𝛾𝑛,𝑇𝑇∗) 

(10) 

The dimensionality of integration in the above equation is the total number of unique random 

parameters in 𝑈𝑛𝑖 (except the IID Gumbel error terms). This includes the number of random 

coefficients in  𝑇𝑇𝑛𝑖
∗ , one random coefficient for 𝛾𝑛,𝑇𝑇∗, etc. One can use the maximum simulated 

likelihood method to optimize the above likelihood function and estimate the parameters of the 

ICSV-RC model. 

For observations without any measurements of travel time, Equation (10) becomes: 

ℒ (𝑦𝑛𝑖 = 1| 𝑫𝑛, 𝑿𝑛 , 𝚯)  

= ∫ ∫
𝑻𝑻𝑛

∗

exp(𝛾𝑛,𝑇𝑇∗𝑇𝑇𝑛𝑖
∗ + 𝜽′𝒙𝑛𝑖)

∑ exp(𝛾𝑛,𝑇𝑇∗𝑇𝑇𝑛𝑗
∗ + 𝜽′𝒙𝑛𝑗)

𝐽𝑛
𝑗=1𝛾𝑛,𝑇𝑇∗

∏𝑔(𝑇𝑇𝑛𝑗
∗ |𝑫𝑛, �̆�)

𝐽𝑛

𝑗=1

ℎ(𝛾𝑛,𝑇𝑇∗|�̅�)𝑑(𝑻𝑻𝑛
∗ )𝑑(𝛾𝑛,𝑇𝑇∗) 

(11) 

In this context, the travel time measurement data of other observations helps estimate the 

parameters describing the distribution of 𝑻𝑻𝑛
∗ . These parameters are, in turn, used simultaneously 

in Equation (11) to inform or impute the stochastic travel time function for observations without 

travel time measurements. The same happens in Equation (10) as well, for observations with travel 

time measurements for some alternatives and no measurements for other alternatives. 

2.2.2 Sequential estimation (two-step estimation) 

One can estimate the parameters of the model system in a sequential, two-step procedure. In this 

approach, the first step involves the estimation of the parameters (�̆�) of 𝑻𝑻𝑛
∗  and 𝜌 using Equation 

(6), which is a regression model with random parameters. The second step involves a mixed logit 

model with stochastic explanatory variables (ML-SV model) that utilizes the a priori known 

distribution of 𝑻𝑻𝑛
∗  as stochastic explanatory variables and specifies the coefficient (𝛾𝑛,𝑇𝑇∗) on 

𝑻𝑻𝑛
∗  as random. The likelihood expression of such an ML-SV model with stochastic travel time 

variables and a random coefficient on the stochastic variables is:  
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ℒ (𝑦𝑛𝑖 = 1| 𝑫𝑛, 𝑿𝑛 , 𝚯) 

= ∫ ∫
𝑻𝑻𝑛

∗

exp(𝛾𝑛,𝑇𝑇∗𝑇𝑇𝑛𝑖
∗ + 𝜽′𝒙𝑛𝑖)

∑ exp(𝛾𝑛,𝑇𝑇∗𝑇𝑇𝑛𝑗
∗ + 𝜽′𝒙𝑛𝑗)

𝐽𝑛
𝑗=1

∏𝑔(𝑇𝑇𝑛𝑗
∗ |𝑫𝑛, �̌�)

𝐽𝑛

𝑗=1

ℎ(𝛾𝑛,𝑇𝑇∗|�̅�)𝑑(𝑻𝑻𝑛
∗ )𝑑(𝛾𝑛,𝑇𝑇∗)

𝛾𝑛,𝑇𝑇∗

 
(12) 

The parameters to be estimated in the above ML-SV model are those in 𝜽 and �̅�, since the estimates 

of parameters in �̆� and 𝜌 are available from the first step estimation. 

It is worth noting here that the simultaneously estimated ICSV-RC model in Section 2.2.1 

and the sequentially estimated ML-SV model presented here, both account for the two sources of 

stochasticity discussed earlier – stochastic travel times and random coefficient on stochastic travel 

times. The difference between the two models is in the estimation of parameters. The former 

involves a simultaneous estimation of all parameters (through maximizing the joint likelihood of 

observed travel choices and observed travel times). The latter involves a two-step estimation. Both 

these approaches are associated with pros and cons, as discussed next. 

Between the simultaneous and sequential estimation approaches, the simultaneous 

estimation approach is preferable for the following reasons. (1) Simultaneous estimation results in 

more efficient estimates when compared to sequential estimation approaches (Heckman, 1976; 

Heckman, 1979). In this context, the two-step approach might require adjustment of standard 

errors of its parameter estimates, which can potentially involve cumbersome procedures. (2) The 

two-step estimation can potentially result in biased estimates when there is endogeneity between 

𝑻𝑻𝑛
∗  and the travel choice (𝑦𝑛𝑖) when common unobserved factors influence both 𝑻𝑻𝑛

∗   and travel 

choice or when there is simultaneity between 𝑻𝑻𝑛
∗   and travel choice. In this context, the 

simultaneous estimation provides scope to address such endogeneity by more easily allowing for 

correlations between 𝑻𝑻𝑛
∗   and the utility functions of the choice model component.  

On the other hand, the sequential estimation approach might be preferred for the following 

reasons. (1) It may be computationally easier to estimate the parameters in two different steps, as 

opposed to a joint estimation of all parameters in a single step. (2) In the first step of the two-step 

approach, sophisticated modelling techniques such as semi non-parametric approaches (Fosgerau 

and Fukuda, 2012; Rahmani et al., 2015), data-driven deep learning methods (Zhang et al., 2019; 

James, 2021), etc., can be used to describe the distribution of 𝑻𝑻𝑛
∗  . Doing so can potentially help 

characterize 𝑻𝑻𝑛
∗  in a better way than simple, parametric forms for 𝑻𝑻𝑛

∗  that are easier to embed 
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in joint estimation. Implementing such sophisticated approaches to characterize 𝑻𝑻𝑛
∗  within a joint 

estimation framework can potentially be cumbersome.  

In the current research, given our focus is on the importance of accommodating the two 

sources of stochasticity – stochasticity in alternative attributes and random coefficients on the 

stochastic attributes – using appropriate data sources, we employ the simultaneous estimation 

approach with a simple parametric specification of 𝑻𝑻𝑛
∗ . Exploration of more advanced approaches 

(such as semi non-parametric and data-driven methods) to characterize the distribution of 𝑻𝑻𝑛
∗ , a 

detailed evaluation of the pros and cons of doing so with simultaneous and sequential estimation 

approaches, and the correction of standard errors in the sequential estimation approach needs to be 

addressed in a future extension of this work. 

2.3. Alternative Model Structures 

In this section, we discuss alternative model structures that are simpler versions of the above 

discussed ICSV-RC model.  

2.3.1 Integrated model with stochastic travel time and fixed coefficient on travel time (ICSV model) 

A restricted form of the ICSV-RC model is obtained by specifying the coefficient 𝛾𝑛,𝑇𝑇∗ as fixed 

(denoted by �̅�𝑇𝑇∗ in the current model) instead of random. For such an ICSV model with a fixed 

coefficient on travel time, denote the full set of parameters to be estimated as 𝚿 = {�̅�𝑇𝑇∗ , 𝜽, �̃�, 𝜌}, 

where �̅�𝑇𝑇∗ is the deterministic coefficient on travel time, and �̌� is {𝑉𝑒𝑐ℎ(𝑩𝑛𝑙), 𝑉𝑒𝑐ℎ(𝜞𝑛𝑞)} as 

defined earlier. This ICSV model’s joint likelihood expression reduces from the ICSV-RC model 

likelihood in Equation (10) to the following: 

ℒ (𝑦𝑛𝑖 = 1,𝑶𝑻𝑻𝑛 = 𝒐𝒕𝒕𝑛| 𝑫𝑛, 𝑿𝑛 ,𝚿) 

= ∫
𝑻𝑻𝑛

∗

exp(�̅�𝑇𝑇∗𝑇𝑇𝑛𝑖
∗ + 𝜽′𝒙𝑛𝑖)

∑ exp(�̅�𝑇𝑇∗𝑇𝑇𝑛𝑗
∗ + 𝜽′𝒙𝑛𝑗)

𝐽𝑛
𝑗=1

∏∏𝑓(𝑜𝑡𝑡𝑛𝑗𝑚|𝑇𝑇𝑛𝑗
∗ , 𝜌)

𝑀𝑛𝑖

𝑚=1

𝐽𝑛

𝑗=1

∏𝑔(𝑇𝑇𝑛𝑗
∗ |𝑫𝑛, �̌�)𝑑(𝑻𝑻𝑛

∗ )

𝐽𝑛

𝑗=1

 
(13) 

2.3.2 Mixed logit model with expected travel time and random coefficient on travel time (ML-RC) 

This model (ML-RC) involves using the expected travel time, 𝐸(𝑇𝑇𝑛𝑖
∗ ), obtained using the 

parameter estimates of the stochastic travel time (𝑻𝑻𝑛
∗ ) function (instead of using the entire 

stochastic distribution for travel time) as an explanatory variable in the choice utility function. As 

discussed in the case of ML-SV model, the parameters of 𝑻𝑻𝑛
∗  are estimated in an a priori step. 
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The coefficient on 𝐸(𝑇𝑇𝑛𝑖
∗ ), denoted as 𝛾𝑛,𝑇𝑇∗, is specified to be random to capture travellers’ taste 

heterogeneity. This specification leads to a standard mixed logit model that is long established in 

the existing literature, with the following likelihood expression:  

ℒ (𝑦𝑛𝑖 = 1| 𝐸(𝑇𝑇𝑛𝑖
∗ ), 𝑿𝑛 , 𝜽, �̅�) 

= ∫
𝛾𝑛,𝑇𝑇∗

exp(𝛾𝑛,𝑇𝑇∗𝐸(𝑇𝑇𝑛𝑖
∗ ) + 𝜽′𝒙𝑛𝑖)

∑ exp(𝛾𝑛,𝑇𝑇∗𝐸(𝑇𝑇𝑛𝑗
∗ ) + 𝜽′𝒙𝑛𝑗)

𝐽𝑛
𝑗=1

ℎ(𝛾𝑛,𝑇𝑇∗|�̅�)𝑑(𝛾𝑛,𝑇𝑇∗) 
(14) 

2.3.3 Multinomial logit (MNL) and mixed logit with error components (ML-EC) 

Simplifying the above model further by treating the travel time coefficient as deterministic results 

in the multinomial logit (MNL) model with expected trave time (𝐸(𝑇𝑇𝑛𝑖
∗ )) as one of the variables 

in the utility function. If the model specification includes error components to account for 

correlations among choice alternatives, then it would become a simple mixed logit model with 

error components (ML-EC) that does not accommodate stochasticity in travel time nor unobserved 

heterogeneity in the coefficient on travel time. 

3 ESTIMATION BIAS DUE TO IGNORING STOCHASTICITY IN VARIABLES 

In models that ignore stochasticity in explanatory variables (for example, travel time), the 

parameter estimates for the coefficients of such variables as well as those of other variables 

demonstrate a bias. Here, we discuss the nature of the bias. To do so, we consider two possible 

types of stochasticity in explanatory variables – additive stochasticity and multiplicative 

stochasticity – and consider each of the following cases for the coefficients on such variables: (1) 

the coefficient on the stochastic variable is random and follows a distribution that allows additive 

separability of the location parameter and the scale parameter (e.g., normal distribution); (2) the 

coefficient on the stochastic variable is random and follows a distribution that does not allow 

additive separability of the location parameter and the scale parameter (e.g., lognormal 

distribution).  

Consider a true model with the following utility function associated with alternative i 

(Note: In this discussion, the subscript n for traveller is suppressed for simplicity): 

𝑈𝑖 = 𝜽′𝒁𝑖 + 𝛽𝑋𝑖
∗ + 휀𝑖 (15) 
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In the above model, 𝒁𝑖 is a vector of deterministic variables with its coefficient vector 𝜽, 𝑋𝑖
∗ is a 

stochastic variable with a random coefficient 𝛽, and 휀𝑖 is an idiosyncratic random error term, 

assumed to be independent and identically distributed across individuals and alternatives. In 

addition, assume that 𝛽 and 𝑋𝑖
∗ are independent of each other and that 𝒁𝑖 and 𝑋𝑖

∗ do not offer any 

information on 휀𝑖 (i.e.,  𝐸(휀𝑖|𝒁𝑖) = 𝐸(휀𝑖|𝑋𝑖
∗) = 0). Further, let 𝑉𝑎𝑟(휀𝑖) = 𝜎

2  and 𝐸(휀𝑖) = 0.  

Now, let the measurement available with the analyst for 𝑋𝑖
∗ be  𝑋𝑖 . And let the gap between 

𝑋𝑖
∗ and 𝑋𝑖 be represented using an additive error term 𝜈𝑖; i.e., 𝑋𝑖

∗ = 𝑋𝑖 + 𝜈𝑖, where 𝐸(𝜈𝑖) = 0 and 

𝑉𝑎𝑟(𝜈𝑖) = 𝜎𝜈
2. With an additive error in representing the explanatory variable 𝑋𝑖

∗, the utility 

function in Equation (15) may be rewritten as: 

𝑈𝑖 = 𝜽′𝒁𝑖 + 𝛽𝑋𝑖 + 𝛽𝜈𝑖 + 휀𝑖 (16) 

If we estimate the above true model that recognizes the error 𝜈𝑖 in 𝑋𝑖
∗, then the kernel error term 

for such a model would be the same as 휀𝑖 with a variance 𝜎2. On the other hand, if we ignore the 

additive error 𝜈𝑖 in 𝑋𝑖
∗, then 𝜈𝑖 would get lumped into the kernel error, resulting in the following 

model with a new kernel error term 𝛿𝑖:  

𝑈𝑖 = 𝜽′𝒁𝑖 + 𝛽𝑋𝑖 + 𝛿𝑖 (17) 

In the above model, the new kernel error term 𝛿𝑖 can be expressed as  𝛽𝜈𝑖 + 휀𝑖. The variance of 

the new kernel error term 𝛿𝑖 in the above model is 𝑉𝑎𝑟(𝛽𝜈𝑖) + 𝜎
2, since 휀𝑖 and 𝜈𝑖 are independent 

(because 𝐸(휀𝑖|𝑋𝑖
∗) = 0). That is, the variance of 𝛿𝑖 is greater than the variance (𝜎2) of the kernel 

error term in the true model of Equation (15). 

Alternatively, consider a multiplicative specification for the error in 𝑋𝑖
∗. That is 𝑋𝑖

∗ = 𝑋𝑖𝜂𝑖, 

where 𝐸(𝜂𝑖) = 1 and 𝑉𝑎𝑟(𝜂𝑖) = 𝜎𝜂
2. Then, Equation (15) may be re-written as: 

𝑈𝑖 = 𝜽′𝒁𝑖 + 𝛽𝑋𝑖𝜂𝑖 + 휀𝑖 (18) 

If we do not explicitly recognize the error 𝜂𝑖 in the above model and include only 𝛽𝑋𝑖 in the utility 

function, it would result in the following model with a new kernel error term 𝜉𝑖: 

𝑈𝑖 = 𝜽′𝒁𝑖 + 𝛽𝑋𝑖 + 𝜉𝑖 (19) 
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In the above model, the new kernel error term 𝜉𝑖 can be expressed as  𝛽𝑋𝑖𝜂𝑖 − 𝛽𝑋𝑖 + 휀𝑖. The 

variance of this term is 𝑉𝑎𝑟(𝛽𝑋𝑖𝜂𝑖 − 𝛽𝑋𝑖) + 𝜎
2 , which is greater than the variance (𝜎2) of the 

kernel error term in the true model of Equation (15). 

In summary, regardless of whether the stochasticity in explanatory variables is additive or 

multiplicative, ignoring such stochasticity results in a model with a kernel error term that has a 

greater variance than that of the kernel error term in the true model. This result will have a bearing 

on the direction of bias in the parameter estimates of the model that ignores stochasticity in 𝑋𝑖
∗. 

Since the variance of the kernel error 𝛿𝑖 in Equation (17) and that of the kernel error 𝜉𝑖 in Equation 

(19) are greater than that of the true model in Equation (15), one can expect the estimates of the 

coefficient vector 𝜽 to be biased toward zero.7 This is because, regardless of the distributional 

assumption on 휀𝑖 (whether it is multivariate normal or Gumbel), the parameter estimates of the 

utility function are confounded with the scale of the kernel error term. 

The nature of bias in the parameter estimates of the distribution for 𝛽 depends on its 

distributional assumption. If 𝛽 follows a distribution that allows its location parameter to be 

additively separable from its scale parameter, such as 𝛽~𝑁(µ𝛽 , 𝜎𝛽
2) or 𝛽 = µ𝛽 + 𝜎𝛽𝑧𝛽, where 𝑧𝛽 

is a standard normal variate, then the estimates of both µ𝛽 and 𝜎𝛽 will be biased toward zero. This 

is because the utility function of Equation (17) may be written as: 

𝑈𝑖 = 𝜽′𝒁𝑖 + (µ𝛽 + 𝜎𝛽𝑧𝛽)𝑋𝑖 + 𝛿𝑖 (20) 

and the utility function of Equation (19) may be written as: 

𝑈𝑖 = 𝜽′𝒁𝑖 + (µ𝛽 + 𝜎𝛽𝑧𝛽)𝑋𝑖 + 𝜉𝑖 (21) 

It is clear from the above two utility functions that the estimates of both µ𝛽 and 𝜎𝛽 will be biased 

toward zero, because the variances of the kernel errors 𝛿𝑖 and 𝜉𝑖 are greater than the variance of 

the true model’s kernel error term. 

 
7 Note that this trend in bias (toward zero) is similar to the bias one can expect when a normally distributed random 

coefficient in the utility function is incorrectly specified as deterministic, which is an established result in the literature 

(Brownstone et al., 2000; Cherchi and Ortúzar, 2008; Swait and Bernardino, 2000, Train, 1998).  
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On the other hand, if 𝛽 follows a lognormal distribution such that 𝛽 = exp (µ𝛽 + 𝜎𝛽𝑧𝛽), 

where 𝑧𝛽 is a standard normal variate, the utility function of Equation (17) may be written as: 

𝑈𝑖 = 𝜽′𝒁𝑖 + 𝑒𝑥𝑝(µ𝛽) × exp(𝜎𝛽𝑧𝛽) × 𝑋𝑖 + 𝛿𝑖 (22) 

and the utility function of Equation (19) may be written as: 

𝑈𝑖 = 𝜽′𝒁𝑖 + 𝑒𝑥𝑝(µ𝛽) × exp(𝜎𝛽𝑧𝛽) × 𝑋𝑖 + 𝜉𝑖 (23) 

In the above two equations, since  µ𝛽 and 𝜎𝛽 are not additively separated, although the variances 

of the kernel error terms are inflated (when compared to that of the true model), one cannot say 

with certainty that both µ𝛽 and 𝜎𝛽 will be biased toward zero. Only one of them or both of them 

might be biased toward zero. It is also possible that one of the two parameter estimates gets biased 

toward zero while the other gets biased away from zero.  

4 SIMULATION EXPERIMENTS 

Three distinct sets of simulation experiments were conducted to evaluate parameter recovery of 

the proposed models and examine the repercussions of ignoring stochasticity in alternative 

attributes. The first set (Set I) of experiments is for a travel mode choice context with labelled 

alternatives. In this set of simulations, a truncated normal distribution was assumed for the travel 

time of one of the modes and a normal distribution was assumed for the coefficient on travel time. 

The experimental design and the findings from these experiments are presented in Section 4.1. 

The second set (Set II) of experiments is also for a mode choice setting. However, in these 

experiments, the travel times of one of the modes and the travel time coefficient were assumed to 

follow lognormal distributions. The experimental design and the findings from these experiments 

are presented in Section 4.2. 

The third set (Set III) of experiments is for a route choice context with unlabelled 

alternatives. In these simulations, normal distributions were assumed for both route-level travel 

times and the coefficient on travel times. The experimental design and the findings from these 

experiments are presented in Appendix A. 

In addition to the above three sets of simulation experiments, we conducted an additional 

fourth set (Set IV) of experiments, for the mode choice setting, to evaluate the effect of incorrect 

distributional assumptions on mode-specific travel times and the corresponding coefficient. Also, 
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we conducted a fifth set (Set V) of experiments for the mode choice setting to evaluate the 

influence of treating travel time as stochastic when there are no measurement errors in travel times 

(i.e., travel times are not stochastic). The experimental design and the findings from these two sets 

of experiments are presented in Appendices B and C, respectively. 

The travel mode choice context – common to all but the third set of experiments – involves 

three labelled alternatives, for which data were generated to reflect travel conditions akin to those 

in Bengaluru, India. The third set of simulation experiments is that of route choice with unlabelled 

alternatives, for which synthetic data were generated to mimic the empirical dataset we used for 

the empirical analysis on route choice from Florida, USA.   

4.1 Simulation experiment Set I: Mode choice setting with truncated normal distribution 

assumption for bus travel time and normal coefficient on travel time  

4.1.1 Simulation design  

The mode choice simulation experiments for set I were conducted using 200 simulated datasets, 

each dataset with a sample size of 5,000 individuals. Three modes – bus, car, and walk – were 

considered. Of these, bus and car were assumed to be available for all individuals, while the walk 

mode was assumed to be available for travel distances of 10 km or less. Two mode-specific 

attributes were considered in the utility functions: travel time and travel cost, as shown below:   

𝑈𝑏 = 𝛽0𝑏  + 𝛾𝑇𝑇∗𝑇𝑇𝑏
∗  + 𝛽𝐶𝑇𝐶𝑏 + 휀𝑏   

(24) 

𝑈𝑐 =              𝛾𝑇𝑇∗𝑇𝑇𝑐  + 𝛽𝐶𝑇𝐶𝑐 + 휀𝑐   
(25) 

𝑈𝑤 = 𝛽0𝑤  + 𝛾𝑇𝑇∗𝑇𝑇𝑤  + 휀𝑤  
(26) 

In the above utility functions, travel times of the bus mode (𝑇𝑇𝑏
∗) were considered stochastic (the 

specific value is unknown to the analyst) while those of other modes (𝑇𝑇𝑐 and 𝑇𝑇𝑤) were 

considered to be known to the analyst. To simulate travel times for the bus mode, the equation 

𝑇𝑇𝑏
∗ = 𝜃𝑏𝑑𝑏 was used, where 𝜃𝑏 is the inverse speed for the bus mode and 𝑑𝑏 is the trip distance 

on bus. 𝜃𝑏 was assumed to follow a left-truncated normal distribution, whose underlying normal 

distribution mean is 1.50 min/km (which corresponds to a maximum speed of 40 kmph) and 

standard deviation (SD) is 0.15. The left-truncation value for 𝜃𝑏 is 1.33 min/km (i.e., a maximum 

bus speed of 45 kmph in the city), which was assumed to be known while the afore-mentioned 
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mean and standard deviation are parameters to be estimated. Trip distance (𝑑𝑏) is an exogenous 

variable representing distances travelled in Bengaluru. 𝑇𝐶𝑏 and 𝑇𝐶𝑐 are travel costs of the bus and 

car modes, respectively, which were assumed to be free of measurement errors. Data for 𝑇𝐶𝑏 were 

generated to reflect distance-based bus ticket prices in the city, and data for 𝑇𝐶𝑐 were generated 

based on fuel price in Bengaluru and average mileage of a hatchback car model. The travel time 

coefficient (𝛾𝑇𝑇∗) was assumed to follow a normal distribution with mean -1.00 and standard 

deviation (SD) 0.19. The travel cost coefficient (𝛽𝐶) was assumed to be -0.25. Finally, the error 

terms (휀𝑏, 휀𝑐, 휀𝑤) were assumed to be IID standard Gumbel distributed.  

 Using the above utility functions and the utility maximization principle, 200 mode choice 

datasets, each comprising 5,000 trips were simulated. For each of the 5,000 trips from each of the 

200 datasets, a single measurement of bus travel time (i.e., observed travel time or 𝑂𝑇𝑇𝑖𝑚) was 

simulated by adding a normal distributed measurement error to the simulated value of 𝑇𝑇𝑏
∗. The 

standard deviation of this measurement error was assumed to be 0.95.  

4.1.2 Evaluation and discussion 

The above-discussed simulated data of mode choices and observed travel times (𝑦𝑖, 𝑂𝑇𝑇𝑖𝑚) along 

with the simulated exogenous variables (𝑑𝑏, 𝑇𝐶𝑏, 𝑇𝐶𝑐, 𝑇𝑇𝑐, 𝑇𝑇𝑤) were used to estimate the models 

discussed in Section 2. Parameter recovery across the 200 simulated datasets was examined using 

the metrics summarized below: 

(1) Absolute Percentage Bias (APB): For a given parameter in the model, APB is the absolute 

value of the difference between the true parameter value and the mean of the parameter estimates 

across the 200 simulated datasets – expressed as a percentage of the true parameter value.  

(2) Asymptotic Standard Error (ASE): ASE for a given parameter is the mean (across the 200 

simulated datasets) of the standard errors of the parameter’s estimated values. 

(3) Finite Sample Standard Error (FSSE): FSSE for a given parameter is the standard deviation of 

the parameter’s estimated values across the 200 datasets.  

The above set of metrics are used to evaluate the simulation results for this set as well as 

in the following sub-sections for the other sets of simulation experiments. 

Table 1 presents the above evaluation metrics for different models estimated in this study. 

The true parameter values used for simulating the data are shown in the second column of the 
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table. The next set of columns, under the title “ICSV-RC model parameter estimates”, shows the 

parameter recovery metrics for the ICSV-RC model. As can be observed from these columns, the 

parameters of both the travel time model and the mode choice model are recovered accurately (i.e., 

with low APB) and precisely (i.e., with low standard errors). In addition, the closeness of the FSSE 

and ASE values suggests that the estimator of the standard error serves as a good approximation 

to the finite sample efficiency for the sample size considered in the study. Further, it is worth 

noting from Table 1 that the APB values of the ICSV-RC model are lower than those of all other 

models – ICSV, ML-RC, ML-SV and MNL models.  

Recall that the ML-SV model, similar to the ICSV-RC model, also accommodates the two 

sources of stochasticity, albeit through a sequential estimation approach. Between the choice 

components of the ML-SV and ICSV-RC models, the ML-SV demonstrates relatively higher APB 

values than the ICSV-RC model. Further, as expected, the ML-SV model is associated with higher 

FSSE values and a wider gap between ASE and FSSE values than the ICSV-RC model. At the 

same time, the ML-SV model, although associated with a higher estimation bias and lower 

efficiency than the ICSV-RC model, performs superior to the other models that ignore stochasticity 

in travel time or in its coefficient. This finding again highlights that there is value in incorporating 

stochasticity in explanatory variables, even if through a sequential approach.  

Next, we turn to the direction of bias in the parameter estimates for the ML-RC model that 

ignores travel time variability when compared to the ICSV-RC model that incorporates travel time 

variability. In Table 1, the column titled “t-stat. for 𝐻0: �̂�𝐼𝐶𝑆𝑉−𝑅𝐶 = �̂�𝑀𝐿−𝑅𝐶” presents the t-test 

statistics for the null hypothesis that the magnitude of the parameter estimates from the ICSV-RC 

model are statistically the same as those from the ML-RC model.8 As can be observed from the 

parameter estimates of the two models (ICSV-RC and ML-RC) and the t-test statistics, both the 

 
8 The paired t-statistic values for the difference between the parameter estimates of the ICSV-RC model (label it Model 

1) and those of another model (label it Model 2) were computed using the expression below: 

𝑡 =

(

 
Mean(𝛽𝑚1̂)  − Mean(𝛽𝑚2̂)

√𝐴𝑆𝐸𝛽𝑚1̂
2 + 𝐴𝑆𝐸𝛽𝑚2̂

2 − 2 × 𝐶𝑜𝑣(𝛽𝑚1̂, 𝛽𝑚2̂))

  

In the above expression, Mean(𝛽𝑚1̂) and Mean(𝛽𝑚2̂) are the mean values (across the 200 simulated datasets) of the 

parameter estimates of the coefficients from Model 1 and Model 2, respectively. 𝐴𝑆𝐸𝛽𝑚1̂  and 𝐴𝑆𝐸𝛽𝑚2̂  are the 

corresponding asymptotic standard errors computed as the averages of the standard errors across the 200 datasets. 

𝐶𝑜𝑣(𝛽𝑚1̂, 𝛽𝑚2̂) is the covariance between the parameter estimates across the 200 datasets. The denominator of the 

above expression represents the standard error of the difference.  
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estimated mean and standard deviation of the coefficient on travel time are biased towards zero in 

the ML-RC model. Further, the other parameters in the mode choice utility functions also 

demonstrate a similar trend – a bias towards zero – in the ML-RC model when compared to models 

that incorporate both travel time variability and random coefficient on travel time. These results 

are in line with the discussion in Section 3 on the repercussions of ignoring stochasticity in 

explanatory variables. In addition, the parameter estimates in the mode choice model component 

of the ICSV model are also biased towards zero when compared to those in the choice component 

of the ICSV-RC model. Although not shown in the table, similar t-tests suggest rejecting the null 

hypothesis that the parameter estimates of the ML-SV model (which incorporates stochasticity in 

travel time using sequential estimation) are same as those from the ML-RC model. The bias 

increases further in the MNL model that ignores both sources of variability – stochastic variables 

and random coefficients on those variables. These results highlight the importance of incorporating 

both sources of variability, ignoring either of which would result in parameter estimates with a 

systematic bias toward zero. 

Furthermore, although not reported in the table, in most of the 200 datasets, the data fit of 

the mode choice component of the ICSV-RC model was statistically superior (as tested by the log-

likelihood ratio test) to that of other models that ignore either the randomness in travel time (ML-

RC model), or randomness in the coefficient of travel time (ICSV model), or both sources of 

stochasticity (MNL). The average likelihood values and other metrics such as Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) were also much better (by at least a few 

hundred points) for the mode choice component of the ICSV-RC than those of ICSV, ML-RC, and 

MNL models. These results highlight the importance of incorporating stochasticity in explanatory 

variables and the coefficients on such variables. Ignoring any of these two sources of variability, 

when present, can potentially lead to inferior parameter recovery and model fit.  
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Table 1 Simulation evaluation results for the mode choice setting (Set I): Truncated normal distribution for travel time and normal distributed coefficient on travel time 
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Bus travel time model                        

  Inverse speed 𝜃𝑏:  

    Location parameter 1.50 1.49 0.7 0.002 0.004 1.47 1.8 0.002 0.004 4.07 
-- -- -- -- -- 

1.51 0.7 0.006 0.008 
-- -- -- -- 

  Inverse speed 𝜃𝑏: 

    Scale parameter 0.15 0.14 9.3 0.002 0.003 0.13 14.2 0.002 0.003 1.20 
-- -- -- -- -- 

0.11 26.7 0.005 0.004 
-- -- -- -- 

  SD of measurement error 0.95 0.93 2.1 0.045 0.043 0.94 1.3 0.045 0.043 0.16 -- -- -- -- -- 1.45 52.6 0.063 0.089 -- -- -- -- 

  Mean APB, FSSE, ASE  -- -- 4.1 0.016 0.017 -- 5.7 0.017 0.017 
-- -- -- -- -- -- -- 26.7 0.025 0.034 -- -- -- -- 

Mode choice model                        

  ASC for transit -0.56 -0.53 5.4 0.066 0.069 -0.61 8.9 0.056 0.067 0.87 -0.22 60.0 0.053 0.057 3.59 -0.28 50.5 0.084 0.066 -0.24 56.9 0.053 0.056 

  ASC for walk 1.56 1.47 5.9 0.120 0.114 1.17 24.8 0.093 0.096 2.01 1.02 34.6 0.097 0.095 3.20 1.37 12.1 0.230 0.114 0.96 38.2 0.090 0.092 

  Mean of travel time 

coefficient 𝛾𝑇𝑇∗  -1.00 -0.91 8.9 0.048 0.045 -0.76 23.5 0.032 0.028 2.95 -0.67 32.7 0.029 0.028 4.34 -0.91 8.6 0.107 0.046 -0.61 38.9 0.020 0.019 

  SD of travel time 

coefficient 𝛾𝑇𝑇∗   0.19 0.19 0.5 0.020 0.016 
-- -- -- -- -- 

0.09 50.2 0.016 0.014 3.92 0.17 8.8 0.053 0.017 
-- -- -- -- 

  Cost coefficient (𝛽𝐶)  -0.25 -0.23 6.1 0.013 0.014 -0.21 15.5 0.011 0.011 1.22 -0.19 25.6 0.009 0.009 4.01 -0.25 0.9 0.025 0.014 -0.17 31.3 0.009 0.008 

  Mean of APB, FSSE, 

ASE -- -- 7.0 0.053 0.051 -- 18.2 0.048 0.050 -- -- 40.6 0.041 0.041 -- -- 16.2 0.099 0.051 -- 41.3 0.043 0.044 
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Between the ICSV-RC and ML-SV models, both of which accommodate both the sources 

of variability in consideration, the latter provides a slightly better fit. Since the two-step estimation 

using maximum likelihood techniques involves separate optimization of likelihoods in two 

different steps (the integrated estimation optimizes the joint likelihood), the two-step estimation is 

likely to show better fit than that from the simultaneous estimation approach, unless there is a large 

enough bias in parameter estimates due to endogeneity issues in the two-step approach (see Vij 

and Walker, 2016 for a similar finding and a discussion in the context of ICLV models). If there is 

no strong reason for endogeneity between the two steps conditional on the same travel time 

distribution entering the measurement equations in both the steps, it might be easier for the analyst 

to enhance the characterization of the travel time distribution using more advanced approaches 

while using sequential estimation (i.e., the ML-SV approach) to estimate the relevant parameters. 

Of course, the standard errors may have to be corrected to address loss in efficiency. 

Finally, during the estimation of the ICSV-RC model on each of the 200 datasets, we 

explored different sets of starting values for the parameters. For each dataset, the ICSV-RC model 

converged to the same maximum likelihood parameter estimates regardless of the starting 

parameter values employed in estimation. This pattern indicates that the ICSV-RC model did not 

encounter a flat likelihood surface at the maximum likelihood values of the parameters. That is, 

the ICSV-RC model can be used to simultaneously identify stochasticity in alternative attributes 

and their coefficients – if data are available on attribute measurements and traveller choices. 

4.2 Simulation experiment Set II: Mode choice setting with lognormal distribution 

assumption for bus travel time and lognormal coefficient on travel time  

For this set of experiments, we modified the simulations conducted for the mode choice setting 

discussed in Set I by assuming a lognormal distributed bus travel time and a lognormal distributed 

coefficient on travel time. To simulate bus travel times, the same equation 𝑇𝑇𝑏
∗ = 𝜃𝑏𝑑𝑏 was used, 

and 𝜃𝑏 was assumed to follow lognormal distribution whose underlying normal distribution 

location parameter is 0.49 min/km and scale parameter is 0.25. The assumptions for generating 

other exogenous variables remained unchanged. Next, the travel time coefficient (𝛾𝑇𝑇∗) was 

assumed to follow a lognormal distribution with the underlying normal location parameter -1.00 

and scale parameter 0.05 (specifically, the negative of the values drawn from this distribution were 

used for the travel time coefficient). True values assumed for other parameters were the same as 

those in Section 4.1.1. Using these assumptions, 200 mode choice datasets, each comprising 5,000 
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trips were simulated. For each of these trips from the 200 datasets, a single measurement of bus 

travel time was simulated by adding a normal distributed measurement error to the simulated value 

of 𝑇𝑇𝑏
∗. The standard deviation of this measurement error was assumed to be 0.95, as earlier.  

    The simulation results for this set of experiments (Table 2) indicate accurate and precise 

recovery of parameters for both the travel time and the mode choice components in the ICSV-RC 

model. Further, the APB values of the ICSV-RC model are lower than those of the ICSV and the 

ML-RC models. These findings are similar to those from the experiments in Set I. Next, note that 

the mean (across 200 datasets) estimate of the location parameter for the coefficient on travel time 

is biased away from zero in the ML-RC model when compared to that in the ICSV-RC model. On 

the other hand, the mean estimate of the scale parameter for this coefficient is biased toward zero. 

This contrasts with the finding in the context of experiments in Set I, where both location and scale 

parameters estimated from the ML-RC model were biased toward zero. This finding is in line with 

our theoretical discussion in Section 3 on the repercussions of ignoring stochasticity in variables 

with log-normal distribution – only one or both of the location and scale parameters might be 

biased toward zero, or one of the two parameter estimates gets biased toward zero while the other 

gets biased away from zero. All other parameter estimates in the ML-RC mode choice utility 

functions demonstrate a bias toward zero when compared to those in the ICSV-RC model. In 

addition, the magnitude of bias in the ICSV model is lower than that in the ML-RC model.  

The simulation results for the ICSV-RC and ML-RC models in Table 1 and Table 2 

highlight another finding. Specifically, note from Table 1 that the trace of the covariance matrix 

of coefficients for the choice model component was 0.258 when stochasticity in bus travel time 

was incorporated in the model (i.e., the ICSV-RC model) and 0.203 when stochasticity in bus travel 

time was present but ignored in the model (i.e., the ML-RC model). The corresponding trace values 

for the ICSV-RC and ML-RC models in Table 2 are 0.271 and 0.220, respectively. These results 

indicate that the standard errors are underestimated using the ML-RC model that ignores 

stochasticity in an exogenous variable. This is because the standard errors of coefficients in the 

ML-RC model are predicated on the assumption that the observations on the stochastic exogenous 

variable will remain the same in repeated samples. Given a stochastic exogenous variable, this will 

not be the case, implying that the standard errors will, in general, be underestimated using a 

framework such as the ML-RC (leading to potentially incorrect inferences).  
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Table 2 Simulation evaluation results for the mode choice setting (Set II): Lognormal distribution assumption for travel time and its 

coefficient 
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�̂�𝐼𝐶𝑆𝑉−𝑅𝐶  

= �̂�𝑀𝐿−𝑅𝐶  

Bus travel time model                

  Inverse speed 𝜃𝑏:  

    Location parameter 
0.49 0.44 10.48 0.008 0.004 0.44 11.11 0.008 0.003 0.49 -- -- -- -- -- 

  Inverse speed 𝜃𝑏: 

    Scale parameter 
0.25 0.22 10.07 0.013 0.002 0.22 11.71 0.009 0.002 1.58 -- -- -- -- -- 

  SD of measurement error 0.95 0.95 0.43 0.006 0.006 0.95 0.42 0.007 0.006 0.02 -- -- -- -- -- 

  Mean APB, FSSE, ASE  -- -- 6.99 0.009 0.004 -- 7.74 0.008 0.004 -- -- -- -- -- -- 

Mode choice model                

  ASC for transit -0.56 -0.56 0.07 0.067 0.070 -0.68 22.25 0.081 0.064 1.32 -0.32 42.69 0.046 0.053 2.74 

  ASC for walk 1.56 1.41 9.35 0.176 0.122 1.22 21.61 0.141 0.112 1.02 0.64 59.07 0.097 0.101 4.38 

  Travel time coefficient 𝛾𝑇𝑇∗ - 
Location parameter -1.00 -0.98 1.72 0.051 0.041 -0.97 2.53 0.069 0.037 0.12 -1.39 38.94 0.028 0.033 9.46 

  Travel time coefficient 𝛾𝑇𝑇∗ -
Scale parameter 0.05 0.05 1.90 0.029 0.027 0.00 -- -- -- -- 0.00039 99.21 0.0001 0.026 1.31 

  Cost coefficient (𝛽𝐶)  -0.25 -0.26 5.34 0.013 0.011 -0.27 6.78 0.018 0.011 0.19 -0.18 28.01 0.005 0.007 7.57 

  Mean of APB, FSSE, ASE -- -- 6.68 0.067 0.054 -- 13.29 0.077 0.056 -- -- 53.58 0.035 0.044 -- 
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5 EMPIRICAL ANALYSIS 

In this section, we present an empirical analysis for a joint analysis of route-level travel time and 

route choice while considering both stochasticity in network travel times and random 

heterogeneity in sensitivity to travel time. This empirical analysis is focused more on corroborating 

the findings from the earlier sections than on the substantive aspect of route choice analysis itself. 

5.1 Empirical data 

The main source of empirical data for this analysis, provided by the American Transportation 

Research Institute (ATRI) is a large truck-GPS dataset of about 96 million GPS traces in the state 

of Florida, USA (Pinjari et al., 2015). The raw data were first converted into a database of truck 

trips by Thakur et al. (2015) using GPS-to-trip conversion algorithms. For these trips, the travelled 

routes were not readily observable in the form of network links and nodes traversed between the 

OD locations. The raw GPS data was map-matched to the roadway network to derive the travelled 

routes using a high-resolution roadway network obtained from the Florida Department of 

Transportation (FDOT) (Tahlyan et al., 2017). Such truck route choice data were generated for a 

total of 8211 truck trips in the state of Florida. 

For all the 8211 trucks trips used in this study, route choice sets were generated by Tahlyan 

and Pinjari (2020) using the Breadth First Search-Link Elimination (BFS-LE) algorithm proposed 

by  Rieser-Schüssler et al. (2013). 9 For each trip, the BFS-LE algorithm was run to generate up to 

16 unique route choice alternatives. For some of these trips, the chosen route was included as an 

additional choice alternative since the choice set did not include the chosen route completely. Next, 

for all route alternatives of each of the 8211 truck trips, route attributes such as the total route 

length, lengths on different types of roads, number of intersections, and the proportion of toll road 

length were derived. In addition, to account for the degree of overlap of a route with other routes 

in the choice set for that same OD pair, a path-size attribute (Ben-Akiva and Bierlaire, 1999) was 

 
9 The BFS-LE is a deterministic link elimination approach based on a repeated least cost path search, where links on 

the current shortest path are eliminated, one by one, to find subsequent least cost paths.  Hence, it is well-suited for 

extracting routes from large-scale, high-resolution networks. The primary difference between this algorithm when 

compared against other link-elimination approaches is that it uses a tree structure in which each node is a network. 

Starting initially with the original network (which is the root node of the tree), any unique network obtained after the 

elimination of a link from a current least cost path is a node of the tree, given that the network offers at least one 

feasible route for the OD pair under consideration.  
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computed, where a greater path-size value indicates a smaller extent of overlap and a path-size 

value of one indicates no overlap.10  

The same GPS data were used to extract measurements of travel times for each of the 8211 

chosen routes. Among the chosen routes, the number of available travel time measurements varied 

from one to as many as ten or more, although more than 70% of the chosen routes had only one or 

two measurements. Non-chosen route alternatives did not have travel time measurements. 

It is worth noting here that travel time measurements were available for only chosen routes. 

However, the chosen routes across all the trips in the dataset provided good spatial coverage of the 

network and the different types of links in the roadway hierarchy (the coverage was assessed based 

on a visual examination of all the chosen routes overlaid on the complete network). Further, the 

chosen routes overlapped to some extent with the non-chosen routes, which is a common 

phenomenon in route choice sets. Besides, the data were sampled from different days across four 

different months (October 2015, December 2015, April 2016, June 2016) and different times of 

the day. Therefore, a bias due to using only the chosen routes’ travel time data is less likely in the 

current empirical study. However, if the chosen routes in the estimation dataset lacked adequate 

spatiotemporal coverage or if systematically more or less congested parts of the network were not 

represented in the observed route choice data, the model parameter estimates would likely be 

biased. This is because the travel time model parameter estimates would be based on data that 

might not provide adequate spatiotemporal coverage of travel conditions. To address this issue, 

one needs to explore other sources of travel time measurements for travel conditions that are not 

well-represented in the observed route choice data. Since emerging travel time data sources such 

as GPS probe data are typically very large and provide a very good coverage of the network, the 

use of travel time measurements of only chosen routes is not likely to be a major concern in other 

such applications. 

5.2 Empirical results and findings  

Table 3 presents the parameter estimates for the empirical route choice models estimated in this 

study – ICSV-RC, ICSV, ML-RC, ML-SV and ML-EC. In all these models, we included error 

 
10 The path-size variable for a route 𝑖 is defined as: 𝑃𝑆𝑖 = ∑ (

𝑙𝑎

𝐿𝑖
)

1

∑ 𝛿𝑎𝑗𝑗𝜖𝐶𝑛
𝑎𝜖𝛤𝑖

 , where 𝛤𝑖  is the set of all links in 

path/route 𝑖 between the OD pair n, 𝑙𝑎 is the length of link 𝑎, 𝐿𝑖 is the length of path 𝑖, 𝐶𝑛 is the choice set of route 

alternatives between the OD pair n. 𝛿𝑎𝑗 is equal to 1 if a route 𝑗 𝜖 𝐶𝑛 uses link 𝑎 and 0 otherwise. 
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components to consider correlations among route-specific utility functions due to unobserved 

factors. Due to the importance of such error correlations in route choice settings, we do not report 

a simple MNL model. Next, we briefly discuss the empirical results from the ICSV-RC model and 

compare them with those of other models to evaluate the importance of accommodating both 

sources of stochasticity discussed earlier. 

5.2.1 Empirical results from the ICSV-RC model 

The columns in Table 2 under the title “ICSV-RC model” present the parameter estimates for the 

ICSV-RC model where both the travel time and its coefficient are specified as random. In this 

model, the random coefficients in the stochastic travel time function (Equation (3)) were specified 

as normally distributed. Other distributional assumptions could be made in this regard, such as a 

truncated normal or a shifted lognormal; however, we used the normal distribution specification 

as an initial effort to disentangle variability in travel time from that in its coefficient (which is also 

assumed to be normally distributed).  

As can be observed from the parameter estimates of the stochastic travel time equation, the 

estimates for mean inverse speeds (in minutes per mile) and the corresponding standard deviations 

are in increasing order from interstates to local roads. This is intuitive given that interstates figure 

at the top in the hierarchy of functional classification of roadways. Further, the probability of zero 

or negative values of the mean inverse speeds is zero for all practical purposes (less than 8.6x10-3 

for minor arterials and of the order of 10-6 or lesser for other roadway functional classes). The 

value of mean junction-crossing time at turns (0.194 minutes per turn) also turned out to be 

statistically significant.  

As discussed in Section 2, the measurement equation for the travel time model includes a 

measurement error term. The standard deviation estimate in the measurement equation for travel 

time suggests a significant error in the measurement or extraction of travel time using GPS data. 
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Table 3 Empirical results for the route choice setting 

 

ICSV-RC model ICSV model ML-RC model ML-SV model ML-EC model 

Par. 

est. 

Std.  

error 

Par. 

est. 

Std. 

error 

t-stat for 

𝐻0:  

�̂�𝐼𝐶𝑆𝑉−𝑅𝐶
= �̂�𝐼𝐶𝑆𝑉 

Par.  

est.  

Std.  

error 

t-stat for 

𝐻0:  

�̂�𝐼𝐶𝑆𝑉−𝑅𝐶
= �̂�𝑀𝐿−𝑅𝐶  

Par. 

est.  

Std. 

error 

Par. 

est.  

Std. 

error 

Structural eqn. for stochastic travel time             

   Interstate highway length - mean parameter 0.955 0.0017 0.945 0.0017 -- -- -- -- 0.965 0.0019 -- -- 

   Major arterial length - mean parameter 1.284 0.0050 1.322 0.0056 -- -- -- -- 1.277 0.0069 -- -- 

   Minor arterial length - mean parameter 1.599 0.0120 1.709 0.0156 -- -- -- -- 1.425 0.0192 -- -- 

   Collector street length - mean parameter 1.924 0.0199 2.180 0.0267 -- -- -- -- 1.690 0.0318 -- -- 

   Local road length - mean parameter 2.784 0.0398 2.851 0.0458 -- -- -- -- 2.881 0.0654 -- -- 

   Total number of junctions - mean parameter 0.194 0.0148 0.067 0.0155 -- -- -- -- 0.275 0.0239 -- -- 

   Interstate highway length - SD parameter 0.069 0.0006 0.060 0.0006 -- -- -- -- 0.068 0.0069 -- -- 

   Major arterial length - SD parameter 0.212 0.0042 0.235 0.0041 -- -- -- -- 0.174 0.0055 -- -- 

   Minor arterial length - SD parameter 0.510 0.0038 0.573 0.0050 -- -- -- -- 0.522 0.0062 -- -- 

   Collector street length - SD parameter 0.407 0.0153 0.559 0.0176 -- -- -- -- 0.498 0.0280 -- -- 

Measurement eqn. for travel time             

   SD of measurement error in GPS data 3.603 0.0024 3.597 0.0025 -- -- -- -- 3.597 0.0024 -- -- 

Route choice utility functions             

   Mean of route-level travel time coefficient -1.243 0.0470 -0.475 0.0090 16.05 -1.072 0.0346 2.94 -1.276 0.0535 -0.449 0.0064 

   SD of route-level travel time coefficient 0.871 0.0338 0.000 -- -- 0.678 0.0253 4.56 0.979 0.0402 -- -- 

   Natural logarithm of path size -2.340 0.0880 -2.048 0.0597 2.75 -1.119 0.6331 1.91 -3.058 0.0927 -1.014 0.5114 

   Proportion of tolled portion on the route -7.644 1.0444 -7.214 0.7804 0.33 -5.245 0.0640 2.29 -7.029 0.9980 -3.637 0.0892 

   Error components in utility functions             

   SD of error component on square root of route 

length on Interstate 75 in Florida 
5.558 0.2522 2.945 0.1196 9.35 4.257 0.2172 3.91 6.285 0.2890 2.994 0.0923 

   SD of error component on square root of route 

length on Polk Parkway in Florida 
3.403 0.2813 2.724 0.2548 1.79 3.127 0.3568 0.61 4.135 0.4789 2.386 0.2092 
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Moving on to the route-choice model component, it is notable that in addition to allowing 

the estimation of random coefficients in the stochastic travel time equation (i.e., stochasticity in 

travel time), the model allows the estimation of a random coefficient on travel time in its route 

choice utility component. Specifically, the mean and standard deviation parameter estimates of 

𝛾𝑇𝑇∗  (see the coefficient on route-level travel time distribution and its standard deviation in Table 

2) are statistically significant and reasonable, with more than 92% of the population having a 

negative value for 𝛾𝑇𝑇∗.  

In the remainder of the route choice utility function, the coefficient for the natural logarithm 

of path size has a negative sign, which is expected because routes with higher overlap would each 

have a lower probability of being chosen than the probability of all of them being chosen. Further, 

the coefficient on the proportion of tolled roads on a route is negative, indicating lower utilities for 

routes having greater proportions of tolled lengths, ceteris paribus. In addition, the error 

components specified in the utility functions to capture inter-route correlations are statistically 

significant. 

5.2.2 Empirical results from the ICSV model 

Now, we turn to the set of parameter estimates for the ICSV model in Table 2, where the travel 

time coefficient was estimated as a fixed parameter. The parameter estimates for the choice model 

component in this model are lower in magnitude than those in the ICSV-RC model. These 

differences in the parameter estimates between the two models, as evident from the corresponding 

t-statistic values reported in the table under the column ‘t-stat for 𝐻0: �̂�𝐼𝐶𝑆𝑉−𝑅𝐶 = �̂�𝐼𝐶𝑆𝑉’, are statistically 

significant. As discussed in Section 3, ignoring randomness in the coefficient on the stochastic 

travel time has likely led to a systematic bias in the parameter estimates of the choice model.  

5.2.3 Empirical results from mixed logit models 

Let us now examine the results for the ML-RC model, which ignores the stochasticity in travel 

time. Similar to the ICSV model, the ML-RC route choice model parameter estimates for the mean 

and standard deviation coefficients on route-level travel time are lower in magnitude than those in 

the ICSV-RC model. This finding, once again, corroborates our claims from Section 3. In 

particular, the statistically significant underestimation of the two primary model parameters under 

scrutiny (the mean and standard deviation of the coefficient on travel time) when travel time 
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stochasticity is ignored highlights the drawbacks of using conventional mixed logit models in 

settings that involve random variables such as travel time as well as randomness in the sensitivity 

to such variables.  

The ML-EC model’s coefficient on route-level travel time also shows a bias toward zero. 

Since this model ignores both sources of variability, the bias in its parameter estimates is greater 

than that in the ICSV model or the ML-RC model. 

Next, recall that the ML-SV model differs from the ICSV-RC model in that the distribution 

parameters of travel time are estimated a priori from a predecessor travel time model. As such, the 

estimates presented for the bus travel time model (under the column ‘ML-SV model’ in  

Table 3) are based on a separate earlier estimation. Comparing the route choice components 

of the ICSV-RC model and those of the ML-SV model, one can observe that the parameter estimates 

are quite close between the two models. This is because both these models consider stochasticity 

in travel times and a random coefficient on travel time. However, as discussed earlier, the standard 

errors of the parameter estimates in the ML-SV model are higher than those in the ICSV-RC model. 

5.2.4 Goodness-of-fit in estimation and validation samples 

To assess the goodness-of-fit of the various empirical models estimated in this study, we conducted 

a five-fold validation. That is, from the full dataset of 8,211 trips available for the empirical study, 

we randomly drew five estimation samples of 6,453 trips and estimated all the above-discussed 

models. For each of the five estimation samples of 6,453 trips, the remaining 1,758 trips were kept 

aside for validation purposes. Subsequently, we computed the goodness-of-fit metrics shown in 

Table 4 for all five sets of estimation and validation samples (for each set of estimation and 

validation samples, the parameter estimates from the corresponding estimation sample were used). 

These metrics include log-likelihood at convergence for the integrated models, log-likelihood at 

convergence for only the route choice model component, Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) values for the route choice model component, and adjusted 

McFadden’s Rho-square for the route choice model component. Average values of these metrics 

(averaged across the five sample datasets) are reported in Table 3 – separately for the estimation 

samples (in the upper set of rows) and the validation samples (in the lower set of rows).   
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Table 4 Goodness-of-fit metrics in estimation and validation samples 

Goodness-of-fit measures in estimation samples 
ICSV-RC 

model 

ICSV 

model 

ML-RC 

model 

ML-SV 

model 

ML-EC 

model 
 

Log-likelihood at convergence for both travel 

times and route choices 
-215846.07 -216424.19 -- -209100.62 --  

Log-likelihood of only route choice component  -6464.24 -6935.97 -6554.99 -6458.20 -7178.41  

No. of parameters in the full model 16 15 6 16 5  

No. of parameters estimated in the choice model  16 15 6 16 5  

AIC for the full model 431724.14 432878.38 13121.98 418233.24 14366.82  

AIC for choice model component  12960.47 13901.94 13121.98 12948.40 14366.82  

BIC for the full model 431832.50 432979.96 13162.61 418341.60 14400.68  

BIC for choice model component  13068.83 14003.52 13162.61 13056.75 14400.68  

Adjusted Rho-squared for the full model 0.756 0.755 0.589 0.763 0.550  

Adjusted Rho-squared for the choice model 0.594 0.564 0.589 0.594 0.550  

Goodness-of-fit measures in validation samples 

using parameters from estimation samples 

ICSV-RC 

model 

ICSV 

model 

ML-RC 

model 

ML-SV 

model 

ML-EC 

model 

 

 
Log-likelihood at estimated parameter values 

for both travel times and route choices 
-62750.09 -62889.24 -- -60589.32 --  

Log-likelihood of only route choice component  -1687.70 -1840.94 -1701.32 -1683.49 -1896.91  

AIC for the full model 125532.20 125808.48 3414.65 121210.64 3803.82  

AIC for choice model component  3407.39 3711.89 3414.65 3378.99 3803.82  

BIC for the full model 125619.74 125890.56 3447.48 121298.19 3831.18  

BIC for choice model component  3494.94 3793.97 3447.48 3486.54 3831.18  

Adjusted Rho-squared for the full model 0.753 0.752 0.622 0.761 0.578  

Adjusted Rho-squared for the choice model 0.622 0.589 0.622 0.623 0.578  

As can be observed from the table, the choice model components of both ICSV-RC and the 

two-step ML-SV models provide better goodness of fit measures than those of ICSV, the ML-RC, 

and the ML-EC models. The same trend can be observed in both estimation and validation samples. 

It is an expected result that the models that incorporate both stochasticity in travel times and 

randomness in the coefficient on travel time provide a better fit than other models that ignore one 

or both sources of variability. However, it is interesting to note that the loss in fit is greater when 

the variability in the random coefficient on travel time is ignored (ICSV model) than when 

stochasticity in travel time is ignored (ML-RC model). 

Between the ICSV-RC and ML-SV models, both of which accommodate both the sources 

of variability in consideration, the latter provides a slightly better fit. A plausible reason for this 

has been discussed in Section 4.2 in the context of simulation results. This result, combined with 

the similarity of the parameter estimates between the two models, opens scope for enhancing the 
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characterization of the travel time distribution using more advanced approaches while using 

sequential estimation to estimate the relevant parameters.    

6 SUMMARY AND CONCLUSIONS 

In this study, we formulate a choice modelling framework that allows the analyst to accommodate 

stochasticity in explanatory variables and random coefficients on such variables. Specifically, we 

develop an integrated choice and stochastic variable modelling framework with random 

coefficients (i.e., an ICSV-RC framework) to disentangle travel time variability from unobserved 

heterogeneity in response to travel time in travel choice models. The ICSV-RC model allows the 

identification of both the sources of variability – stochastic explanatory variables (such as travel 

time) and random coefficients on those variables – due to its ability to bring together travel choice 

data and measurement data for the stochastic variables. The measurement data of the stochastic 

variables (travel time) allows the estimation of parameters for the stochastic variables and the 

travel choice data allows the estimation of random coefficients on the stochastic variables. In 

addition, we show that ignoring either source of stochasticity – stochasticity in alternative 

attributes or heterogeneity in response to the attributes – results in models with inferior goodness-

of-fit and a systematic bias in all parameter estimates. If the stochasticity in an alternative attribute 

is ignored and the random coefficient on that attribute is distributed such that the location and scale 

parameter are additively separable (e.g., normal distributed random coefficient), we show that the 

estimates of both location and scale parameters of the random coefficient would be biased toward 

zero. Furthermore, ignoring stochasticity in an alternative attribute, when stochasticity is present, 

leads to underestimation of the standard errors. We demonstrate such repercussions of ignoring 

stochastic explanatory variables using simulation experiments in two distinct choice settings – one 

involving labelled mode choice alternatives and the other involving unlabelled route choice 

alternatives. Furthermore, we applied the ICSV-RC model to an empirical analysis of truck route 

choice in Florida, USA. The integrated model was found to successfully disentangle stochasticity 

in route-level travel time from heterogeneity in response to travel time. Simpler versions of the 

model that ignore either stochasticity in travel time or impose a deterministic coefficient on travel 

time had inferior goodness-of-fit and showed a bias in the parameter estimates. These results 

highlight the importance of accounting for both sources of variability. 

The ICSV-RC methodology in this paper overcomes the limitation of mixed logit/probit 

models used to accommodate random coefficients on deterministic explanatory variables and the 
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limitation of ICLV models used to accommodate latent (stochastic) variables with deterministic 

coefficients. It has hitherto been believed that identification of both these sources of variability – 

stochastic attributes and random coefficients on those attributes – is very difficult, if not impossible 

(Diáz et al., 2015). In addition to the ICSV-RC model that involves a simultaneous estimation, we 

discuss a sequential, two-step estimator (ML-SV model) that optimizes the likelihoods of observed 

measurements of stochastic variables and that of observed travel choices separately. The sequential 

estimator can be useful in situations where the specifications for the stochastic attributes’ 

distribution is complex enough to make it difficult for simultaneous estimation. Going forward, 

we hope that such models – which use multiple sources of data – will help increase the recognition 

of stochastic variables and random coefficients in choice models. 

Some limitations of this study offer scope for further research. First, in the empirical 

analysis we used the normal distributional assumption for travel time as a first step to address the 

core idea that the paper puts forth – the identification of the two sources of variability. The authors 

recognize that a normal (or truncated normal) distribution for travel time would imply, for a given 

distance, a reciprocal normal (reciprocal of truncated normal) distribution for travel speed, which 

leads to theoretically undefined mean and variance parameters (unless the normal distribution is 

bounded strictly away from zero). Therefore, it is important to explore alternative distributional 

forms for the stochastic travel time variable. Second, we used the maximum simulated likelihood 

estimation method in this study. The estimation time for each dataset was about two hours on a 

workstation-grade computer. The exploration of alternative estimation methods for the ICSV-RC 

model is a fruitful research avenue. Finally, the current study focuses on the stochasticity of 

alternative attributes, which vary across choice alternatives. It will be useful to explore avenues to 

identify the stochasticity of choice environment variables that do not vary across choice 

alternatives. A recent study by Nirmale and Pinjari (2023) is a step forward in this direction. 
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Appendix A: Simulation evaluation for the route choice setting (Set III) 

In addition to the mode choice simulation experiments presented in Section 4.1 of the paper, we 

conducted a second set of simulation experiments for a route choice setting with unlabelled 

alternatives. To keep the synthetic data realistic (akin to that from a real road network), we drew 

data on exogenous variables and choice sets from the empirical route choice data used in Section 

5 of the study. The true values of the parameters assumed to simulate the data are taken from the 

parameter estimates reported for the empirical ICSV-RC model in Table 2. Using these parameters 

and the exogenous variable data, we generated 200 route choice datasets, each with a sample size 

of 2000 trips for the ICSV-RC model. For each of the 2000 trips in the 200 datasets, we generated 

10 travel time measurements for the simulated chosen route. We assumed that the non-chosen 

routes would not have travel time measurements. 

 We estimated all the models discussed in Section 2 on all the 200 simulated datasets and 

then computed the parameter recovery metrics discussed in Section 4 (i.e., APB, ASE, and FSSE). 

These metrics are reported in Table A1 below. As can be observed from this table, the trends in 

overall parameter recovery and bias in parameter estimates are similar to those observed in Section 

4.1 for the mode choice context. These findings thus underscore the need for a model framework 

such as the ICSV-RC model to accommodate both stochastic variables and random coefficients 

when compared to the other models typically used in the literature. 
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Table A1 Simulation evaluation results for the route choice setting: Normal distribution assumption for stochastic route-level travel time and its 

coefficient 

Variable description True value 

ICSV-RC model 

parameter estimates 

ICSV model 

parameter estimates  

ML-RC model 

parameter estimates 

Mean APB FSSE ASE Mean  APB FSSE ASE 

t-stat. for 

𝐻0: 

�̂�𝐼𝐶𝑆𝑉−𝑅𝐶  

= �̂�𝐼𝐶𝑆𝑉  

Mean  APB FSSE ASE 

t-stat. for 

𝐻0: 

�̂�𝐼𝐶𝑆𝑉−𝑅𝐶  

= �̂�𝑀𝐿−𝑅𝐶  

Structural eqn. for stochastic travel time                

   Interstate highway length - mean parameter 0.955 0.955 0.06 0.0034 0.0026 0.953 0.16 0.0038 0.0026 -- -- -- -- -- -- 

   Major arterial length - mean parameter 1.284 1.284 0.02 0.0172 0.0149 1.283 0.07 0.0164 0.0071 -- -- -- -- -- -- 

   Minor arterial length - mean parameter 1.599 1.596 0.17 0.0337 0.0238 1.597 0.11 0.0331 0.0139 -- -- -- -- -- -- 

   Collector street length - mean parameter 1.924 1.919 0.25 0.0475 0.0402 1.907 0.89 0.0513 0.0201 -- -- -- -- -- -- 

   Local road length - mean parameter 2.784 2.802 0.63 0.1065 0.0919 2.816 1.13 0.1085 0.0909 -- -- -- -- -- -- 

   Total number of turns - mean parameter 0.194 0.198 2.20 0.0320 0.0271 0.203 4.95 0.0301 0.0270 -- -- -- -- -- -- 

   Interstate highway length - SD parameter 0.069 0.064 7.85 0.0162 0.0170 0.065 5.86 0.0036 0.0017 -- -- -- -- -- -- 

   Major arterial length - SD parameter 0.212 0.214 0.99 0.0148 0.0110 0.228 3.20 0.0151 0.0045 -- -- -- -- -- -- 

   Minor arterial length - SD parameter 0.510 0.521 2.22 0.0293 0.0208 0.513 0.55 0.0251 0.0075 -- -- -- -- -- -- 

   Collector street length - SD parameter 0.407 0.398 2.13 0.0369 0.0324 0.391 3.96 0.0309 0.0117 -- -- -- -- -- -- 

Measurement eqn. for travel time                

   SD of measurement error in GPS data 3.603 3.790 5.19 0.0256 0.0266 3.783 4.99 0.0018 0.0240 -- -- -- -- -- -- 

Mean of APB, FSSE, ASE values -- -- 1.97 0.0330 0.0280 -- 2.09 0.0318 0.0187 -- -- -- -- -- -- 

Model (utility functions) for route choice                

  Coefficient on travel time - mean parameter -1.243 -1.088 12.50 0.0652 0.0625 -0.875 29.61 0.0026 0.0063 3.40 -0.977 21.45 0.0515 0.0506 1.38 

  Coefficient on travel time - SD parameter 0.871 0.790 9.31 0.0528 0.0490 -- -- -- -- -- 0.658 24.50 0.0400 0.0407 2.09 

  Natural logarithm of path size -2.340 -1.984 15.23 0.1523 0.1478 -1.569 32.96 0.1080 0.1500 1.98 -0.894 61.82 0.1520 0.1013 6.08 

  Proportion of tolled portion on the route -7.644 -6.222 18.60 1.3051 1.3013 -4.599 39.84 1.0560 0.9860 0.99 -4.496 41.19 0.9553 0.9319 1.07 

  Error components for inter-route correlations                

      SD of error component on square root  

        of route length on interstate 75 in Florida 5.558 4.718 15.10 0.5196 0.3796 2.869 48.38 0.3300 0.5680 2.74 4.372 21.33 0.4884 0.373 0.71 

      SD of error component on square root  

        of route length on interstate 75 in Florida 
3.403 2.972 12.66 0.6399 0.5124 1.587 53.37 0.6690 0.8190 1.43 2.447 28.09 0.5262 0.4806 0.78 

Mean of APB, FSSE, ASE values -- -- 13.90 0.4560 0.4090  -- 40.83 0.4331 0.5059 -- -- 33.06 0.3689 0.3296 --  
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Table A1 (Contd.) Simulation evaluation results for the route choice setting: Normal distribution assumption for stochastic route-level travel time and 

its coefficient 

Variable description True value 

ML-SV model 

parameter estimates 

ML-EC model 

parameter estimates 

Mean  APB FSSE ASE Mean  APB FSSE ASE 

Structural eqn. for stochastic travel time          

   Interstate highway length - mean parameter 0.955 0.954 0.12 0.0036 0.0030 -- -- -- -- 

   Major arterial length - mean parameter 1.284 1.272 0.93 0.0146 0.0108 -- -- -- -- 

   Minor arterial length - mean parameter 1.599 1.505 5.82 0.0289 0.0229 -- -- -- -- 

   Collector street length - mean parameter 1.924 1.839 4.39 0.0500 0.0386 -- -- -- -- 

   Local road length - mean parameter 2.784 2.861 2.74 0.1137 0.1376 -- -- -- -- 

   Total number of turns - mean parameter 0.194 0.256 31.87 0.0465 0.0433 -- -- -- -- 

   Interstate highway length - SD parameter 0.069 0.065 6.53 0.0033 0.0019 -- -- -- -- 

   Major arterial length - SD parameter 0.212 0.214 0.95 0.0152 0.0062 -- -- -- -- 

   Minor arterial length - SD parameter 0.510 0.497 2.63 0.0198 0.0122 -- -- -- -- 

   Collector street length - SD parameter 0.407 0.393 3.53 0.0334 0.0268 -- -- -- -- 

Measurement eqn. for travel time      -- -- -- -- 

   SD of measurement error in GPS data 3.603 3.780 4.90 0.0016 0.0240 -- -- -- -- 

Mean of APB, FSSE, ASE values -- -- 5.85 0.0301 0.0298 -- -- -- -- 

Model (utility functions) for route choice          

  Coefficient on travel time - mean parameter -1.243 -1.114 10.43 0.0613 0.0681 -0.446 64.11 0.0089 0.0102 

  Coefficient on travel time - SD parameter 0.871 0.766 12.05 0.0497 0.0548 -- -- -- -- 

  Natural logarithm of path size -2.340 -1.933 17.43 0.1429 0.1522 -1.727 26.21 0.4893 0.6653 

  Proportion of tolled portion on the route -7.644 -5.897 22.85 1.4252 1.2845 -4.230 44.66 0.0269 0.5660 

  Error components for inter-route correlations          

      SD of error component on square root  

        of route length on interstate 75 in Florida 5.558 5.558 15.07 0.4383 0.4495 2.107 62.10 0.1025 0.1996 

      SD of error component on square root  

        of route length on interstate 75 in Florida 
3.403 3.403 12.60 0.5066 0.6053 2.569 24.48 0.3669 0.2056 

Mean of APB, FSSE, ASE values -- -- 15.07 0.4373 0.4357 -- 44.31 0.1989 0.3293 
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Appendix B: Simulation evaluation of the effects of incorrect distributional assumptions (Set 

IV) 

To complement the simulation experiments conducted in Section 4 and Appendix A, we conducted 

additional experiments to assess the impact of incorrect assumptions for the distributions of the 

stochastic variable and its random coefficient. Specifically, we investigated the following two 

cases: (1) the true data generation process (DGP) involved lognormal distributed bus travel times 

and lognormal coefficient on travel times while the estimation was carried out assuming normal 

distributions for both bus travel times and travel time coefficient, and (2) the true DGP involved 

travel times that are free of measurement errors (due to absence of stochasticity) and a lognormal 

coefficient on travel time whereas the estimation was carried out assuming normal distributions 

for both bus travel times and travel time coefficient.  

In the simulation design for the first case, a lognormal distribution was assumed for the 

inverse speed of bus mode with the underlying normal location parameter 0.49 min/km and scale 

parameter 0.25. The travel time coefficient was assumed to follow a lognormal distribution with 

the underlying normal location parameter -0.36 and scale parameter 0.22 (specifically, the negative 

of the values drawn from this distribution were used for the travel time coefficient). 

For the second case, the inverse speed of bus was assumed to be 1.5 min/km. The travel 

time coefficient was assumed to follow a lognormal distribution with the underlying normal 

location parameter -1.00 and scale parameter 0.05 (the negative of the values drawn from this 

distribution were used for the travel time coefficient). Assumptions for generating other exogenous 

variables and the true values assumed for all other parameter values remained the same as in 

Section 4.1. 

For each of the two cases discussed above, 200 datasets were generated, each comprising 

5000 trips. The simulation results for the ICSV-RC model for the first case are presented in Table 

B1. These results indicate large APB values for all the parameters. However, since the distributions 

in the true DGP are different from the ones assumed in model estimation, comparing the true 

parameters vis-à-vis the recovered parameters in terms of bias is not helpful. Therefore, we 

compared the values-of-time (VoT) between the true and estimated models.  
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Table B1 Simulation evaluation results for the mode choice setting with lognormal-

lognormal assumption for travel time and its random coefficient in the DGP and 

normal-normal assumption in estimation 

 True value 
ICSV-RC model results 

Mean APB FSSE ASE 

Bus travel time model      

  Inverse speed 𝜃𝑏:  

    Location parameter 0.49 1.56 221.73 0.011 0.004 

  Inverse speed 𝜃𝑏: 

    Scale parameter 0.15 0.20 31.08 0.007 0.003 

  SD of measurement error 0.95 0.95 0.46 0.005 0.008 

  Mean APB, FSSE, ASE  -- -- 84.42 0.007 0.005 

Mode choice model      

  ASC for transit -0.56 -0.61 8.42 0.121 0.067 

  ASC for walk 1.56 1.23 21.03 0.136 0.102 

  Travel time coefficient 𝛾𝑇𝑇∗ - Location 

parameter -0.36 -0.49 35.57 0.037 0.018 

  Travel time coefficient 𝛾𝑇𝑇∗ -Scale parameter 0.22 0.04 83.23 0.054 0.009 

  Cost coefficient (𝛽𝐶)  -0.25 -0.18 26.98 0.012 0.009 

  Mean of APB, FSSE, ASE -- -- 35.05 0.072 0.041 

     From Table B1, the expected value of 𝛾𝑇𝑇∗ in the true DGP = -0.71; standard deviation of 

𝛾𝑇𝑇∗ in the true DGP = 0.83; expected value of 𝛾𝑇𝑇∗ in the estimated model = -0.61; standard 

deviation of 𝛾𝑇𝑇∗ in the estimated model = 0.37. Thus, we obtain an expected VoT of 170.4 

(INR/hour) in the true DGP (with lognormal distributions for bus travel time and random 

coefficient on travel time) and an expected VoT of 203.3 (INR/hour) for the estimated model 

(which incorrectly specifies normal distributions on both bus travel time and travel time 

coefficient). That is, in this case, the VoT is overestimated due to incorrect distributional 

assumptions. 

The second case for this set of experiments involves measurement error-free travel times 

(due to absence of stochasticity in travel conditions) and lognormal coefficient on travel time in 

the DGP, whereas we assumed normal distributions during estimation. It can be observed from 

Table B2 that an incorrect specification of the distributions in the model estimation stage results 

in a high APB for the location and scale parameters of the coefficient on travel time. All other 

parameters are recovered well in terms of accuracy and precision. Notably, the variability in travel 

time (which is not present in the DGP) is estimated and its recovered value is close to 0 (the 
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corresponding parameter estimate from most of the datasets was statistically insignificant). This 

indicates that our attempts to recover stochasticity in a variable when there was no stochasticity in 

the true DGP were innocuous and did not hurt the model. In this case too, examining only the APB 

of parameter estimates can be misleading because of different distribution assumptions in the true 

model and the estimated model. Hence, a comparison of the value-of-time metric is carried out.  

Table B2 Simulation evaluation results for the mode choice setting with measurement 

error-free travel time and lognormal coefficient on travel time in the DGP and normal-

normal assumption in estimation  

 True value 
ICSV-RC model results 

Mean APB FSSE ASE 

Bus travel time model      

  Inverse speed 𝜃𝑏:  

    Location parameter 1.50 1.34 13.89 0.116 0.131 

  Inverse speed 𝜃𝑏: 

    Scale parameter 0.00 0.00052 -- 0.003 0.003 

  SD of measurement error 0.95 0.95 0.07 0.006 0.006 

  Mean APB, FSSE, ASE  -- -- 6.98 0.061 0.069 

Mode choice model      

  ASC for transit -0.56 -0.53 5.89 0.069 0.061 

  ASC for walk 1.56 1.34 13.89 0.116 0.131 

  Travel time coefficient 𝛾𝑇𝑇∗ - Location 

parameter -1.00 -0.38 61.91 0.017 0.018 

  Travel time coefficient 𝛾𝑇𝑇∗ -Scale parameter 0.05 0.02 54.63 0.022 0.022 

  Cost coefficient (𝛽𝐶)  -0.25 -0.26 2.90 0.009 0.009 

  Mean of APB, FSSE, ASE -- -- 27.84 0.047 0.048 

       From the table above, the expected value of 𝛾𝑇𝑇∗ in the true DGP = -0.37; standard 

deviation of 𝛾𝑇𝑇∗ in the true DGP = 0.22, expected value of 𝛾𝑇𝑇∗ in the estimated model = -0.68; 

standard deviation of 𝛾𝑇𝑇∗ in the estimated model = 0.67. An expected VoT of 88.4 (INR/hour) is 

computed for the model in the true DGP while an expected VoT of 156.9 (INR/hour) is obtained 

for the estimated model. That is, the VoT is overestimated in the latter model due to incorrect 

distributional assumption on the travel time coefficient.  

 In summary, incorrect distributional assumptions in model estimation led to distorted 

values-of-time estimates, which can thereby lead to distorted policy analyses. It is worth noting 

here that the model is not harmed if the analyst estimates the stochasticity in an exogenous variable 

which is free of measurement errors.  
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Appendix C: Simulation evaluation of the effects of treating travel time as stochastic (and 

estimating its distribution) when there is no measurement error in travel time (Set V) 

Here we discuss the effects of treating bus travel time as stochastic (and estimating the parameters 

of its distribution) when there is no measurement error (or stochasticity) in travel time in a mode 

choice setting. For this set of experiments, two specific cases were investigated: (1) bus travel time 

was free of measurement errors but its distribution was estimated (assuming that it is normal 

distributed), and the coefficient on travel time was assumed to be normal distributed, and (2) bus 

travel time was free of measurement errors but its distribution is estimated (assuming that it is 

lognormal distributed), and the coefficient on travel time was assumed to be lognormal distributed.  

The simulation design for the first case assumed an inverse speed of bus as 1.5 min/km. 

The travel time coefficient was assumed to follow a normal distribution with mean -1.00 and SD 

0.19. For the second case, the inverse speed of bus was assumed to be 1.63 min/km. The travel 

time coefficient was assumed to follow a lognormal distribution with the underlying normal 

distribution’s location parameter -1.00 and scale parameter 0.05 (the negative of the values drawn 

from this distribution were used for travel time coefficient). The assumptions made for generating 

other exogenous variables and the parameter values remained the same as in Section 4.1. 

For each of the above two cases discussed in this set of experiments, 200 datasets were 

generated, each comprising 5000 trips. The simulation results for each of these cases are presented 

in Table C1 and Table C2, respectively. As can be noted from these tables, our attempts to recover 

stochasticity (measurement errors) in travel time (which was free of measurement errors in the 

DGP) are innocuous. That is, the parameter recovery was not impacted. Specifically, the APB 

values are small. Further, the standard errors of the estimates were found to be similar to the those 

when we estimated the models without stochasticity in travel time. The trace of the covariance 

matrix of coefficients was 0.242 when imposing normal distributed stochasticity, which is close to 

the trace value of 0.246 we obtained from an estimation that did not impose stochasticity. 11 

 
11 Clearly, we did not find much degradation in the consistency and the efficiency of the estimator when we assumed 

bus travel time variable to be stochastic when that variable was not stochastic (that is, when the DGP did not have 

stochasticity in the exogenous variable). Given this result, for forecasting purposes, if one uses the estimated model 

to predict mode choice for a given bus travel time value, our model that incorrectly assumes stochasticity (when such 

stochasticity is not present) does not do much harm. On the other hand, as discussed in Section 4, a modelling 

framework that ignores stochasticity in the exogenous variable (when stochasticity is present) leads to inconsistent 

estimation as well as an underestimation of standard errors. These issues will likely cause repercussions in forecasting, 

too. 
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Table C1 Simulation evaluation results where travel time is free of measurement errors but 

its distribution is estimated (normal travel time and coefficient on travel time) 

 True value 
ICSV-RC model results 

Mean APB FSSE ASE 

Bus travel time model      

  Inverse speed 𝜃𝑏: Location parameter 1.50 1.50 0.02 0.001 0.001 

  Inverse speed 𝜃𝑏: Scale parameter 0.00 0.0003 -- 0.002 0.002 

SD of measurement error 0.95 0.95 0.11 0.007 0.007 

  Mean APB, FSSE, ASE  -- -- 0.07 0.004 0.004 

Mode choice model      

  ASC for transit -0.56 -0.55 2.35 0.046 0.066 

  ASC for walk 1.56 1.67 6.88 0.071 0.107 

  Travel time coefficient 𝛾𝑇𝑇∗ - Location 

parameter -1.00 -1.02 2.08 0.044 0.041 

  Travel time coefficient 𝛾𝑇𝑇∗ -Scale parameter 0.19 0.20 3.31 0.014 0.015 

  Cost coefficient (𝛽𝐶)  -0.25 -0.25 0.09 0.013 0.013 

  Mean of APB, FSSE, ASE -- -- 2.94 0.038 0.048 

Table C2 Simulation evaluation results where travel time is free of measurement errors but 

its distribution is estimated (lognormal travel time and coefficient on travel time) 

 True value 
ICSV-RC model results 

Mean APB FSSE ASE 

Bus travel time model      

  Inverse speed 𝜃𝑏: Location parameter 0.49 0.49 0.001 0.0002 0.0003 

  Inverse speed 𝜃𝑏: Scale parameter 0.00 0.0003 -- 0.002 0.019 

  SD of measurement error 0.95 0.95 0.28 0.006 0.006 

  Mean APB, FSSE, ASE  -- -- 0.141 0.003 0.003 

Mode choice model      

  ASC for transit -0.56 -0.52 7.85 0.075 0.060 

  ASC for walk 1.56 1.28 17.92 0.098 0.117 

  Travel time coefficient 𝛾𝑇𝑇∗ - Location 

parameter -1.00 
-0.98 1.54 0.039 0.039 

  Travel time coefficient 𝛾𝑇𝑇∗ -Scale parameter 0.05 0.06 19.01 0.036 0.060 

  Cost coefficient (𝛽𝐶)  -0.25 -0.26 2.55 0.011 0.009 

  Mean of APB, FSSE, ASE -- -- 9.77 0.052 0.057 
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