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ABSTRACT 
This paper introduces a proper multivariate flexible continuous parametric distribution, a first to 
our knowledge, that allows for asymmetric bimodality in each univariate dimension. The 
distribution is developed through a combination of an approach to generate bimodality and a Yeo-
Johnson (YJ)-based transformation. A number of properties of the proposed distribution are stated 
and proved, including a computationally easy way to generate random variates from the proposed 
multivariate density. An application of the proposed distribution is demonstrated to analyze injury 
severity using data drawn from the Texas Department of Transportation (TxDOT) crash database 
of two-vehicle crashes at intersections. The proposed distribution may be applied to a number of 
different econometric modeling contexts in both a univariate and multivariate context, and in a 
whole variety of fields to consider bimodal asymmetry in stochastic distributions.  
 
Keywords: YJ transformation, Bimodality, Non-normality, Multivariate skewed distributions, 
Injury severity analysis.  
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1. INTRODUCTION 
Econometric models recognize the presence of unobserved factors in the choice outcome process, 
and thus assume one or more forms of stochasticity in the decision mechanism leading up to the 
observed choice (by choice, we are not confining ourselves to a discrete choice, but more broadly 
to any outcome type, including continuous, binary, ordered, multinomial unordered, count, 
grouped, and other limited-dependent outcomes). In the most basic form, the stochasticity is 
traditionally included as an additive error term in an equation associated with an outcome-
generating endogenous variable that is then mapped to the actual observed outcome. In the case of 
a continuous outcome, the outcome-generating variable corresponds directly to the observed 
outcome. In the case of binary or ordered or grouped or count or limited-dependent outcomes, a 
single latent (endogenous) index variable is horizontally partitioned to map to the observed 
outcome. In the case of multinomial unordered outcomes, most commonly a latent (endogenous) 
index variable specific to each alternative (also referred to as an alternative-specific utility 
function) is defined with its own additive error term, and the utility functions across alternatives 
are then mapped to the observed outcome in the form of a maximum utility mechanism.  

In the past two decades or so, there have been several efforts (in the context of the full 
range of different types of observed choice outcomes listed above) to extend the single additive 
error structure to recognize unobserved heterogeneity across individuals in the responsiveness to 
specific exogenous variables (sometimes referred to as response heterogeneity). Such additional 
stochastic specifications are also identified as “random coefficients on exogenous variables” in the 
literature. For example, the sensitivity to travel time in a transportation mode choice context may 
vary across individuals due to such unobserved personality factors as how “chill” an individual is 
or how time-conscious an individual is (see, for example, Bhat, 2020 for a relatively recent review 
of such random coefficient studies in mode choice). Or as another example of unobserved 
variation, the impact of the type of crash on injury severity may vary based on such unknown 
factors (at least as collected in most crash databases) as the precise evasive maneuvers taken by 
motorists just before the point of impact and variations in the structural integrity of the vehicle(s) 
involved in a crash (see Mannering et al., 2016 for a review of such random coefficient studies in 
the safety analysis). In most such random coefficient studies, the typical distribution assumed for 
response heterogeneity is a normal distribution, driven by the convenience offered by the 
distribution for multivariate extensions to allow unobserved correlations across the random 
coefficients as well as the closure property of the normal distribution under affine transformations 
(which, when combined with a normally distributed kernel error term collapses back to an overall 
normal distribution).   

There has also been growing recognition in recent years that the normally distributed 
assumption for the kernel error term or for the random coefficients on exogenous variables may 
not be symmetric or even unimodal. Even so, almost all such studies retain a symmetric unimodal 
shape for the kernel error term, but allow more flexible non-symmetric (mixing) and/or multimodal 
distributions for the random coefficients on exogenous variables (an issue we will get back to 
later). These flexible multivariate distributions generally take one of three forms (1) a discrete-
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valued random variable vector, (2) a continuous parametric random variable vector, or (3) a 
combination of the two. Of these, the first corresponds to a non-parametric approach, the second 
to a parametric approach, and the third, as typically implemented in practice, to a semiparametric 
approach. The first approach of specifying a non-parametric (discrete) series-based or similar 
approximation to the density function provides for substantial flexibility, but brings with it 
parameter profligateness and computational complexity/inference challenges (we forgo full details 
of the three approaches here, and refer the reader to Bhat et al., 2025). The second approach can 
be quite restrictive, especially given that the popular implementation of this approach uses 
unimodal distributions such as the skew-normal distribution. However, it does provide for 
parameter parsimony and computational ease in estimation. The third approach is almost 
exclusively specified in the literature as a finite mixture of parametric distributions, which itself 
can be interpreted as a latent class model (consumers belonging to each of a finite number of 
segments) with a parametric distribution within each class, or as a direct non-latent class 
semiparametric assumption about the random coefficients at hand.  As the finiteness of the mixture 
grows, this third approach can mimic literally any multivariate density function, including those 
with multiple modes as well as the fully nonparametric distribution. From a structural perspective, 
though, this approach, when it accommodates multimodality, does so only at a population level, 
not at an individual level. Also, the problem with this approach is that, as the finiteness grows, the 
approach is saddled with parameter profligateness and computational complexity/inference 
challenges, similar to the first non-parametric approach. Besides, the popular implementation of 
this third approach in the econometric literature is in the form of a finite mixture-of-normal 
distributions. As observed and demonstrated by studies in the statistical density estimation 
literature (see, for example, Fruhwirth-Schnatter and Pyne, 2010, Lin et al., 2016, Gallaugher et 
al., 2020, and Dong et al., 2023), the mixture-of-normals approach can, and in general will, provide 
distorted inferences due to overfit and weak identification caused by needing unnecessarily high 
number of components when the target multivariate density has substantial skew. But, adopting 
more general component distributions, such as mixtures of skew-normal and other asymmetric 
parametric distributions, brings additional inference and computational challenges (see Lee and 
McLachlan, 2022), and requires large sample sizes to attain favorable asymptotic properties (see 
Dong and Lewbel, 2015, Mu and Zhang, 2018).  

In this study, we return to the second approach of specifying a continuous parametric 
random variable vector, but now relax the unimodality restriction while also continuing to leverage 
the parsimony and computational ease benefits. In doing so, and to our knowledge for the first 
time in the statistical and econometric literature, we propose a new transformation-based 
parametric multivariate skewed density function with bimodal marginals (with a unimodal margin 
being a special case of a bimodal margin based on the value of a specific parameter). In this 
approach, we frame bimodality as a primitive and intrinsic characteristic of the stochastic process 
(rather than as a mixture of decision groups, each with a strict unimodal stochastic process). In 
doing so, we shift the econometric lens from cross-sectional preference heterogeneity at a 
population level to contextual latent state uncertainty at an individual level. Further, we propose 
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and verify an approach to generate random variates from the proposed multivariate distribution, 
based on identifying a relationship between the proposed density and the reciprocal inverse 
Gaussian (RIG) distribution. This is important for model estimation purposes. Additionally, we 
demonstrate the application of our proposed new bimodal distribution to traffic crash injury 
severity analysis.   

Specifically, in the current research, we build off two strands of recent literature. The first 
strand relates to the use of the Yeo and Johnson (2000) or YJ transformation approach to convert 
a non-symmetric distribution along each dimension into a symmetric distribution. Earlier studies 
have shown the efficacy and the parsimony of the YJ transformation approach to mimic a whole 
gamut of skewed and fat-tailed multivariate distributions for the original untransformed (or 
equivalently, the reverse YJ transformed) random distribution. In particular, Gallaugher et al. 
(2020) have shown that the simple transformation approach is comparable to even mixtures of 
skew-normal distributions (let alone mixtures of normal distributions; see also Jadhav et al., 2023, 
Watthanacheewakul, 2021, and Marimuthu et al., 2022). Bhat (2024) discusses this YJ 
transformation in detail, and applies the approach to the formulation and application of a flexible 
multivariate non-normal limited-dependent variable model system, considering a normal 
distribution for the symmetric distribution transformation for each dimension, which are then tied 
together across dimensions in a natural way using a multivariate normal distribution. The second 
strand corresponds to a general approach to develop bimodal distributions for univariate 
distributions, based on Gómez-Déniz et al. (2025). We use concepts from this strand and extend it 
in a specific way to allow a more general bimodal skewed distribution for univariate distributions 
than has been proposed so far. Then, we bring the univariate distributions together using a 
multivariate “stitching” mechanism to develop the new transformation-based multivariate 
asymmetric density function with bimodal margins (which can also collapse to unimodality along 
selected margins as a special case).1  

In the next section, we briefly discuss both of the YJ and bimodal strands of research, with 
an emphasis on the second strand of research given its relatively limited consideration in the 
literature, after which we discuss the proposed methodology for developing the new proposed 
density function. Section 3 presents an application of the proposed bimodal model to traffic crash 
injury severity analysis. Section 4 concludes the paper with a brief summary of the research 
undertaken, potential other applications of the proposed model, and future research directions.  
  

 
1 The only other studies that we are aware of that consider a multivariate bimodal distribution are those by de Waal et 
al. (2022) and Gómez-Déniz et al. (2021). Wald et al. considers a relatively restrictive triangular distribution, with 
two triangular distributions joined together using a uniform distribution between the modes of each triangular 
distribution. Gómez-Déniz et al. resort to the use of a generalized normal distribution using concepts of folded 
distributions. In this paper, we follow the more general approach of Gómez-Déniz et al. (2025) to propose a 
distribution that allows for density smoothness throughout the multivariate range as well as accommodates asymmetry 
and substantial flexibility in the shape of the distribution.  
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2. METHODOLOGY 
We start with the case of a simple univariate random variable, and extend later to the multivariate 
case.  
 
2.1. YJ Transformation 
In canonical form, most econometric models include an additive error term that is, conditional on 
observed exogenous variables, assumed normally distributed. To generalize this to accommodate 
asymmetry and skewness, models with continuous dependent outcomes transform the dependent 
variable directly using a strictly monotonic transformation such as ( ) ,Z t Gλ=  where G is closer 
to a symmetric distribution with non-fat tails (λ  is a transformation parameter vector to be 
estimated) (see, for example, Atkinson et al., 2021 and Riani et al., 2023). In models where the 
dependent outcome is not continuous, Bhat (2024) proposes the use of the reverse transformation 
on a normally distributed variable to generate asymmetry and skewness as follows: 1( )Z t Gλ

−= . 

This inverse transformation exists because the original transformation ( )Z t Gλ=  is strictly 
monotonic. In the current paper, as in Bhat (2024), we consider the YJ-transformation for 
transforming Z into a normal distribution for 2~ ( , )G N µ σ  as follows (0<λ <2): 

2

2

( 1) 1 if 0
2~ ( , ) ( )

( 1) 1 if 0

Z Z
G N t Z

Z Z

λ

λ λ

λµ σ

λ

− − + −
− < −= =  + − >


                                                                 (1)                

Next, we apply the transformation in Equation (1) in reverse to generate asymmetry and skew in 
Z: 

[ ]

[ ]
1

1
2

1
1 1 (2 ) if 0

( )

1 1 if 0

G G
Z t G

G G
λ

λ

λ

λ

λ
 
 
 

 
 − 

−


− − − <= = 


+ − >

 (2)    

To be noted is that 1(0) 0 and (0) 0.t tλ λ
−= =  When 0<λ <1, as explained and plotted in Bhat 

(2024), Z gets skewed to the right with a long right tail. If 1<λ <2, Z gets skewed toward the left 
with a long left tail. λ =1 returns the original distribution of η  for Z. The cumulative distribution 
function (CDF) and probability density function (PDF) of Z may be derived conveniently from 
those of the standardized normal distribution CDF ( [.])Φ  and PDF ( [.])φ  as follows after defining 

( )( ) t zg z λ µ
σ
− =   

. For convenience, we will write ( )g z  simply as g  when obvious.  

[ ]

( )

1 1

1
sgn( )( 1)

( ) Prob( ) Prob( ( ) ) Prob( ( )) ( ( ) )

( ( ) ) ( )( ) [ ]( ) 1 .
( )

Z

zZ
Z

H z Z z t G z G t z t z g

t z t zH z gh z z
z t z z

λ λ λ

λλ λ

λ

σ µ

σ µ φ
σ

− −

−
−

 = < = < = < = Φ − = Φ 
 ∂Φ − ∂∂   = = × = × + ∂ ∂ ∂  

     (3) 
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2.2. Motivation for an Asymmetric and Skewed Bimodal Distribution 
Most econometric models assume a unimodal symmetric distribution for the error terms embedded 
in their models. Over the years, some studies have considered alternative asymmetric unimodal 
error term distributions, including the skew-normal, or a skew-t distribution, or the broader class 
of skew-elliptical distributions (see Azzalini and Capitanio, 2013 and Teimouri and Nadarajah, 
2016 for detailed reviews of such skew distributions and applications). The density of such 
distributions takes the form of a symmetric density function multiplied by a skewing component 
that typically is the cumulative distribution of the symmetric density (see Lee and McLachlan, 
2022 for a detailed discussion). However, transformation approaches (such as the YJ 
transformation discussed earlier) are more parsimonious and flexible enough to accommodate a 
variety of different skew distributions, as illustrated in Bhat et al. (2025).  

The YJ-based transformation approach, while proving to be a powerful approach to 
accommodate asymmetric distributions, does not, at least as it has been applied in the statistical 
and econometric literature so far, consider multimodality in the distribution. On the other hand, 
there are many reasons why such multimodality may appear in the stochasticity characterizing 
data. In particular, the focus in the current paper is on bimodality, which has been documented to 
be prevalent in many situations. For instance, in the transportation field, Mei et al. (2004) observe 
that the combination of normal vehicles and overloaded trucks on highways causes a distinct 
bimodal pattern in vehicle loadings on highways, while Jintanakul et al. (2009) indicate the 
bimodality of travel time distributions on freeways due to a mix of vehicle types and driving 
patterns. Taylor and Somenahalli (2014) and Ji et al. (2015) similarly show that urban link travel 
time distributions are much better characterized as bimodal distributions, given the influence of 
signal controls, vehicle-pedestrian interactions, and cross-street traffic. In this urban link case, two 
vehicles traveling next to each other can have very different traveling times if one vehicle just 
about makes it through a green light, while the succeeding vehicle has to stop. Das et al. (2014) 
similarly observes the bimodal nature of ocean shipping transit time, associating this bimodal 
nature to a sequence of (typically unreported in data sets) independently managed activities that 
characterize the movement from the initial origin point of the manufacturer to the final destination 
close to the customer end. In the traffic safety literature, Xiong and Mannering (2013) make a 
theoretical case for the bimodality of injury severity, given that a whole host of unobserved factors 
in most crash data sets (such as those associated with aggressiveness in driving, and actions to 
reduce injury severity as the crash is unfolding, vehicle responsiveness to driver actions as they 
relate to weather and pavement characteristics, and vehicle crash protection equipment and 
performance) can combine together to have quite different crash severities for the same set of 
observed crash characteristics. Similarly, multiple studies (see, for example, Kleber et al., 2012 
and Rauf et al., 2019) have analyzed the temporal pattern of deaths of individuals after a severe 
injury sustained in a traumatic incident (mostly traffic crashes, but also including other types of 
incidents such as a high fall), and suggested the presence of a continuous fatality rate with two 
modes – one that is immediate (within 60 minutes of the traumatic incident) caused by central 
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nervous system injuries and major vascular collapse, and another within a day after admission to 
a hospital caused by brain injury and/or multiple organ failure. 
 Almost all of the studies above (and many other studies in the transportation literature) 
adopt a finite mixture of normal distributions within the interpretation of a latent class model 
(consumers belonging to each of a finite number of segments), considering a unimodal distribution 
within each consumer segment. Interestingly, such studies almost exclusively consider 
multimodality to be at play only in responsiveness heterogeneity (that is, on the random 
coefficients on observed exogenous variables), and completely ignore possible multimodality 
more fundamentally in overall preference heterogeneity (that is, the studies assume a unimodal – 
typically a normal distribution or a logistic distribution or an extreme value distribution – for the 
kernel error term). Certainly an argument can be made that, given it is the kernel error term that 
absorbs a combination of different unobserved factors at play (unlike response unobserved 
heterogeneity that is tied more specifically to a single observed factor), allowing multimodality in 
the kernel error term is at least as important to test (if not much more so) than in the random 
coefficient distributions. In this paper, we focus on a bimodal distribution for the kernel error term, 
while considering the bimodality in the kernel error term to be a result of unobserved factor effects 
within a specific individual or within a specific context (rather than at the population level due to 
mixing as in latent class approaches). For example, in the Xiong and Mannering injury severity 
framework, say that aggressive driving is an unobserved factor. Then, it is wholly possible that the 
same motorist may drive aggressively at one point in time (say due to time pressure), and not so 
aggressively at another point in time, leading to bimodality in injury severity within the context of 
“observationally-equivalent” instances of two crashes. In this regard, as also stated by Vila et al. 
(2021), mixture-free bimodal distributions can play an important role, especially because they are 
not saddled with identifiability/computational problems of mixture distributions during estimation. 
Besides, if there is strong reason to maintain the clustering/classification interpretation of the 
mixture approach, one can extend current mixture approaches to include mixtures of bimodal 
distributions for each segment, as discussed in the conclusions section of this paper.  
 Finally, in most analysis contexts, there is no a priori reason to believe that any bimodality 
should be of the same intensity at the two modal points or that the density function should be close 
to being symmetric or have similar variance in the vicinity of each modal point, highlighting the 
importance of asymmetric and skewed bimodal distributions. For example, when not driving 
aggressively, injury severity may be more clustered around the low injury severity level with a 
rather small amount of diffusion, while when driving aggressively, injury severity may be more 
loaded toward the high injury severity level though the variance in the injury severity sustained 
may be high (more diffuse injury severity) because of last minute pre-crash maneuvers taken (or 
not taken) by specific motorists involved in the crash. In most crash analysis, without a clear 
marker for aggressive driving, this would indeed lead to an asymmetric and skewed injury severity 
kernel error term, as we demonstrate in our empirical analysis.  
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2.3. The Proposed Approach to Construct an Asymmetric and Skewed Bimodal Distribution 
The foundation for the proposed approach is a theorem proposed and proved by Slobin (1927), 
which has also been invoked recently by Gómez-Déniz et al. (2025) to derive two probability 
density functions (one being a symmetric density function, and another being an asymmetric 
function based on a skew-normal unimodal distribution). In this paper, we derive another 
probability density function based on the YJ transformation that allows for more general forms of 
bimodality skew (as illustrated in Bhat et al., 2025, the YJ transformation approach is quite general, 
and can represent a variety of unimodal distributions very closely, including the skew-normal, the 
skew-t, the power log-normal, and the extreme value). Besides, the skew-normal and skew-t 
approaches manifest a singularity in Fisher’s information matrix for the skew parameter, and can 
become somewhat difficult to estimate (see Arellano-Valle and Azzalini, 2006. Bhat and 
Sidharthan, 2012, and Gómez-Déniz et al., 2021), while our transformation approach does not 
exhibit any such problems. Our approach also provides immediately for a straightforward 
extension to a multivariate distribution with bimodal asymmetry along each dimension (and 
varying asymmetries and shapes across dimensions). We present our new proposed bimodal 
distribution in a set of theorems.  
  
Theorem 1: The following function represents a proper probability density function (pdf) for a 
random variable Z spanning the real line and 0, 0 2, 0 :α λ σ≥ < < >   

( )sgn( )( 1)1 ( )( ) 1 ,
z

Z
t zf z g z g

g
λ λ µασ φ

σ
−−   − = − × + =     

. (4) 

Proof: The density function above is clearly positive and continuous over the entire range of Z , 
given that the standard normal density function φ (.) is always positive and continuous, and so is 

( )sgn( )( 1)1 1
z

z
λ

σ
−− + . The cumulative distribution function (CDF) of Z  may be written as: 

( )sgn( )( 1)1( ) ( ) ( ) 1
( )

z z
t

Z Z
t t

F z f t dt g t t dt
g t

λασ φ
−−

=−∞ =−∞

 
= = − × + 

 
∫ ∫ . (5) 

Let ( ).v g t=  Then ( )dg tdv
dt

= = 1σ − ( )sgn( )( 1)
1

t
t

λ−
+ , and 

( )

( )
g z

Z
v

F z v dv
v
αφ

=−∞

 = − 
 ∫ . (6) 

To complete the proof, it needs to be shown that  
( )

( ) 1.
g

Z
v v

F v dv v dv
v v
α αφ φ

∞ ∞

=−∞ =−∞

   ∞ = − = − =   
   ∫ ∫   (7) 
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This can be achieved by following a generalization of the proof given in Slobin (1927) for improper 

definite integrals.2 In particular, note that 
0

2
v v

v dv v dv
v v
α αφ φ

∞ ∞

=−∞ =

   − = −   
   ∫ ∫ because the 

standard normal density function ( )sφ  is an even function; that is, ( ) ( )s sφ φ= − . Now, consider 

the one-sided integral. 
0v

v dv
v
αφ

∞

=

 − 
 ∫ , and let .h

v
α

=  Then,  

0v

v dv
v
αφ

∞

=

 − 
 ∫ =

( ) ( )

0

0 0

0

.

, with

h

h h

u h

h d
h h

h d h h dh
h h h

u d u h dh u h
h h

α αφ

α α αφ φ

α αφ φ

=∞

=∞ =∞

∞ ∞

=−∞ =

    = −    
   

      = − − + −      
     

    = − − = −       

∫

∫ ∫

∫ ∫



 





 

   

  

  

 

 (8) 

Finally, from the last equation and rearranging, we get 

0 0v v v

v dv v dv v dv
v v v
α α αφ φ φ

∞ ∞ ∞

=−∞ = =

     − = − + −     
     ∫ ∫ ∫  

                           ( ) ( )
00

1.
u v uh

u du h dh v dv u du
vh

α αφ φ φ φ
+∞ ∞ ∞ ∞

=−∞ = =−∞=

    = − − + − = =    
    

∫ ∫ ∫ ∫


 



      (9)  

 
Henceforth, we will write 2~ ( , , , )Z BYJN µ σ λ α  when the random variable follows the pdf in 
Equation (4) to denote that Z represents a bimodal YJ transformed-to-normal (BYJN) random 
variable. Note also that our proposed BYJN distribution with λ =1 nests the symmetric bimodal 
distribution proposed by Gómez-Déniz et al. (2025) as a special case. 

Next, we establish the following theorem that helps with generating random realizations 
from the density function of Z.  
 
Theorem 2: Let 2~ ( , , , )Z BYJN µ σ λ α . Then, the random variable 

2
2 ( ), with and ,t ZW S G G

S
λ µα

σ
− = = =   

 follows an inverse Gaussian distribution (scaled by 

one half) with mean parameter µ α=  and shape parameter 2λ α= ; 2~ ( , ), {0, }W IG Wα α ∈ ∞  
 
  

 
2 Later, we will provide an expression for the CDF, from which too the above result may be obtained.    
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Proof: Equation (4) may be rewritten as follows: 

( )Z
dgf z g

g dz
αφ

 
= − × 

 
, from which we get using the usual change of variable technique 

 

1

1

1

( ) ( ( ) )
( )

( ( ) ) ( )
( ( ) ) ( )

G Z
dzf g f z t g z

dg z

t t g dg z dz
t t g dz dg z

g
g

λ

λ λ

λ λ

σ µ

σ µ µ αφ
σ µ µσ
σ

αφ

−

−

−

 = = + × 

 
 + −

= − × × 
+ − 

  
 

= − 
 

  (10) 

Again using successive change of variables 2S G=  and 
2

W
S
α

= , we get: 

1/2

3/2

1( ) , and
2

( ) .
2

S

W

f s s s
s

f w w w
w

αφ

α αφ

−

−

 = −  
 = −  

 (11) 

The inverse Gaussian (IG) distribution is given by: 

3/2( )( ) .W

wf w w
w

λ µλ φ
µ

−
 −

=  
  





 



 

 

 (12) 

Putting 2and ,µ α λ α= = the expression collapses to the same expression as Equation (11) 
scaled by one half. Equivalently, given that the random variable (1/ )W  is reciprocal inverse 
Gaussian (RIG) distributed, the random variable 2S G= is also distributed RIG (with the RIG 
having a mean parameter α  and a scale parameter 2α ) scaled by a factor of  2 / 2.α  

Theorem 2 provides an easy way to generate realizations from the distribution of 
2~ ( , , , )Z BYJN µ σ λ α , given the ease of drawing variates from the inverse Gaussian.3 Further, 

 
3 Our approach is easier than that proposed by Gómez-Déniz et al. (2025). Their approach requires draws from the 
Generalized inverse Gaussian (GIG) distribution that is more challenging and time-consuming. Our approach only 

requires drawing from the inverse Gaussian. This generation procedure is based on the result that ( )w
w

λ µ
µ

−

 

 

 is 

normally distributed when W is inverse Gaussian distributed as in Equation (12). Equivalently, 
2

2

( )w
w

λ µ
µ
−

 

 

 is chi-
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our procedure also makes it simple to extend to the multivariate case, given the way we propose 
the multivariate extension. The procedure for the univariate case is as follows: 

(1) Draw a variate ϑ  from the standardized normal distribution, and square the value 2ϕ ϑ= . 

(2) Compute 2( / 2) 0.5 4ν α ϕ αϕ ϕ= + − +  (this is the lower root). 
(3) Generate another random variate u sampled from a standardized uniform distribution. 

(4) If  u α
α ν

≤
+

, w ν= ; otherwise 2 /w α ν= . w is a variate from the inverse Gaussian.  

(5) Compute 2 /s wα= . 
(6) If 0.5, ;u g s< = −  otherwise g s= + . 

(7) 1( )z t gλ µ σ−= + . 
 

Theorem 3: The random variable 2~ ( , , , )Z BYJN µ σ λ α  is bimodal for 0α >  and unimodal for 
α =0. There is no closed-form expression for the two modes when 0α >  and 1λ ≠ , but they are 
obtained as solutions to the following quadratic equation:    

( )
( ) ( )

2
1 sgn( ) 1

1( )( ) 0; , ( )
1

z

t zg z g g z
z

λ
λ

σ λµτ α τ
σ + −

−−
− − = = =

+
. (13) 

Proof: This is obtained by the straightforward differentiation of the density function of Z in 
Equation (4) and setting to zero (the second differential of the density function at the resulting real 
roots of the Equation (13) above can also be shown to be negative). Of note is that when λ =1, the 
result is a symmetric bimodal distribution for Z. In this special case, ( )zτ =0 and ( )t z zλ = , and 

the two modes are solutions to the equation 2 0,g α− = and are obtained as ,z µ σ α= ±  which 
is the case of Gómez-Déniz et al.’s symmetric distribution. Also, in the special case when α =0, 
the single mode of g is at ( )g zτ= . Equivalently, the single mode for Z in this special case is 
obtained as the solution to the following equation: ( ) ( ) .t z zλ στ µ= +  

The trough (that is, anti-mode) level between the two modes in the case of 0α > is at 0G =  
or 1( )z tλ µ−= . This should be obvious from the expression in Equation (10) for the density function 

 
squared distributed (see Shuster, 1968). In the context of our analysis with 2and ,µ α λ α= = w

w
α

−  is 

normally distributed and 
2 2

2w w
ww

α α α
  − = + −  

   
 is chi-squared distributed. The second through fourth steps 

in the generation process below are based on back-solving for a realization of w by putting 
2

w
w
αϕ  = − 

 
, 

computing the two possible roots for the resulting realization of w, and then assigning the final realization for w by 
the relationship that the product of the two possible roots is 2α  (see Michael et al., 1976).  
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of G. This is also the median point of the distribution, with 1Prob( ( )) 0.5Z tλ µ−< =  (see next 
theorem). 
  
Theorem 4: The cumulative distribution function (CDF) of the random variable 

2~ ( , , , )Z BYJN µ σ λ α  is as follows (with ( ).Φ  being the standard normal CDF):  

2 ( )( ) Prob( ) Prob( ) Prob( ),

0.5 exp(2 ) if 0

0.5 if 0

0.5 0.5 exp(2 ) 1 if 0

Z
t zF z Z z G g S g g

g g g
g g

g

g g g
g g

λ µ
σ

α αα

α αα

− = < = < = < =   
      

× Φ − + Φ + <      
       

= =
       + × Φ − − −Φ + >            

 (14) 

Proof: The above result is immediate from the expressions for the cumulative distribution function 
of the RIG distribution. Essentially, the bimodal distribution includes two RIG distributions, one 
RIG to the right of 1( )z tλ µ−=  and another mirrored about the y-axis (but not symmetrically so 

except when λ =1) RIG distribution to the left of 1( )z tλ µ−= . As expected, ( ) 1.ZF ∞ =  Importantly, 
the ability to write the univariate cumulative distribution function in literally a closed form (given 
the univariate cumulative normal distribution function is easily computed) implies that estimating 
a univariate model with the proposed distribution is as easy as estimating a model that considers 
the error term to be a normal distribution. This is unlike the case of a finite mixture-of-normals 
that can be unstable in estimation and be computationally intensive. 

The mean, variance, and other higher moments are not computable in a closed form, but 
may be  estimated through numerical integration based on the probability density function in 
Equation (4), or through generating draws based on Theorem 2 and estimating the desired 
quantities. Figure 1 provides the plots of the proposed BYJN distribution maintaining 0µ =  and 

2 1σ = , but allowing for different values of λ  and α  (in our empirical context with the BYJN 
distribution being applied to the kernel error term of an ordered-response model, we maintain 

20 and 1µ σ= =  for identification purposes). The top panel shows three graphs for 0.5α =  with 
different values of the YJ parameter .λ  When 0.5λ = (more generally when 1)λ < , the bimodal 
distribution has a sharp peak to the left of the zero point with a more diffuse peak to the right. The 
exact reverse is the case when 1.5λ =  (more generally when 1)λ > , with the case of 1λ =  (the 
middle graph) being the symmetric bimodal case of Gómez-Déniz et al. (2025). The bottom panel 
shows three graphs for 2.0α =  with the same values of the YJ parameter λ  as the top panel. This 
parameter α  may be viewed as a diffusion factor. As α  increases, the spread of the distribution 
increases (especially around the zero point). In the case when 1λ = , as discussed earlier, the modes 
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are located at α±  and the density function take the identical magnitude value of (0)φ =0.3989 

(this may be observed by plugging in ( )t zg zλ µ
σ
− = =  

 when 20, 1, and 1µ σ λ= = =  in 

Equation (4) with z α= ± ). In this specific case, α  simply pulls the two modes more apart but 
the density remains the same at the modal points regardless of the value of α . However, when 

1λ ≠ , the α  parameter also affects the density value at the modal points. Specifically, when 1,λ <  
the distribution to the left of the zero point gets tighter and the modal density becomes higher, 
while the distribution to the right gets more diffuse and the modal density becomes lower. When 

1,λ >  the reverse holds. Clearly, the combination of λ  and α  when 1λ ≠  provides substantial 
flexibility to the bimodal distribution. Of course, when α =0, the result is a unimodal distribution 
with skew based on the YJ parameter, as discussed in Bhat (2024).  
 
2.4.   Extension to the Multivariate Case 
The univariate skewed bimodal distribution proposed in the previous section provides a 
straightforward and very effective way to extend to multiple dimensions, though we have not seen 
this approach to extend univariate bimodal distributions in the extant literature. Importantly, the 
procedure to generate draws, as discussed for the  univariate case, can also be extended for the 
multivariate case after careful modification. The key to our extension of the univariate asymmetric 
bimodal distribution to the multivariate case is the introduction of asymmetry using the YJ 

transformation. By doing so, and as should be obvious from Equation (10), g
g
α

−  is normally 

distributed. This immediately allows an extension to the multivariate case as discussed next.   

Consider a vector ( )1 2, ,..., ( 1 vector)LZ Z Z L′= ×Z . The nature of the bimodal distribution 

can vary across the random elements lZ  through different values of 2, , , and l l l lµ σ λ α . The 
procedure begins with the multivariate YJ distribution with a single mode along each dimension. 
Using the same approach as for the univariate case, we can extend it to up to two modes along 

each dimension. Define the random variable 
( )

l l l
l

l

t Z
G λ µ

σ
−

= , and let 
( )

l l l
l

l

t z
g λ µ

σ
−

=  for a 

specific value of lZ = lz . Let ( ) ( ) ( )1 2 1 2 1 2, ,..., , , ,..., , and , ,...,L L LG G G z z z g g g′ ′ ′= = =G z g . 

Similarly, collect other component-wise elements into vectors , , , andμ σ λ α . For compactness, 

we will also write ( )1 21 2
( )( ) ( ), ( ),..., ( ) , and

Lλ λ λ Lt z t z t z −
= = λ

λ
t z μt z g

σ
. α

g
, as written in the next 

few expressions, will refer to the vector of element -by-element division along each dimension.   
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Theorem 5: The following function represents a proper multivariate probability density function 
(pdf) for a random variable vector Z  spanning the multi-dimensional real line; 0 2 and α 0< < ≥λ  
(the last two notations taken to mean that each element of the vector follows the scalar limits): 

 ( )
*

sgn( )( 1) *

1

1

,
( ) 1 ,l l

L L z
Z lL

l
l

l

h z
λ

φ

σ

−

=

=

  
−  

    = × +
  

 
 

∏
∏

αg Ω
g

z Ω representing a correlation matrix. (15) 

 
Proof: The proof follows exactly the one for the univariate case, because the multivariate normal 

distribution is also a symmetric distribution, with each element of −
αg
g

 being univariate normally 

distributed. From the properties of the multivariate normal distribution, it is immediate that the 
marginal along each dimension is BYJN distributed; 2~ ( , , , )l l l l lZ BYJN µ σ λ α . Essentially, the 

elements lZ  along each dimension are being brought together using an implicit Gaussian copula 
to generate a correlation across the elements (see Bhat et al., 2025). This observation also provides 
a pathway to generate draws from the multivariate distribution of Equation (15). The procedure 
we propose is as follows, which does not need the inverse CDF of lZ  (this inverse CDF has no 
closed form, and numeric computation can be expensive): 

(1) Follow steps (1) through (6) for the univariate case to generate independent draws (across 
dimensions) for lG  (that is, obtain realizations lg ).  

(2) Compute l
l l

l

g g
g
α

= −  for each dimension l. These realizations, as per Equation (15), are 

normally distributed and correlated across dimensions through the matrix * ,′=Ω LL  where 
L corresponds to the lower diagonal Cholesky matrix. Obtain ,=g Lg

  with elements lg , 

which now need to be back-transformed to obtain lg  through the equation  .l
l l

l

g g
g
α

= −






 

To do so, compute the two roots of lg  for each dimension as follows: 
2 24 4

, and .
2 2

l l l llow high
l l

g g g g
g g

α α− + + +
= =
   

   

Note also that ,low high
l lg g α× = −   or low

l high
l

g
g
α 

= − 
 





. 

(3) From ( )
l

l
G l l

l

f g g
g
αφ

 
= − 

 
(see Equation (10)),  
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( )
( )

1,l

l

low highl l
l llow low high

G l l l
high

G l high highl l
l lhigh high

l l

g g
f g g g
f g

g g
g g

α αφ φ

α αφ φ

      
− − +      
      = = =

      
− −      
      

 


 



 

 

 

  
( )
( )

2

2

1
/

/
1

low
l l

high
l l

l
low

l l lg g

low
l l g g l

l

g g g

g g g

α

α

=

=

 
 +
 ∂ ∂  =
 ∂ ∂
 +
 
 

 

 











 and compute 
( )
( )

1

2

2

1

1

1

l
low
l

l
low
l

l

g
u

g

α

α

−
  
  +
  

  = +
  
  +
  

  







.   

(4) Generate another random variate u  sampled from a standardized uniform distribution. 
(5) Based on application of the result of Michael et al. (1976), select the root from between 

andlow high
l lg g   as follows:  if  , assign ; otherwise, .low high

l l l lu u g g g g≤ = =


 



 

 

(6) Finally, generate variates 1( ).
ll l l lz t gλ µ σ−= +



 

 
There is no simple closed-form expression for the CDF or the moments of this flexible multivariate 
distribution, but the easy and powerful generation process just discussed allows the computation 
of all of these quantities numerically. The generation approach has been verified through 
numerically integrating the density function in Equation (15) with given parameters between 
different bounds, and estimating the same value by generating random variates and computing the 
fraction of random variates between the integration bounds. Of course, all the univariate properties 
discussed earlier remain in effect for each marginal.  
 
3. APPLICATION 
3.1. Background 
We now demonstrate the application of our proposed asymmetric bimodal distribution in the 
context of traffic crash injury severity analysis. In the crash injury severity field, two model 
structures have been widely used – the ordered-response formulation and the unordered-response 
formulation. There has been, and continues to be, a debate regarding which one of these two should 
be the basis for modeling injury severity. While the workhorse formulation within the ordered-
response formulation is the ordered probit or ordered logit, more advanced versions of these 
formulations that incorporate varying thresholds and varying exogenous variable effects have been 
considered (see Eluru et al., 2008, Yasmin and Eluru, 2013, Balan and Paleti, 2018, and Huang et 
al., 2025). Similarly, while the workhorse formulation within the unordered-response formulation 
is the multinomial logit, more advanced versions such as the mixed logit model and the 
multinomial probit have also been considered (see Chen et al., 2023, Wu et al., 2023, and Haddad 
et al., 2024). Several studies have investigated these different formulations, with a detailed 
discussion of the advantages and limitations of each approach (see, for example, Eluru, 2013, 
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Abay, 2013, and Nasri et al., 2022). While there is general consensus that formulations such as the 
generalized-ordered response framework that straddle the space between the ordered and 
unordered formulations may be most appropriate, the results also suggest that the conclusions from 
the two model frameworks tend to be rather similar. In this paper, as a first use case of the proposed 
bimodal distribution, we consider the simple ordered-response framework, leaving investigations 
with more advanced versions of the ordered-response framework and the unordered framework to 
future research.  

In the canonical form of an ordered-response model structure (see McKelvey and Zavoina, 
1975; Bhat, 1997; and Greene and Hensher, 2010), consider the following relationship that maps 
the latent injury severity risk index *y  to the observed injury severity level y .  

* *
1 0 1, if ; 1, 2,... ; , 0,k k Ky y k y k Kε ψ ψ ψ ψ ψ−′= + = ≤ < = = −∞ = = +∞γ x  (16) 

In the above equation, x  represents an exogenous variable vector  (excluding a constant), and γ  
is a corresponding coefficient vector to be estimated. Assume that the elements of the vector x  
are independent of the error term ε . kψ  represents the upper bound threshold for ordinal level k 

for the outcome y 0 1 2 1 0( ... ;   , ).K K Kψ ψ ψ ψ ψ ψ ψ−< < < < = −∞ = +∞  For later use, let 

1 2 3 1( , , ,..., ) .Kψ ψ ψ ψ − ′=ψ  In this paper, we assume that the coefficient vector γ  is fixed, and focus 
on a bimodal asymmetric distribution specification for the kernel error term ε . The 
correspondence between the discussion in Section 2.3 and Equation (16) is straightforward by 
equating the error term ε  to the random variable Z with location and scale normalization as is 
needed in any ordered-response model. Specifically, we assume ~ (0,1, , )BYJNε λ α . We refer to 
the model in (16) with this error distribution as the ordered-response probit BYJN model. Defining 

,k kϕ ψ ′= − γ x  the required probability corresponding to Equation (16) for maximum likelihood 
estimation is: 

[ ] [ ]1 1Prob( ) Prob( ) ,k k k ky k F Fε εϕ ε ϕ ϕ ϕ− −= = < < = −  (17) 

where [ ]kFε ϕ  is computed based on Equation (14).     

To ensure that the conditions 0 2λ< <  strictly holds during estimation, we use a parameterization 
as follows: 

*

2
1 exp( )

λ
λ

=
+ −

.                 (18)  

Also, to ensure that 0,α ≥  we parameterize *exp( )α α= . In the analysis, we first run the model 

in parameterized form with *λ  and *α . After this estimation, we run a final iteration with the 
implied unparametrized values of λ  and α  to obtain the standard errors of all parameters.  
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3.2. Data and Sample Used in Analysis 
The sample used in estimation is drawn from the Texas Department of Transportation (TxDOT) 
crash database of two-vehicle crashes at intersections recorded between January 1, 2018, and 
December 31, 2019. While five levels of injury severity for the most severely injured person are 
reported; no injury, possible injury, non-incapacitating injury, incapacitating injury, and fatal 
injury; we consolidate the last two levels into a single severe injury category due to the very few  
number of observations in the fatal crash category. We use a two-year period to obtain a reasonable 
number of crashes in the highest level “severe” injury severity category. The final dataset used in 
analysis comprises 2,757 crashes, with the following split in the injury severity categories: (1) 
Non-injury – 1314 (47.7%), (2) Possible injury – 691 (25.0%), (3) Non-incapacitating injury – 664 
(24.1%), and (4) Severe injury – 88 (3.2%). 

The data used is the same as that employed for part of the analysis in Haddad et al. (2024). 
As discussed there, an array of data sources were used to compile a comprehensive set of 
explanatory variables influencing crash severity for each crash, including (a) crash characteristics 
(intersection control type and number of intersection approach legs at crash location, crash time 
and day of week, and crash weather/lighting conditions) from TxDOT’s CRIS database, (b) road 
network features (such as functional classification of the approach roadways at intersection, and 
AADT/number of lanes/posted speed limits of approach roadways from the TxDOT roadway 
network inventory database, (c) CBG-level land-use distribution splits in the Census Block Group 
(CBG) of crash location from the City of Austin's Open Data Portal, (d) motorized vehicle 
ownership data, aggregated to the CBG-level using GIS tools, as obtained from the U.S. 
Environment Protection Agency (EPA) Smart Location Database (or SLD; see Chapman et al., 
2021, and Ramsey and Bell, 2014) (e) sociodemographic and commute mode split data, again 
aggregated to the CBG level, as extracted from the American Community Survey (ACS) 2021 
five-year estimates.  
 
3.3. Exogenous Variable Specification and Model Results 
The exogenous variable specification for inclusion in the final model was based on considering a 
number of different combinations of variables and different functional forms for variables, along 
with insights from earlier research and parsimony considerations. In terms of functional form, for 
variables in grouped form (such as age of most severely injured individual and time of crash) and 
those naturally discrete (such as gender, race, lighting conditions, time-of-day of crash, and 
weather conditions at the time of crash), dummy variables were created in the most disaggregate 
form and then, to achieve an efficient specification, progressively combined based on statistical 
tests. For variables in continuous form (most BE and CBG variables), various functional forms 
were tested, including a continuous linear form, a continuous logarithm form, a piece-wise linear 
form, and a set of dummy variables for different ranges, and the best specification among the many 
possibilities was selected based on data fit. 

Four different models are considered and estimated in our analysis: (1) the simple ordered 
probit (ORP) model with a standard unimodal and symmetric non-skewed distribution for the 
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normal distribution (λ =1, α =0), (2) the unimodal skewed ORP (or the SORP) model in which a 
single mode is retained, but the error distribution is allowed to be skewed (λ  free for estimation, 
α =0), (3) the bimodal symmetric ORP (or BSORP) model in which two modes are allowed, but 
the distribution is symmetric ( 1, free for estimation)λ α= , and (4) the proposed BYJN ORP (or 
the BYJNORP) model in which bimodality and asymmetry are allowed (both λ  and α  left free 
for estimation). In all models, for identification, 0µ =  and 2 1σ = . The corresponding shapes of 
the error distributions, as estimated in the models, are shown in Figure 2 (the implied/estimated 
values of λ  and α  are reported underneath each figure, and are also reported later in Table 1). 
The SORP model shows a substantial rightward skew, indicative of a long but thin tail at high 
injury propensity values. The BSORP model indicates the double modality, but imposes the 
condition of long and thin tails at both very low and very high injury propensity values. The 
BYJNORP model, on the other hand, indicates a sharp spike at the low injury propensity range 
and a much more tempered spike at high injury severity values, with a long and thin tail only at 
high injury propensity values. That is, our results indicate that, after controlling for observed 
determinants of injury severity, unobserved factors tend to substantially increase the possibility of 
no or possible injury severity and moderately increase the possibility of non-incapacitating-to-
severe injury severity, a trend that none of the other models are able to replicate.    

 The estimation results for the four models are presented in Table 1. The first four numeric 
columns of the table include all exogenous variables that were statistically significant at the 90% 
confidence level in at least one of the four models. We do so to highlight the potential pitfalls in 
terms of exogenous variable effects if a more restricted normal error distribution is used rather 
than the BYJN error distribution. Doing so also allows us to use the more powerful likelihood ratio 
test to compare models rather than use non-nested likelihood ratio tests. The last column of the 
table presents the final specification retained for our proposed BYJNORP model. Interestingly, 
weather/lighting conditions and time-of-day of crash did not turn up statistically significant even 
at the 80% confidence level in any of the models. In the rest of this section, we briefly discuss the 
results, though the intent here is not on substantive explanations but more on the comparison of 
the results across models to demonstrate the value of the proposed model. We should point out 
here that all the models took about the same time (less than 10 seconds) to estimate as the ordered-
response model, demonstrating the ease with which the proposed bimodal distribution may be 
implemented relative to the more computationally expensive discrete mixtures-of-normals 
approach to generate bimodality.  

In all the ordered-response models, among characteristics of the most severely injured 
person, the injury risk propensity is elevated if the most severely injured person in the crash is an 
individual under the age of 13 years or over the age of 60 years or is a woman.  These results are 
quite expected, given the smaller body frames/muscle masses of young children and women (Bose 
et al., 2011), and the lower bone densities as one ages (Kabli et al., 2020). Individuals of Black 
origin involved in a crash (as the most severely injured individual), per the results of all the non-
BYJN models, are likely to be associated with a higher injury severity propensity than individuals 
of other races. This is consistent with the findings from earlier studies (see, for example, Adanu 
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and Jones, 2017 and Haddad et al., 2024) that attribute this result to more limited access to 
advanced safety features prevalent in newer and safer vehicles (Hanks et al., 2018) and disparities 
in healthcare access/response times (Hanchate et al., 2019). However, the race of the most severely 
injured person in a crash does not turn up statistically significant in the proposed BYJNORP 
model. Overall, because the BYJNORP models (the last two columns) accommodate the sharp 
peak at the lower end of the injury severity spectrum (thus capturing the high fraction of injury 
severity at the no/possible injury levels), it is able to better distinguish between low and high injury 
severity propensities based on the characteristics of the most severely injured person, accentuating 
the differences in injury severity propensity based on age and gender but tempering the difference 
based on race (of course, one should be careful in comparing the magnitudes of any variable 
coefficient across different models, because the thresholds are at different points, as discussed 
later; but a qualitative observation may be made regarding the differences in variable coefficient 
estimates across the models). A similar trend is observable for the characteristics of the at-fault 
driver. In all models, if the at-fault driver is over the age of 60 (relative to younger individuals) or 
is a woman (rather than a man), the result is a lower propensity of injury severity propensity, which 
may be attributable to the more cautious driving among older individuals and men (see, for 
example, Song et al., 2021). But these effects again are rather accentuated (and estimated with 
higher degree of precision) in the BYJNORP models. In contrast, while the non-BYJNORP models 
all indicate a rather non-intuitive lower injury propensity if the at-fault driver is under the influence 
of alcohol, the BYJNORP model does not evidence such a non-intuitive result.  

Among the intersection-level and CBG-of-intersection location variables, the control type 
at the intersection, functional class of approach roads, and number of lanes of each approach all 
did not have any influence at any reasonable level of significance in our analysis. The average 
annual daily traffic has a positive influence on injury severity propensity, though fades in statistical 
significance especially in the BYJNORP model (and is dropped in the final BYJNORP 
specification). A similar result is obtained for the effects of intersection density in the CBG of 
intersection location and the proportion of individuals residing in the CBG of intersection location 
who commute by driving (both of which may be viewed as exposure measures, but are statistically 
insignificant in the BYJNORP model). Notably, however, at the CBG level of intersection 
location, the fraction of industrial and agricultural land use, and the proportion of low-income 
households, appear as statistically significant factors. In particular, crashes in CBGs with a higher 
fraction of industrial and agricultural land use tend to result in higher propensity of injury severity, 
presumably due to higher speed limits, large farm vehicles, or more conflict points. Crashes in 
lower-income CBGs also increase injury severity propensity, potentially due to well-established 
infrastructure deficiencies in low-income areas relative to high-income areas (Haddad et al., 2023).  

Finally, the thresholds, while not having any substantive behavioral interpretation, map the 
latent propensities underlying injury propensity to the observed injury severity level. But the 
substantially higher range of the threshold values is apparent in the BYJNORP model, because it 
accommodates the sharp spike at the lower propensity level and a right skew at the upper end, 
allowing a better spread of the thresholds while still fitting the observed injury severity levels.  
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3.4. Data Fit Measures 
We compare our proposed BYJNORP model with the other three restrictive versions, and then 
also the BYJNORP with the final specification version of the same model, using nested likelihood 
ratio tests. For completeness, we also compute the adjusted likelihood ratio index of each model 
with respect to the log-likelihood at zero (log-likelihood (0)L  for the model with equal shares 
model) and the log-likelihood at sample shares (that is, the log-likelihood ( )L c  for the model with 
only thresholds) as follows: 

2 20
0

ˆ ˆ( ) ( )1 and 1
(0) ( )

c
c

L M L M
L L c

ρ ρ− −
= − = −

θ θ . (19) 

In the above equation, ˆ( )L θ  represents the log-likelihood function at convergence, M0 represents 
the total number of parameters in the model, and Mc is the number of parameters excluding the 
thresholds in the model.  

The results are provided in Table 2. The 2ρ  values for our proposed model are better than 
that for all the other models. The likelihood ratio (LR) tests (when the proposed model is compared 
to the three nested and restricted versions) yield values that are higher than the critical chi-squared 
table values at any reasonable significance level (at the respective degrees of freedom). Further, 
the final specification for the BYJNORP model in the final column of the table cannot be rejected 
in comparison with the BYJNORP model with all variables that turned out to be statistically 
significant in one of the other models. This is also evidenced in the final model of Table 2 having 
the best 2ρ  values of all the models.  

To confirm that the superior data fit of the proposed BYJNORP model is not simply an 
artifact of overfitting, we undertake further data fit tests using market segment prediction tests (see 
Ben-Akiva and Lerman,1985, page 208) in which we compare the implied predictive log-
likelihood and the average probability of correct prediction from the proposed model with other 
restrictive models in each of many market segments. To conserve on space, Table 3 presents these 
data fit statistics for six market segments based on selected variables. For the predictive log-
likelihoods, we use informal predictive likelihood ratio (IPLR) tests (please see the third numeric 
column of Table 3) to compare data fits. In this regard, we present the statistics only for the first 
four models presented in Table 3, because these can be compared with the IPLR tests. The fit 
statistics for the final refined BYJNORP model (final model in Table 2) are almost identical to 
those of the fourth model in Table 3). In each market segment, the predictive log-likelihood is 
better for our proposed model, and the predictive informal likelihood ratio tests reject all the 
restricted models in favor of our proposed model The average probability of correct prediction is 
also higher for our proposed model. These observations provide additional support and validation 
that the joint model indeed offers an improved robust data fit that is not simply an artifact of 
overfitting. 
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4. CONCLUSIONS 
In this paper, we have proposed a bimodal flexible continuous parametric distribution that allows 
for asymmetry through a combination of an approach to generate bimodality and using a YJ-
transformation. A number of properties of the proposed distribution are stated and proved. We also 
extend the approach to develop a multivariate version of the proposed bimodal distribution. A 
convenient way to generate random variates from this multivariate density is proposed.  

We demonstrate an application of the proposed distribution to model injury severity using 
an ordered-response formulation and data drawn from the Texas Department of Transportation 
(TxDOT) crash database of two-vehicle crashes at intersections recorded between January 1, 2018, 
and December 31, 2019. Supplemental data from many other sources are added to include 
information on road network features and land-use/demographic distribution of the Census Block 
Group (CBG) of the crash location.  The results indicate the benefits of employing the proposed 
distribution (rather than the typically used normal distribution or skewed univariate versions or a 
symmetric bimodal distribution) for better characterizing the effects of variables on injury severity 
propensity, avoiding the unintuitive effects estimated by the other models. In terms of data fit too, 
the model employing the new proposed error distribution performs vastly superior to the other 
more restricted versions, while maintaining an estimation time that is about the same order as that 
of the simple ordered-response model used commonly in injury severity modeling.  

The proposed distribution may be applied to a number of different econometric modeling 
contexts in both a univariate and multivariate context, and in a whole variety of fields to consider 
bimodal asymmetry in stochastic distributions. In this paper, we have applied the distribution to a 
relatively simple ordered-response formulation. Future research can extend the use of the 
distribution to more advanced ordered-response and unordered-response formulations, including 
for kernel error distributions and random coefficients on exogenous variables. Also, finite discrete 
mixtures of the proposed asymmetric bimodal distributions may be considered for 
clustering/classification, though the estimation stability and computational intensity of such an 
approach is sure to be even more of a challenge than the current use of finite discrete mixtures of 
unimodal distributions.  
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Figure 1. Plots of the proposed BYJN distribution maintaining μ=0 and σ2=1, but allowing 

for different values of λ and α  
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Figure 2. Distribution of kernel error terms in the different models
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Table 1. Model results (coefficients represent effects on underlying latent injury severity propensity) 

Variables  
Ordered Probit 

(ORP) 

Unimodal 
Skewed 

Ordered Probit 
(SORP) 

Bimodal 
Symmetric 

Ordered Probit 
(BSORP) 

Proposed 
BYJN 

Ordered 
Probit 

(BYJNORP) 

Final 
Specification 

for BYJNORP 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 
Characteristics of most severely injured person           

Individual < 13 years 0.822 9.85 1.057 9.79 0.994 8.41 1.824 5.76 1.851 6.14 
Individual > 60 years 0.391 4.07 0.412 3.47 0.594 7.52 1.109 5.71 1.128 6.68 
Female 0.483 8.56 0.810 10.92 0.605 6.63 1.010 8.83 1.015 10.07 
Black or African American 0.198 3.34 0.197 3.41 0.114 1.73 0.001 0.01 0.000 - 

Characteristics of at-fault driver           
Individual > 60 years -0.018 -0.17 -0.194 -1.36 -0.323 -3.44 -0.846 -3.91 -0.852 -4.88 
Female -0.228 -4.13 -0.520 -7.66 -0.493 -5.31 -0.886 -8.16 -0.896 -10.01 
Under the influence of alcohol -0.731 -2.90 -1.203 -2.31 -0.126 -2.00 -0.023 -0.22 0.000 - 

Crash intersection location variables           
Major approach AADT (in 100,000) 0.066 1.60 0.096 2.28 0.020 0.70 0.022 0.36 0.000 - 

Census block group of intersection location           
# intersections per mi2 (in 100s) -0.088 -2.14 -0.070 -1.61 -0.036 -1.36 -0.020 -0.40 0.000 - 
Fraction of industrial and agricultural land-use 0.401 3.06 0.260 2.08 0.333 2.92 0.494 2.47 0.561 3.65 
Proportion of low income households 1.740 2.22 1.295 1.60 1.559 2.55 3.390 3.75 3.400 3.89 
Proportion of individuals commuting by car  0.272 1.79 0.262 1.33 0.198 1.76 0.170 0.76 0.000 - 

λ (YJ) parameter  (t-statistic computed w.r.t 1.000) 1.000 - 5x10-6 * 1.000 - 0.183 13.81 0.180 13.90 
α (bimodality) parameter  0.000 - 0.000 - 0.436 4.41 1.493 3.73 1.508 2.75 
Thresholds           

Between no injury/possible injury 0.560 3.52 0.592 2.82 0.050 0.411 0.208 1.07 0.084 0.52 
Between possible/non-incapacitating injury 1.257 7.86 1.542 7.23 1.292 9.54 2.881 5.75 2.771 5.11 
Between non-incapacitating/severe injury 2.550 15.12 6.068 16.62 2.582 17.05 6.914 7.29 6.841 6.56 

A ‘-’ entry in the t-statistics column indicates that the corresponding coefficient is fixed due to identification considerations or because of a restriction imposed by the 
model or, in the case of the last column of the table,  because of restricting the coefficient to zero due to statistical insignificance.  
*In parameterized form, the estimated value of λ* is -12.869 with a standard error of 0.769. This yields an implied value of λ =2/(1+exp(λ*))≈5x10-6 and standard error 
of λ equal to 4x10-6.  Then, with respect to a value of 1, the implied t-statistic for λ is very large of the order of 1/(4x10-6) or 2.5x105. 
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Table 2. Data fit measures 

Metric 
Ordered Probit 

(ORP) 

Unimodal 
Skewed 
Ordered 

Probit (SORP) 

Bimodal 
Symmetric 

Ordered Probit 
(BSORP) 

Proposed 
BYJN 

Ordered 
Probit 

(BYJNORP) 

Final 
Specification 

for BYJNORP 

Log-likelihood at convergence -3075.35 -3034.05 -3074.69 -2984.78 -2985.39 

Number of non-constant/non-threshold 
parameters 15 16 16 17 12 

Log-likelihood at zero (equal shares) -3822.01 

Log-likelihood at constants/thresholds only  -3178.35 

Rho-Bar Squared Value (w.r.t. zero) - 2
0ρ  0.1906 0.2012 0.1905 0.2138 0.2150 

Rho-Bar Squared Value (w.r.t. 
constants/thresholds) - 2

cρ  0.0277 0.0404 0.0276 0.0556 0.0569 

LR test: Proposed BYJNORP vs. ORP LR = 181.1> 𝜒𝜒(2,0.05)
2 = 5.90 

LR test: Proposed BYJNORP vs. SORP LR =  98.5 > 𝜒𝜒(1,0.05)
2 = 3.84 

LR test: Proposed BYJNORP vs. BSORP LR = 179.8> 𝜒𝜒(1,0.05)
2 = 3.84 

LR test: Proposed vs. Final BYJNORP LR = 1.22< 𝜒𝜒(5,0.05)
2 = 11.07 
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Table 3. Measures of fit on various market segments of the estimation sample 

Market Segment Most severely injured person is less 
than 13 years of age 

Most severely injured person is 
more than 60 years of age 

Most severely injured person is 
female 

Measures of Fit ORP SORP BSORP BYJN 
ORP ORP SORP BSORP BYJN 

ORP ORP SORP BSORP BYJN 
ORP 

Number of observations 78 230 1492 

Pred. log-likelihood -96.8 -90.6 -88.7 -76.0 -284.9 -268.7 -276.5 -252.0 -1740.0 -1706.8 -1689.4 -1657.2 

Informal Pred. LR Tests    

BYJNORP vs. ORP 41.6 > 𝜒𝜒(2,0.05)
2 =5.90 65.8 > 𝜒𝜒(2,0.05)

2 =5.90 165.6 > 𝜒𝜒(2,0.05)
2 =5.90 

BYJNORP vs. SORP 29.2 > 𝜒𝜒(1,0.05)
2 =3.84 33.4 > 𝜒𝜒(1,0.05)

2 =3.84 99.2  > 𝜒𝜒(1,0.05)
2 =3.84 

BYJNORP vs. BSORP 25.4 > 𝜒𝜒(1,0.05)
2 =3.84 49.0 > 𝜒𝜒(1,0.05)

2 =3.84 64.4  > 𝜒𝜒(1,0.05)
2 =3.84 

Average Probability of  
Correct Prediction 0.3028 0.3192 0.3614 0.4268 0.3139 0.3313 0.3449 0.3738 0.3410 0.3440 0.3578 0.3693 

 

Market Segment Most severely injured person is of 
Black race 

At-fault driver is over 60 years of 
age At-fault driver is female 

Measures of Fit ORP SORP BSORP BYJN 
ORP ORP SORP BSORP BYJN 

ORP ORP SORP BSORP BYJN 
ORP 

Number of observations 399 214 1313 

Pred. log-likelihood -486.9 -481.0 -476.7 -461.0 -263.8 -261.3 -264.0 -254.4 -1542.7 -1535.8 -1555.5 -1505.4 

Informal Pred. LR Tests    

BYJNORP vs. ORP 51.8 > 𝜒𝜒(2,0.05)
2 =5.90 18.8 > 𝜒𝜒(2,0.05)

2 =5.90 74.6  > 𝜒𝜒(2,0.05)
2 =5.90 

BYJNORP vs. SORP 40.0 > 𝜒𝜒(1,0.05)
2 =3.84 13.8 > 𝜒𝜒(1,0.05)

2 =3.84 60.8  > 𝜒𝜒(1,0.05)
2 =3.84 

BYJNORP vs. BSORP 31.4 > 𝜒𝜒(1,0.05)
2 =3.84 19.2 > 𝜒𝜒(1,0.05)

2 =3.84 100.2 > 𝜒𝜒(1,0.05)
2 =3.84 

Average Probability  
of Correct Prediction 0.3254 0.3306 0.3405 0.3566 0.3145 0.3225 0.3325 0.3429 0.3437 0.3446 0.3454 0.3573 
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