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ABSTRACT

Modern econometric analysis faces two persistent challenges: estimating complex models with mixed
outcome types in high-dimensional data settings, and efficiently evaluating multivariate probability
distributions that lack closed-form solutions. Existing statistical packages often lack the flexibility to handle
these demands, while custom implementations require significant expertise and development time. This
paper introduces BHATLIB, a modular GAUSS library designed to bridge this gap. BHATLIB provides
efficient matrix operations and gradient-enabled routines for multivariate distribution evaluation, including
Bhat’s analytic approximation to the multivariate normal cumulative distribution function (7). Its
architecture supports flexible model construction, such as multinomial probit, multivariate ordered-
response, and multiple discrete-continuous models. This enables researchers to build, estimate, and extend
advanced econometric models with speed, precision, and reproducibility.

Keywords: Discrete Choice Modeling; Mixed Outcome Model; GAUSS software; Multivariate Ordered-
Response; MDCEV
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INTRODUCTION

Motivation

The field of econometrics and statistical analysis is continuously evolving, driven by a combination of
technological advances and theoretical developments. The exponential growth in processing capabilities,
along with significant improvements in data collection and storage technologies, has ushered in an era of
large datasets and sophisticated statistical models. Although these developments offer unprecedented
opportunities for analyzing economic phenomena, they also present two significant challenges. The first
challenge is associated with the analysis of large, high-dimensional datasets that often contain numerous
variables of different types and exhibit intricate relational structures, including spatial, temporal, and
hierarchical interactions. Specifically, uncovering relationships to identify cause-effect structures within
the landscape of features such as heterogeneity, non-linearity, and high-dimensional parameter spaces
requires developing and implementing advanced analytic methods, estimation techniques, and inference
approaches. For instance, models dealing with individual choice behavior may have a variety of dependent
outcome variables, including those that are continuous, grouped, binary, ordered response, unordered
response (or nominal), count, and multiple-discrete continuous. This requires the ability to estimate and
apply multivariate mixed data methods, as noted in Bhat (2015) and Bhat (2024) (2, 3). A second related
challenge is to evaluate multivariate stochastic density and cumulative probability distribution functions
that appear in the estimation of the aforementioned multivariate mixed data models. Many of such
cumulative probability distributions lack closed-form analytic solutions, leading to significant
computational hurdles. Simulation and analytic approximation methods are used to evaluate such
expressions. As the dimensionality increases, it becomes increasingly critical to supplement the evaluation
of these functions with their gradients, necessitating efficient and accurate matrix-based manipulations for
stable and reliable convergence.

The above challenges have created a notable gap in the available econometric and statistical
analysis tools. On one end of the spectrum, popular statistical software packages such as SPSS, Stata, and
R (e.g., the Generalized Linear Model or glm function in R) offer ease of use, allowing users to perform
standard analyses with minimal coding expertise. These tools are excellent for basic descriptive statistics,
simple regression models, and common hypothesis tests, democratizing data analysis across disciplines.
However, they often have significant limitations for advanced econometric techniques, as pre-packaged
routines may lack customization options for model specifications and estimation procedures. The
generalized nature of these tools can also lead to suboptimal performance for specific, computationally
intensive tasks. Also, while there has been a proliferation of specialized packages in these languages, they
often focus on specific model types or implementations. For example, recent developments include
packages for logit-based discrete choice models, multivariate distribution evaluation, spatial limited
dependent variable models, random utility models with choice-specific variables, multiple discrete
continuous extreme value models (MDCEYV), bivariate zero-inflated count copula models, and holistic
generalized linear models. Although valuable, this fragmentation of tools creates challenges in integrating
various components and maintaining a comprehensive approach to econometric modeling. As a result,
many advanced models, including those involving multiple equations, non-standard distributions, or
intricate error structures, remain unavailable in standard packages. On the other end of the spectrum,
implementing intricate and advanced computations from scratch, especially along with accompanying
gradient procedures for estimation accuracy and precision, using general-purpose programming languages
offers maximum flexibility but requires substantial time and matrix/computational/coding expertise. This
approach also potentially increases the risk of implementation errors and may complicate collaboration and
replication due to the lack of standardization.

Overview of BHATLIB

In this paper, we present the BHATLIB library for statistical and econometric matrix-based inference
methods in GAUSS to address these challenges. BHATLIB aims to bridge the gap between oversimplified
packages and custom advanced implementations, providing a reliable foundation for advanced multivariate
econometric and statistical models.



Bhat, Clower, Haddad, and Jones

At its core, BHATLIB provides a suite of specialized routines for matrix operations and probability
distributions that form the fundamental building blocks for the estimation of, and forecasting with,
advanced econometric models. The library’s matrix operations are designed to streamline common tasks,
such as manipulating positive-definite covariance matrices, decomposing multivariate distributions into
marginal and conditional distributions, working with Cholesky decompositions (4), and efficiently
converting between vector and matrix forms. Further, using matrix properties, many of these operations are
supplemented with gradient procedures. These capabilities are particularly valuable in maximum likelihood
estimation procedures that involve non-closed-form analytic expressions evaluated using simulation or
analytic approximations.

Building upon its matrix operations foundation, BHATLIB implements state-of-the-art methods for
probability computations, with a particular focus on multivariate normal distributions. A key feature is the
incorporation of Bhat’s analytical approximation for the Multivariate Normal Cumulative Distribution
(MVNCD) function (/), and the decomposition of the multivariate normal distribution into marginal and
conditional distributions. This analytic approach offers an efficient solution to computing high-dimensional
integrals and estimating mixed data models with continuous and limited-dependent outcomes, a common
challenge in econometric analysis. As indicated above, complementing these probability computations,
BHATLIB offers procedures for calculating gradients of the analytically approximated likelihood functions.

Another distinctive feature of BHATLIB is its modular structure, which enhances flexibility in
model specification. This modular design enables users to seamlessly integrate various types of outcomes,
including discrete, nominal, ordered, continuous, count, and ranked variables, within a single modeling
framework. As a result, users can construct tailored econometric models that capture intricate relationships
while maintaining a consistent code structure across different model types. The library also emphasizes a
consistent interface, reducing the learning curve for users and facilitating transitions between models.
Additionally, BHATLIB provides pre-built templates for popular advanced models, such as multinomial
probit, multiple discrete-continuous, multivariate ordered-response, and mixed outcome models,
significantly reducing development time.

Despite these pre-built components, BEATLIB maintains a high degree of flexibility, which sets it
apart from other tools. Its modular and interoperable procedures allow researchers to mix and match (“plug-
and-play”) components to build their models, facilitating the formulation of econometric specifications
without being bogged down in the intricacies of matrix operations and low-level computations. Users can
easily modify existing procedures or integrate new ones, enhancing the library’s adaptability to meet
various research needs.

This paper provides an overview of BHATLIB’s architecture, key functionalities, and potential
applications in econometric research. Through this overview, we aim to illustrate how BHATLIB can serve
as a valuable resource for researchers and practitioners, effectively bridging the gap between theoretical
advancements and practical implementation in the field of econometrics.

BASIC PROTOCOLS OF CODING IN BHATLIB

The BHATLIB library provides a powerful and flexible framework for working with complex covariance
structures in advanced econometric models. At its core is the ability to compute not only covariance
matrices and their components, but also the gradients needed for efficient and accurate estimation. These
capabilities help researchers implement advanced models that account for flexible error structures and
correlation patterns, while ensuring stable and reliable convergence during estimation. The procedures in
BHATLIB provide a wide range of low-level matrix operations and gradient functions not available in native
GAUSS. These operations can be invoked as needed and combined in a “plug-and-play” fashion to estimate
different model structures and perform forecasting with estimated models. In addition to basic matrix and
gradient operations, the library includes tools for generating Quasi-Monte Carlo sequences for simulated
likelihood estimation, performing LDLT decomposition of covariance matrices (4), constructing mask
matrices for mixed model estimation, and applying the composite marginal likelihood inference approach
for advanced models (9).
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Matrix Operation Protocols

All matrix-related codes in BHATLIB are based on a row-based arrangement of the elements. Thus, any
recasting of a matrix as a vector is based on the elements of the first row appearing, then all the elements
of the second row, and so on. Also, for any symmetric matrix that is converted into a vector of unique
elements, the upper diagonal elements are the ones considered. This protocol is also retained for gradients.
As a simple case, consider a matrix function as follows:

a)l 1 (U] 2 CU] 3

_ P | T K X _ _
A=XQX' X = (2x3), Q=|w, 0, ;| (3%x3),andA =
x21 x22 x23

a, alz}(zxz)
a,, 4y

W3 Oy Wy

Note that the matrix A will also be symmetric, because the matrix € is symmetric. The situation above
appears in many instances where € is a covariance matrix. Then, the gradient of matrix A with respect to
the symmetric matrix € (as output by the procedure gomegxomegax in the matgradient file of the library)
takes the following form:

da, da, da, |
do, do, do,
da,, da, da,,
do, do, do,
da,, da, da,,
d_A= do, do, do, (6x3).
dQ da, da, da,,
do,, do, do,
da,, da, da,,
do,, do, do,
da,, da, da,,
| doy; do,; doy |

Positive-Definiteness of Covariance Matrices
There are multiple ways to ensure the positive-definiteness of covariance matrices throughout the search
process during estimation. As discussed in (6), one approach is to specify appropriate restrictions on the
parameters a priori, and implement a constrained optimization technique. However, this leads to a complex
non-linear equation system, with the number of constraints increasing exponentially with the
dimensionality of the covariance matrix. Typically, heuristics are used to collapse such high-dimensional
constrained non-linear optimization problems into a set of unconstrained optimization problems, followed
by trial-and-error techniques that can become extremely cumbersome and exacerbate solution uniqueness
challenges. And even after all that, such ad hoc techniques do not guarantee positive-definiteness at
“convergence” (4, 6). Thus, a second and often preferred approach is to parameterize the covariance matrix
in a way that inherently ensures positive-definiteness, while still permitting the use of unconstrained
optimization.

This second approach can be implemented by (a) parameterizing the covariance matrix directly, or
(b) partitioning it into a diagonal matrix of standard errors and a correlation matrix, and then parameterizing
the correlation matrix. Several direct parameterizations of the covariance matrix exist, including the
Cholesky decomposition technique and its modified versions, and factor-analytic approaches (7). While
useful, these are not directly applicable for guaranteeing positive-definiteness of correlation matrices, which
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must retain strictly unit diagonal elements. In many estimation contexts, such as multivariate binary or
ordered response model systems, correlation matrices are often the focus due to scale normalization
requirements (8). Moreover, as detailed in (6), even when covariance matrices are of primary interest, it
can be beneficial to decompose them into a standard deviation matrix and a correlation matrix, and estimate
them separately. This is especially valuable in mixed data models where some diagonal covariance elements
are normalized and others are freely estimated.

In the BHATLIB codebase, analysts can opt to use either the Cholesky decomposition of the
covariance matrix or the partitioning approach combined with a spherical or radial parameterization of the
correlation matrix. In most of the codes for model estimation (including the multivariate ordered/binary
response model systems, the multinomial probit, and mixed data model systems), the approach used for the
kernel error terms is based on the partitioning approach. Here, using the example in the previous section,
the covariance matrix is first partitioned as follows:

Q=0Q'w, (1)

where @ is a diagonal matrix of the standard deviations (square root) corresponding to the variance

elements (diagonal elements) of ©, and Q is the correlation matrix corresponding to Q. Q" is
parametrized through a multi-level hierarchical scheme as a function of spherical/radial elements of another

matrix @ thatis, Q = f(®), where f(0) is a function that operates in a specific way on the elements of

the matrix @ so as to ensure that Q" is a positive-definite correlation matrix (while allowing the elements
of @ to span the entire real line; see (3)). In the notation of the previous section, we may then write:

A =XQX = XoQ oX =X f(0)wX. )

dQ  dQ dQ* , and j—g are available (for instance, see the

In BHATLIB, codes for Q = f(0), —, —, —
dO® dw dQ

dQ dQ
gradcovcor (CAPOMEGA) procedure discussed in the next section for Ta’ and E). Then, using the
©

row-based arrangement of matrices described earlier, along with matrix-based chain rules, we can express
the gradients as:

dA _dQ dA dA _dQ dQ dA
—:—X—, an —:—X_* X—. (3)
do dwo dQ d®@ dO® dQ dQ

Note that the row-based arrangement of matrices in BHATLIB implies that the chain rule should

be applied in the exact form as discussed above, not in the reverse way as, for example, A = d—Ax a“

do dQ do
Once analysts become familiar with these tools, the gradient and related procedures can be
combined in a “plug-and-play” fashion to develop new code for virtually any model system. Many of the
library’s procedures are based on earlier, lower-level functions, making it easy to extend and customize
models.

STRUCTURAL DESIGN AND ORGANIZATION OF THE BHATLIB LIBRARY

Pre-Built Models

The pre-built models in BHATLIB integrate the library’s matrix operations, probability computations, and
gradient procedures into complete plug-and-play estimation routines. These procedures are accompanied
by easy-to-use post-estimation tools, including goodness-of-fit statistics and forecasting capabilities
derived from model results. By offering these pre-built models, BHATLIB provides researchers with a
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comprehensive and flexible toolkit for advanced econometric analysis that balances ease of use with the
ability to address a wide range of analytical challenges. The current pre-built models in BHATLIB include:

1. Discrete Choice Models:
o Multinomial Probit (MNP) with various specifications (IID, homoscedastic,
heteroscedastic, and mixed variables)

2. Ordered Response Models:
o Multivariate Ordered Probit Model (MORP)

3. Multiple Discrete-Continuous Extreme Value (MDCEV) Models:
o Traditional MDCEV
o Linear MDCEV

Three key features of these pre-built models further enhance usability:

e Coefficient constraints: BHATLIB makes it easy to set up coefficient constraints using a visual,
matrix-based approach. Unlike software such as Stata, where each restriction requires a separate
line of code, users can group variables with equal coefficients in the same column of the
specification matrix. This simplifies both implementation and visualization of constraints.

e Alternative or outcome availability: BHATLIB allows users to define alternative or outcome
availability using 0/1 dummy variables. This provides a flexible and straightforward way to handle
cases where specific alternatives or outcomes are unavailable for some observations.

e Correlation restrictions: The library utilizes a “correst” matrix to specify correlation restrictions.
This upper-diagonal matrix has ones on the diagonal, and off-diagonal ones indicate active
correlations, making it easy to define complex error structures with minimal coding.

Later sections provide a practical guide to implementing these models within the BHATLIB
framework, including step-by-step setup and execution instructions. A few case studies using real data with
different variants of the MNP model are used for illustration, though other pre-built models are also
available.

Core Computational Libraries in BHATLIB
The pre-built models in BHATLIB are built on a foundation of core libraries for three types of matrix-
related computations:

1. Vecup.src for low-level matrix manipulations and gradient functions,
2. Matgradient.src for higher-level matrix manipulations and gradient functions, and

3. Gradmvn.src for univariate and multivariate probability density functions, truncated distributions,
cumulative distribution functions, and their gradients.

These core procedures are transparent and accessible, enabling users to develop customized advanced
econometric models beyond the provided pre-built options.

Vecup.src

This file provides matrix manipulation procedures not available in native GAUSS but essential for
estimating econometric models. For example, when using maximum likelihood procedures such as /pr (log-
likelihood computation) and /gd (gradient evaluation), the inputs must be vectors. These vector elements
must be arranged to reconstruct symmetric covariance or correlation matrices within the Ipr or Igd
procedures. In some cases, the input vectors contain Cholesky or LDLT-decomposed parameters, which
also require transformation into symmetric matrices. Similarly, gradient and related procedures often
require reshaped matrices as vectors. Basic matrix operations, such as extracting upper diagonal elements
into a vector or converting a vector to a symmetric matrix, greatly simplify the coding in these scenarios.
Many other procedures are available for converting vectors to matrices or vice versa. Examples include
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nondiag, which extracts the non-diagonal elements of a matrix into a vector, and vecsymmetry, which takes
a square symmetric matrix and produces a matrix where each row unrolls the symmetric elements. The
vecup library also provides tools for computing the mean and covariance matrix of truncated multivariate
normal distributions, performing LDLT factorization, and other matrix operations useful for estimating

multivariate

e {w}

mixed models. Below are some simple examples:

= vecdup(r): This procedure extracts the upper triangular elements of a matrix (including the

diagonal) and converts them into a column vector. For the input

Ir=

1

(le).

1 2 3 i
2 4 5| (KxK),the outputis w = A
3 56

5

6

e {w} = vecndup(r): This procedure extracts the upper diagonal elements of a matrix (excluding
diagonal) into a column vector. For the input
1 2 3 2
r=2 4 5| (KxK),theoutputis w=|3| ([K(K-1)/2]x1).
13 56 5
o {w} = matdupfull(r): This procedure expands a column vector of upper diagonal elements
(including diagonal) into a full symmetric matrix. For the input
1]
2
1 23
3 144/
=\, (K x1),the outputis w=[2 4 5| (PxP), wherePz%JrgK.
3 56
5
_6_
o {w} = matdupdiagonefull(r): This procedure converts a column vector to a symmetric matrix with
unit diagonal, symmetric upper/lower triangles. For the input
[0.6 1.0 0.6 05
. 1+V1+8K
r=0.5 (le),the outputis w=|0.6 1.0 0.5 (PxP), wherePzT.
10.5 05 05 1.0
Matgradient.src

This file provides a library of procedures to undertake higher-level matrix operations and compute matrix

gradients. For example, as in the second section, consider the matrix Q=mQ'®. For example, the

procedure gradcovcor computes the gradients of Q with respect to @ and Q" , as shown in Figure 1.



Bhat, Clower, Haddad, and Jones

Gradient Computation Format

Format: {glitomega, gomegastar} = gradcovcor (CAPOMEGA)
Input: CAPOMEGA — K x K covariance matrix (K > 2)

Output:

glitomega — K x [Kx(K+1)/2 = Number of covariance elements in CAPOMEGA];
each column provides derivatives of a CAPOMEGA element with respect to the K
litomega elements, where 1itomega is the vector of standard deviations (one row
per litomega element); if CAPOMEGA is already a correlation matrix, glitomega
returns an ad hoc value of 1.

gomegastar — [Kx(K-1)/2] x [Kx(K+1)/2] = Number of elements in the OMEGAS-
TAR correlation matrix; corresponding to CAPOMEGA times the number of covari-
ance elements in CAPOMEGA; each column of gomegastar provides derivatives of
a CAPOMEGA element with respect to the [Kx(K-1)/2] correlation elements (one
row per correlation element).

Figure 1 gradcovcor procedure description

Gradmvn.src

This file contains procedures for computing multivariate normal density and cumulative distribution
functions. It uses the analytic approximation method of (/) to evaluate the multivariate normal cumulative
distribution (MVNCD) function. The MVNCD evaluation is then employed to compute truncated (both-
end) density and cumulative distribution functions using combinatorial methods. The library also evaluates
partial cumulative normal distribution functions, where some variates are computed at specific points and
others are integrated over specified ranges, with optional truncation at one or both ends. Gradient
procedures for all these functions are included. In addition to the normal distribution, this file also provides
the density function and cumulative distribution function for univariate/multivariate versions of other
distributions, including the multivariate logistic, the skew-normal, the skew-t, the type-1 extreme value (or
Gumbel), and the reverse-Gumbel. The procedures here can be used to estimate joint models with mixed
outcomes, including any combination of nominal, ordered-response, count, continuous, grouped, duration,
and multiple discrete-continuous outcomes.

IMPLEMENTATION AND FEATURES

The BHATLIB library provides a consistent and simple structure for estimating all of its pre-built models.
Despite differences in model type, the workflow follows the same core steps, making it easy for users to
apply the library to a variety of econometric problems. The typical process for using any pre-built model
includes:

e Loading the library and preparing the environment.

e Specifying the data file and key variables, including dependent outcomes, independent variables,
price variables (if relevant), and availability indicators.

e Setting optional control structures to customize aspects of estimation, such as approximation
methods or random coefficients.

e C(Calling the appropriate £it procedure (e.g., mnpFit, morpFit, tradMDCEVFit to estimate
model parameters.

e Retrieving results, with access to post-estimation tools for goodness-of-fit evaluation and
forecasting.
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The consistent structure across models, combined with flexible control options, allows users to tailor
estimation procedures to their specific research needs while benefiting from BHATLIB’s streamlined and
modular design.

Preparing the Environment and Loading the Libraries

Each analysis begins by preparing the GAUSS environment and loading the necessary libraries as shown
in Figure 2. The new command clears all objects from the GAUSS workspace, and cls clears the
Command Window. The 1ibrary command loads the necessary libraries.

/*

x% Step One: Preparing the environment
x% and loading the libraries

* [

// Clear environment and command window
new;

cls;

// Load necessary libraries
library bhatlib, maxlik;

Figure 2 Preparing the GAUSS environment

Specifying the Data File and Key Variables

The next step in implementing a model with BHATLIB is to prepare and specify the dataset and define the
key variables required for estimation. All BHATLIB models require a structured input data file and clear
identification of model-specific variables. While each model has unique requirements, several core
elements apply across all specifications. At a minimum, all models require:

e A data file in a format compatible with GAUSS’s 1oadd procedure (e.g., .csv, .dat, .xlsx),
e Identification of choice alternatives or dependent variables,

e Specification of independent variables associated with each alternative (or dependent variable),
and

e (Where applicable) Indication of availability restrictions that may prevent some alternatives (or
dependent variables) from being chosen by certain individuals.

Each observation in the dataset typically represents either a choice occasion (in discrete choice
models) or a decision-maker (in models such as MORP or MDCEV). The structure of the dataset must align
with the requirements of the model being estimated.

In addition to these core components, BEATLIB models support a number of extended features that
allow users to tailor their analysis:

e The Multinomial Probit (MNP) model supports the inclusion of random coefficients, allowing for
individual-level preference heterogeneity through a mixture-of-normals specification.

e The Multivariate Ordered-Response Probit (MORP) model requires the specification of multiple
ordinal outcomes, each with its own latent index and associated explanatory variables.

e The Multiple Discrete-Continuous Extreme Value (MDCEV) model requires both discrete
participation indicators and continuous consumption variables, and can incorporate translation
parameters and baseline utility specifications to reflect the nature of the consumption decision.
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Customizing Estimation

BHATLIB leverages GAUSS control structures (e.g., the mCt1 struct) to enable users to customize model
estimation flexibly and transparently. Control structures are model-specific and define key model options,
estimation settings, and structural assumptions. The control structure approach separates model logic from
estimation mechanics, promotes reproducibility, and supports comparative modeling with minimal code
changes. While each control structure includes a range of configurable fields, most applications require
editing only a small subset of these. Example customizations include:

e 11D: Enforces homoscedastic, uncorrelated error terms across alternatives in a multinomial probit
model.

e mix: Activates a mixed-logit (random-parameters) specification.
e indep: Assumes independence across ordinal outcomes.

e correst: Allows the user to provide a custom correlation matrix or impose specific restrictions
between ordinal outcomes.

Retrieving Results

The BHATLIB library returns estimation results using structured output containers. These output structures
provide an efficient and organized way to store model results, including parameter estimates, standard
errors, goodness-of-fit statistics, and model-specific diagnostics. Each model has its own output structure
(e.g., mnpOut, morpOut), which is returned by the estimation procedure. Users can access components of
these structures directly using dot notation. For example, mnpOut .b returns the estimated coefficients,
while mnpOut .11 contains the log-likelihood value at convergence. This structured format facilitates easy
post-estimation analysis, plotting, and reporting. Case studies in the next section will illustrate how to
extract key results and use them in model interpretation or comparison.

APPLICATIONS OF BHATLIB

For conciseness to adhere to word limit restrictions, we present a set of case studies that demonstrate the
implementation of multiple specifications of the pre-built Multinomial Probit (MNP) model within the
BHATLIB framework. Specifically, in this section, we provide: (i) a brief overview of the MNP model,
including its formulation and core theoretical principles; (ii) a description of the case study data and relevant
model inputs; (iii) details on the model setup and specification, illustrating how BHATLIB is configured to
implement each specification; (iv) presentation of estimation outputs with interpretation of key parameter
estimates and assessment of model fit, emphasizing the advantages of BHATLIB in handling complex
econometric models; and (v) an overview of BHATLIB’s post-estimation capabilities, including average
treatment effect (ATE) calculations, accompanied by interpretation of the corresponding results.

MNP Model Theoretical Background

The MNP model is a flexible discrete choice framework for analyzing decisions among multiple unordered
alternatives. Like other discrete choice models, it is grounded in random utility maximization, where an
individual g selects the alternative i. Following the notation in (5), this can be written as:

U,=V,+&,; with V, = f'x,, 4)

where U, is the utility of alternative i for individual g, V,, is the systematic (observed) component of

i

utility, &, is the random (unobserved) component, x,, is an (Lx1) vector of exogenous variables

representing the attributes of alternative i for individual ¢ (including a constant for each alternative, except
one of the alternatives), and f is an (Lx1) vector of corresponding coefficients. For each alternative i,

¢ ,i 1s assumed to be independent and identically distributed (IID) across individuals.
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The standard MNP model of Equation (4) distinguishes itself from the multinomial logit (MNL)
model, another popular approach in discrete choice modeling, by relaxing the IID assumption across
alternatives. In the standard MNP, the vector of errors &, =(&,,8,,,-.¢,) ([x1 vector) follows a

multivariate normal distribution with zero mean and covariance matrix A, allowing for flexible correlations
across alternatives ().

Additionally, while the standard MNP model accommodates correlations across alternatives, it
assumes homogeneous preferences across individuals. To relax this assumption, the generalized MNP
introduces random coefficients, where:

B,=b+p, B,~MVN,0,Q). (5)

Here, B, is assumed to be a realization from a multivariate normal distribution with a mean vector b and

covariance matrix Q= LL" (L is the Cholesky of the covariance matrix Q). The advantage of using the
MNP model for normally-mixed random coefficients is that the multivariate normal distribution is
conjugate by way of addition, so that the multivariate normal kernel error distribution of ¢, can be

combined with the multivariate normal error distribution of g, . Thus, the resulting model remains within

the domain of an MNP formulation, with very fast estimation using Bhat’s (2018) MVNCD analytic
approximation (this is much faster than the traditional mixed multinomial model estimation that is based
on simulation procedures to integrate the multinomial logit specification over the distribution of the
normally distributed random coefficients (7)).

Next, following the notation in (5), the utilities can be expressed compactly in matrix form by
defining U, =(U,,U,,...U,), x,=(x,,X%,,%X;,-,%,) (Ax] matrix) V, =xb (Ixl vector),

Q , =X, 2x, (IxI matrix), and E = Q , A (IxI matrix). Then, we may write, in matrix notation,
U,=V,+E, and U ~MVFN, (Vq,é ,)- The net results is that, unlike in the typical applications of the

mixed logit, the analyst is able to allow unobserved correlation across alternatives due to the kernel error
term (as captured in the A kernel error covariance, but subject to identification considerations) as well as

due to the random coefficient component (as accommodated through the Q , covariance). Doing so also

allows a relaxation of the identically distributed assumption of utilities across individuals (because the
overall utility covariance varies across individuals).

Using the programmed code in BHATLIB, one can also estimate a discrete mixture-of-normals
specification for the random coefficients to allow for multimodal distributions. This model is estimated
efficiently and with relative ease using the analytic approximation of the MVNCD function. In this case,

H H
=>mp,., B,~MVN(®D,Q, ), where r, is the probability of the discrete mixture # () 7, =1). To
q hF gh qh h qh h h
h=1 h=1

avoid the problem of exchangeability of discrete mixtures, the code imposes the identification condition
Ty <y <0y << Ty

The maximum likelihood estimation of the standard MNP model and its generalizations requires
the evaluation of an MVNCD function for each individual at each iteration of the estimation procedure (as
well as for each discrete mixture in the discrete mixture-of-normals specification). Simulation methods such
as the Geweke-Hajivassiliou-Keane (GHK) simulator are often used to estimate MNP models, but these
methods are time-consuming and challenging in higher dimensions. By using BHATLIB, we can leverage
the Gradmvn.src procedures to analytically compute the multivariate normal density and cumulative
distribution (MVNCD) functions. This reduces the reliance on extensive simulation techniques and offers
a more efficient approach for improving both the accuracy and ease of model estimation.

10
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Data Description

In this section, we demonstrate the capabilities of the library by estimating an MNP model using real-world
data. The dataset, TRAVELMODE.csv, is included in the BHATLIB library. It contains travel mode choice
data for 1,125 workers, along with several explanatory variables relevant for mode choice modeling. The
sample shares of the three modes are: Drive alone (DA) 78.22%, Shared ride (SR) 7.65%, and Transit (TR)
14.13%. Several explanatory variables are available in the dataset including in-vehicle travel time in
minutes (/V'TT), out-of-vehicle travel time in minutes (OVTT), travel cost in dollars (COST), and an
indicator variable for whether the individual is over 45 years of age (AGE45).

Note that the mnpFit procedure requires the data to be organized such that each row represents an
observation or choice situation, with separate columns for each possible alternative. Each observation
records a ‘1’ in the column corresponding to the chosen alternative and ‘0’ in the columns for the non-
chosen alternatives. This binary coding scheme captures the discrete choice outcome, with only one
alternative selected (coded as ‘1’) per choice situation, while all other alternatives receive a value of ‘0’. In
the context of this example, an individuals’ choice of using TR over DA or SR would appear as a row with
1 in the A/¢3_ch column, and 0 in both the A/t/ ch and Alt2 ch columns.

Model Setup
We estimate the MNP model using the mnpFit procedure and following the processes described in
“Implementation and Features” section.

Specifying Available Choice Alternatives
One of the key steps of the MNP model is defining the choice alternatives to be included in the estimation.
This is done using the dvunordname input to specify the choice column names (Figure 3).

The mnpFit procedure also allows us to address the availability of alternatives for individuals. In
this application, all three alternatives are available to all individuals. This means that no alternative is
restricted or unavailable to any individual. When this is the case, no additional information needs to be
included in the dataset. Additionally, we specify that there are no choice restrictions by setting the
davunordname input to “none” (see Figure 3).

In cases where choices are unavailable to some individuals, we need the dataset to include columns
that reflect the availability of each alternative for each individual. For example, if only some alternatives
are accessible, the dataset should have distinct columns (e.g., altl avail, alt? avail, alt3 avail), where
each column contains binary values (‘1° for available, ‘0’ for unavailable) indicating whether a particular
alternative is accessible to each respondent. These columns should then be specified in davunordname
corresponding to the order that the choices are specified in dvunordname.

/* Step Two: Specifying data file
and key variables x/

// Data file
fname = __FILE_DIRS$+"TRAVELMODE.csv'";

// Specify available choices
string dvunordname = { "Altl_ch'" "Alt2_ch" "Alt3_ch" };

// Specify choice restrictions. If no choice restrictions

// set equal to "none". Otherwise use "uno" for unrestricted

// choices and specify column for -ddentifying restricted choices
string davunordname = "none";

Figure 3 Specifying data and choices
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Estimating The Standard MNP Model (Model (a))

We begin by estimating a standard MNP model (referred to as Model (a) for simplicity) with alternative-
specific constants and three generic explanatory variables: [VTT, OVTT, and COST. These variables are
assumed to have uniform effects across all alternatives, capturing the fundamental trade-offs individuals
make when choosing between transportation options. The code snippet in Figure 4 demonstrates how to
define the model specification in BHATLIB and assign user-defined coefficient names for display in the
output.

We also perform the estimation under two different covariance structures: (i) independent and
identically distributed (IID) error terms (mCtl.IID=1), and (ii) fully flexible covariance structure
(mCtl.I11D=0and mCtl.heteronly=0). The covariance structures are specified using the mnpControl
structure and shown in Figure 5. Additionally, because this model does not contain random coefficients,
we set mix to zero and ranvars to an empty string. Declaring the mnpResults structure and calling the
mnpFit procedure are the final steps, as shown in Figure 6.

/* Independent variable specification below;
**% Put alternative specific constants FIRST;
**% The number of rows below will be #alts x nseg

*/

string divunord = { "sero" I'sero" "IVTT_DA" "OVTT_DA" "COST_DA" s
"uno"  "sero" "IVTT_SR" "OVTT_SR" "COST_SR"
"sero" "uno" "IVTT_TR" "QVTT_TR" "COST_TR" };

/* Specify the corresponding coefficient

** names for printing on the output screen;

*/

string var_unordnames = { 'CON_SR" "CON_TR" "IVTT"™ "QVTT" "COST" };

Figure 4 Standard MNP dependent variables

S

*x IID error terms

*/

struct mnpControl mCtl;
mCtl = mnpControlCreate();

// Set to IID
mCtl.IID = 1;

// Mix and ranvars
mix = 0;

// Random variable names
ranvars ="";

Figure 5 Specifying MNP covariance structure

/*

**x Estimate model with IID

* [

struct mnpResults rslt_ididc;

rslt_iidc = mnpFit(fname, dvunordname, davunordname, ivunord,
var_unordnames, mix, ranvars, mCtl );

Figure 6 Estimating the MNP model
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Adding Individual-Specific Variable (Model (b))

In the subsequent model specification (referred to as Model (b)), we adopt the fully flexible covariance
structure from Model (a)(ii) and introduce an individual-specific variable, 4AGE45, which is a dummy
variable indicating whether the respondent is 45 years or older. We add this variable to the utility functions
of the SR and DA alternatives. This is implemented by adapting the independent variables matrix,
ivunord. We show the changed code in Figure 7.

/% Independent variable specification below;
*%x Put alternative specific constants FIRST;
*% The number of rows below will be #alts x nseg

*/

string ivunord =

{ "sero" "sero" "AGE45" "sero" "TVTT_DA" "QVTT_DA" "COST_DA"
"uno" "sero" "sero" "AGE45" "IVTT_SR" "OVTT_SR" "COST_SR"
"sero" "uno" "sero" "sero" "IVTT_TR" "OVTT_TR" "COST_TR" }s

/* Specify the corresponding coefficient

*%x names for printing on the output screen;

*/

string var_unordnames = { U"CON_SR™ "CON_TR"™ "AGE45 DA" "AGE45 _SR" "IVTT" "OVTT" "COST" };

// Estimate beta hat
struct mnpResults rslt;
rslt = mnpFit(fname, dvunordname, davunordname, ivunord, var_unordnames);

Figure 7 Introducing individual specific variables to the MNP model

Including Random Coefficients (Model (c))

We incorporate a random coefficient by introducing mixing to the OVTT variable (referred to as Model (c))
using the optional mix input. In addition to setting the mix input to ‘1°, the associated coefficient names
must be specified using ranvars. This allows the OVTT coefficient to vary randomly across individuals,
following a normal distribution. The analyst can choose to allow the random coefficients to be uncorrelated
or correlated using the rannddiag member of the mnpControl structure. The implementation of this

mixed specification in BHATLIB with a full covariance matrix for the random coefficients is shown in Figure
8.

// Random coefficients are present
// for one or more variables
mix = 1;

/*

*% Specify random coefficients
*#% position with respect to

*% var_unordnames

*/

ranvars = "OVTT";
// Estimate beta_hat

struct mnpResults rslt;
rslt = mnpFit(fname, dvunordname, davunordname, ivunord, var_unordnames, mix, ranvars);:

Figure 8 Introducing random coefficients to an MNP model
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Adding Multiple Discrete Mixture-of-Normals Components (Model (d))

While the specification in Model (c) assumes a unimodal (single normal) distribution for the random OVTT
coefficient, this assumption may be restrictive when the true underlying preference distribution exhibits
multimodality. To relax this restriction, we extend the random coefficient specification to a finite mixture
of normals by setting mCt1.nseg to a value greater than one (Model (d)). For instance, setting mCt1.nseg
= 2 estimates a two-component discrete mixture-of-normals distribution, where the population is partitioned
into two latent segments, each characterized by its own mean vector and covariance matrix for the random
coefficients. The specification requires corresponding updates to the inputs for the alternative-specific
variables ivunord, their names var unordnames, and the random coefficient names ranvars, as
illustrated in Figure 9. This example is provided purely to demonstrate BHATLIB’s capability to estimate
discrete mixture-of-normals specifications and does not rely on any specific behavioral or empirical
research.

string dvunord =

{ "sero" ‘"sero" "AGE45" "sero" "IVTT_DA"  "OVTT_DA" "sero" "COST_DA" ,
"uno"  "sero" "sero"  "AGE45"  "IVTT_SR" "OVIT_SR" "sero" "COST_SR" ,
"sero" "uno" "sero" ""sero" "IVTT_TR" "OVTT_TR" ""sero" "COST_TR" ,
"sero" ‘"sero" "AGE45" 'sero" "IVIT_DA"  "sero" "OVTT_DA"  "COST_DA" ,
"uno"  "sero" "sero"  "AGE45"  "IVTT_SR" "sero" "OVTT_SR"  "COST_SR" ,
"sero" "uno" "sero" ""sero" "IVTT_TR" ""'sero" "OVTT_TR" "COST_TR" };
string var_unordnames = { "CON_SR" "CON_TR" "AGE45_DA" "AGE45_SR" "IVTT" "OVTT1" "OVTT2" "COST" };

struct mnpControl mCtl;
mCtl = mnpControlCreate();

// Set to IID
mCtl.IID = 0;

// Mix and ranvars
mix = 1;

// Random variable names
string ranvars = { "OVTT1" "OVTT2" };
/* "OVTT1" 1is random coefficients for segment 1 and "OVTT2" corresponds to segment 2%/

// Number of segments
mCtl.nseg=2;

Figure 9 Introducing a discrete mixture-of-normals

Model Results

The outputs from the parametrized and unparametrized specifications are shown in Figure 10. The output
begins by indicating the version of MAXLIK used, along with the date and time of the estimation. Following
this, key summary statistics are provided, including the mean log-likelihood and the number of observations
(cases). Next, the usual coefficient table is presented, displaying the estimated parameters, standard errors,
the ratio of estimates to standard errors (est./s.e.), p-values (probability), and gradient values for each
parameter. Then, a correlation matrix of the estimated parameters is presented. The output concludes by
detailing the number of iterations required and the total time (in minutes) until convergence.

In cases where a full covariance matrix (subject to identification) is specified for the kernel error
terms (I11D=0) and/or random coefficients on exogenous variables are specified (as in Model (a)(ii), Model
(b), and Model (c) defined above), BHATLIB produces a first convergent output representing the estimation
results with parameterizations of the original parameters to ensure positive-definiteness of
covariance/correlation matrices or to impose other identification restrictions (e.g., 7, <7, <7, <...<7,)

in the discrete mixture-of-normals random coefficients specification. For example, in the case of a normal

14



Bhat, Clower, Haddad, and Jones

random coefficients specification (Model (a)(ii)), Figure 10a shows the estimated Cholesky elements of the
covariance matrix (which, in this case of a single random coefficient, collapses to the standard deviation of
the variance of the random coefficient), while the second output in Figure 10b corresponds to the
unparametrized covariance matrix.

a) Parametrized b) Unparametrized

MAXLIK Version 5.0.9 11/14/2024

Data Set: C:i:\Users\ah54254\Box Sync\gauss paper\codes\TRAVELMOIL

Data Set: C:\Users\ah54254\Box Sync\gauss paper\codes\TRAVELMOD

return code = 2]
normal convergence

return code = 2
maximum number of iterations exceeded

Mean log-likelihood -0.587654

Mean log-likelihood -0.587654
Number of cases 1125

Number of cases 1125

Covariance matrix of the parameters computed by the following method

Covariance matrix of the parameters computed by the following method:
Cross-product of first derivatives

Cross-product of first derivatives

Parameters Estimates Std. err. Est./s.e. Prob. Gradient Parameters Estimates Std. err. Est./s.e. Prob. Gradient
CON_SR -0.9884 9.1002  -9.861  ©.0009 0.0000 CON_SR -0.9884 ©.1002 -9.861 ©.0000 0.0000
CON_TR -0.5345 ©9.2132 -2.508 0.0122 0.0000 CON_TR -0.5345 ©.2132 -2.508 ©.0122 0.0000
vTT -0.8870 9.1768 -5.018 0.0000 ©.9000 WIT -0.8870 9.1768 -5.018 ©0.0000 9.0000
ovTT -1.0292 9.2020  -5.095 0.0000 0.0000 ovTT -1.9292 ©.2020 -5.095 ©,0000 0.0000
cosT -08.5986 0.0690 -8.675  0.0000 0.0000 CcosT -0.5986 0.0690 -B8.675 0.0000 0.0000
parker@l 1.0288 9.4119 2.498 9.0125 0.0000 corol 0.4734 0.1598 2.962 0.0031 0.0000
scale@l 1.9865 0.3214 6.181 0.0000 0.0000 scaledl 1.9865 0.3214 6.181 0.080@ 0.0000
Correlation matrix of the parameters Correlation matrix of the parameters

1.006 @.339 -0.669 -0.613 -0.161 0.301 0.549 1.000 0.339 -0.669 -08.613 -0.161 0.381 0.549

©.339  1.000 -0.066 -0.329 0.331 -0.336 -0.054 ©.339 1.000 -0.066 -0.329 ©.331 -0.336 -0.054

-0.669 -0.066 1.000 0.804 0.648 -0.199 -0.784 -0.669 -0.066 1.000 ©0.804 0.648 -0.199 -0.784

-0.613 -0.329 0.884 1.000 0.576 -0.075 -0.881 -0.613 -0.329 0.804 1.000 0.576 -0.075 -0.881

-6.161 0.331 0.648 0.576 1.000 -0.427 -0.760 -0.161 ©.331 0.648 0.576 1.000 -0.427 -0.760

©.301 -0.336 -0.199 -0.075 -0.427 1.600 0.369 0.301 -0.336 -0.199 -0.075 -0.427 1.000 ©0.369

9.549 -0.054 -0.784 -0.881 -0.760 0.369 1.000 ©.549 -0.854 -0.784 -8.881 -8.760 0.369 1.080
Number of iterations 34 Number of iterations @
Minutes to convergence 0.02777 Minutes to convergence 9.08000

Figure 10 On-screen output obtained for MNP Model (a)(ii)

The final estimation results for all models defined above are presented in Table 1. The table
provides a comparison of the coefficients, t-statistics, and log-likelihood values across the models,
illustrating how these key metrics vary as the model specifications evolve. Note that the variable names in
Table 1 align with the user-defined coefficient names (see the previous section), and “n.a.” indicates that
the variable is not estimated in the specified model. The alternative-specific constants “CON_SR,” for the
shared ride mode, and “CON_TR,” for the transit mode, do not have meaningful interpretations on their
own. They simply adjust the utility values to reflect the overall shares of modes in the estimation sample,
after accounting for the effects of the exogenous variables. Additionally, in all models, the coefficients for
IVTT, OVTT, and COST are negative and statistically significant, indicating a lower likelihood of choosing
a transportation mode as travel times and cost increase. Notably, in Model (c), which applies normal random
mixing for the OVTT variable, the results show the presence of unobserved heterogeneity in the sensitivity
to out-of-vehicle time, and this effect is significant at the 95% confidence level. In contrast, the results of
Model (d), which employs a two-segment discrete mixture-of-normals specification, indicate that only the
coefficient associated with the second mixture component (OVTT?2) is statistically significant. In Models
(b), (c), and (d), the introduction of the “AGE45” variable highlights demographic differences in travel
mode preferences, with individuals aged 45 and older having a higher propensity to select the non-transit
modes relative to the transit mode.

The estimation results from Model (b) provide the elements of the differenced covariance matrix
with respect to the first alternative as follows (as per the partitioning protocol discussed in the “Positive-
Definiteness of Covariance Matrices” section):
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1

% = 1.000 0.0001(1.000 0.477)(1.000 0.000) (1.000 0.956
0.000 2.005)\0.477 1.000 ){0.000 2.005) {0.956 4.020

Of course, the differenced matrix above is not interpretable, unless one is willing to assume that
the variance of the utility of the first alternative (that is, the drive alone (DA) alternative, based on the
specification of the constants in the utility with drive alone being the base alternative) is minuscule
compared to that of the shared ride (SR) and transit (TR) alternatives and that there is no unobserved
correlation between the utility of the DA alternative and the SR/TR alternatives. If (and only if) the analyst
is willing to make these assumptions (or should we say concessions), then the results indicate that the
variance of the TR utility is higher than that of the other alternatives and that there is a correlation in the
unobserved utilities of the SR and TR utilities.

To further assess the enhancements in model fit, we conducted a series of likelihood ratio tests
(LRT) to compare the nested models. The comparison between Model (a)(i) and Model (a)(ii) yields a
likelihood ratio test value of 19.690, with a p-value less than 0.0001, indicating a significant improvement
due to relaxing the IID assumption of the standard MNP. The comparison between Model (a)(ii) and Model
(b) results in a likelihood ratio test value of 3.654, indicating that, based on the chi-squared table value of
5.991 with two degrees of freedom, the inclusion of the “4GE45” variable does not achieve statistical
significance at the typical 95% confidence level, although it is significant at the 80% confidence level. In
contrast, the comparison between Model (b) and Model (c) yields a log-likelihood ratio of 46.827,
demonstrating that incorporating random mixing on the OVTT variable significantly enhances model fit.
Finally, the comparison between Model (c) and Model (d) yields an LRT statistic of 1.792, well below the
5% critical value, confirming that the additional flexibility offered by the two-segment discrete mixture
specification does not lead to a statistically significant improvement in model fit.

Table 1. Estimation Results of MNP Models (a)(i), (a)(ii), (a)(iii), (b), (¢), and (d)

Variables Model (a)(i) Model (a)(ii) Model (b) Model (c) Model (d)
Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat
CON SR -1.019 -15.55| -0.988 -9.86| -0.942 -8.62| -0.676 -5.22| -0.695 -5.45
CON TR -0.345 -3.22| -0.535 -2.51 -0.412 -1.78 0.536 1.68 0.468 1.45
IAGE45 DA n.a. n.a. n.a. n.a. 0.438 1.63 0.498 1.83 0.487 1.85
IAGE45 SR n.a. n.a. n.a. n.a. 0.305 1.14 0.352 1.31 0.344 1.31
IVTT -0.453 -7.60| -0.887 -5.02| -0.884 -496| -1.117 -5.18] -1.097 -5.18
OVTT* -0.486 -11.95 -1.029 -5.10 -1.036 -5.03] -2.049 -4.97) -0.553 -0.57
OVTT2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.| -2.348 -4.18
COST -0.347 -12.14] -0.599 -8.68| -0.597 -8.65| -0.625 -8.73] -0.615 -8.71
CovCOVO01” n.a. n.a. n.a. n.a. n.a. n.a. 1.083 2.39 0.182 0.33
CovCOv02™ n.a. n.a. n.a. n.a. n.a. n.a. n.a. na| 0.033 0.05
parker01™ 0.500 n.a. 0.473 2.96 0.477 2.98 0.617 4.69 0.625 5.06
scale01™" 1.000 n.a. 1.987 6.18 2.005 6.11 1.378 5.08 1.384 5.12
segunpar™ n.a. n.a. n.a. n.a. n.a. n.a. n.a. na| 0.757 2.60
Log-likelihood -670.956 -661.111 -659.285 -635.871 -634.975
at convergence
* CovCOVO0I1: Variance of the OVTT variable (mean =—2.049) in Model (c), or the OVTT1 variable (mean = —0.553)

in Model (d).

™ CovCOV02: Variance of the OVTT2 variable (mean = —2.348) in Model (d).

** parker01: Correlation coefficient between the error terms of the second and third alternatives.
*** scale01: Variance of the error term for the third alternative.

#* For Model (d), this entry reports the first component (OVTT1) of the mixture.

#segunpar: Estimated parameter representing the probability of belonging to segment 2.
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Model Post-Estimation; ATE Analysis

The coefficients in Table 1 provide the exogenous variable effects on the utilities of the choice alternatives;
however, they do not directly provide a sense of the direction/magnitude effects of each variable on the
discrete outcomes in terms of their impact on the overall shares. Therefore, we compute Average Treatment
Effects (ATE) or “pseudo” elasticity measures to quantify the magnitude of effects. For example, to
investigate the influence of the AGE45 variable on the predicted mode shares, we first predict the average
share of each mode in the sample for the “base” level (which is typically the ‘0’ value for binary variables),
and then predict the average shares for the “treatment” level (which is typically the ‘1’ for binary variables)
for the entire sample. These predicted shares can be used to compute the percentage ATE values using the
formula:

Predicted Treatment Share — Predicted Base Share N
Predicted Base Share

%ATE = 100. (6)
In this section, we discuss applying the ATE functionality within the BHATLIB library to study the effect
of the AGE45 variable in the specification of Model (b). The ATE analysis is conducted by setting the
following parameters as inputs to the mnpATEF1it procedure in BHATLIB (Figure 11):

e The variable being tested for treatment effects is A GE45, specified using the Changevar input.

o The base level value is ‘0’ representing individuals under 45 years of age, specified using the
Changeval input.

o The treatment level value is ‘1°, representing individuals aged 45 and above, specified using the
Changeval input.

o The estimated coefficients from Model (b) at convergence are stored in the mnpResults structure
in the beta hat member.

Figure 12 displays the BHATLIB output from the post-estimation functionality for the base level,
showing the total number of observations and the predicted share of alternatives based on the input
variables. The results yield a base level mode share of 0.69 for the DA alternative, 0.14 for the SR
alternative, and 0.17 for the TR alternative, as illustrated in Figure 12. In the treatment level, the mode
shares for DA, SR, and TR shift to 0.74, 0.12, and 0.14, respectively. These results indicate that when the
AGE45 variable transitions from the base level to the treatment level, there is a notable increase in the
predicted mode share for the DA alternative, rising from 0.69 to 0.74, corresponding to a percentage ATE
of 7.2% (((0.74-0.69)/0.69)*100). In contrast, the mode shares for the SR and TR alternatives exhibit a
14.3% (((0.12-0.14)/0.14)*100) and 17.6% (((0.14-0.17)/0.17)*100) decrease in their predicted shares.

The user can also set changevar={} and changeval={} to obtain the overall model predicted
share for each alternative, which can then be compared with the corresponding observed shares in the
sample.

// Compute ATE
// Changing variable
changevar = "AGE45";

// Set treatmet value
changeval = 0;

// Compute ATE
pred_share = mnpATEFit(rslt, changevar, changeval);

Figure 11 MNP Post-Estimation ATE input at the base level
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The number of observations in the data is
1125

predicted shares for the alternatives:

©.692352
©.141086
©.166562

Figure 12 MNP post-estimation ATE output at the base level

CONCLUSION

This paper introduced BHATLIB, an open-source GAUSS library specifically developed to address
contemporary challenges in econometric modeling, including the estimation of complex models with mixed
outcome types, intricate covariance structures, and high-dimensional datasets. Traditional statistical
software often struggles with flexibility and computational efficiency in these scenarios, while fully
custom-coded solutions require significant development effort and expertise. BHATLIB fills this critical
gap by offering a robust, efficient, and modular solution that combines specialized matrix operations,
gradient calculations, and analytic approximations for evaluating multivariate probability distributions,
notably through Bhat’s analytic approximation to the multivariate normal cumulative distribution function.

The library’s modular design enables seamless customization and integration, allowing researchers
to easily build, estimate, and expand sophisticated econometric models such as multinomial probit,
multivariate ordered-response, and multiple discrete-continuous models. Through detailed empirical
illustrations presented in the paper, BHATLIB has demonstrated substantial improvements in computational
speed, precision, stability, and reproducibility, thereby significantly enhancing methodological rigor in
econometric research.

Beyond its immediate computational advantages, BHATLIB facilitates a higher level of
transparency and standardization in econometric modeling practices, encouraging greater collaboration and
ease of replication within the research community. Looking forward, future developments of BHATLIB
could incorporate additional econometric methodologies, expanded distributional forms, and further
computational optimizations, thereby broadening its utility across even more diverse analytical contexts.
Ultimately, BHATLIB serves as a powerful resource for econometricians, promoting advanced statistical
modeling and fostering innovation in applied econometrics.
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