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ABSTRACT 

This research monetizes the access benefits of making shared autonomous vehicles (SAVs) available to 
residents of Texas’ Dallas-Fort Worth metroplex. Residents’ willingness to pay for SAV access 
under different fare and mode were estimated and compared across the region’s 5,386 traffic zones, with 
emphasis on those housing the regions’ most vulnerable or access-limited travelers. Assuming a $0.50-
per-trip-mile SAV fare, the average per-person-trip benefit is estimated to be $0.17 for home-based work 
(HBW) trips and $0.20 per home-based non-work (HBNW) trips. As a point of comparison, the loss of 
conventional or human-driven vehicles (HVs), without access to privately owned AVs, is estimated to 
result in -$5 (HBNW) to -$10 (HBW) access losses per person-trip, due to the strong base preference 
that currently exists for privately owned HVs.  

Vulnerable populations and their neighborhoods are identified based on the share of persons living below 
the poverty level, incomes per capita, share of persons aged 65 years or older, those with  disabilities, 
those owning no vehicle, and share of persons from a racial minority group. Results suggest that the 
access benefits of SAVs will be higher in locations/neighborhoods housing more vulnerable populations, 
excepting neighborhoods with many above age 65. These benefits and the willingness to pay 
differences (across locations) falls as SAV fares rise. As is true with man innovations, careful attention to 
disadvantaged groups and thoughtful policy (via smart contracting and SAV-user subsidies by public 
agencies, for example) can better ensure valuable access improvements for those with limited mobility 
and resources.  

KEYWORDS 

Accessibility; Shared Autonomous Vehicles; Vulnerable Travelers; Willingness to Pay; Dallas-Fort 
Worth Metroplex 

BACKGROUND 

The advent of highly automated or “autonomous” vehicles (AVs) portends many access changes, 
especially for those unable to drive. Accessibility can be defined in different ways, but travel 
impedance and destination proximity are key themes (Wu & Levinson, 2020). In general, accessibility is 
the ability to reach opportunities (e.g., jobs, schools, and health care facilities) within a reasonable amount 
of travel time and/or cost. Transportation-based accessibility can be applied via analysis of vehicle 
ownership (Ryan & Han, 1999), road network vulnerability (Taylor et al., 2006), and public transit 
(Moniruzzaman & Páez, 2012). 1 
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Access to jobs, retail, services, parking, and other land uses is important in property valuation and location 1 
choices (Srour et al., 2002; Stanilov, 2003). Access inequalities readily emerge, as people sort themselves 2 

in space, with many vulnerable populations having low access to healthcare and green spaces (Gilliland et 3 

al., 2019; Rahman & Zhang, 2018).  4 

Shared AVs are fleets of self-driving taxis, for demand-responsive door to door service, now serving 5 

travelers in Las Vegas and the Phoenix area, and soon destined for Miami and Austin (Forbes (Sam 6 
Abuelsamid), 2021). Such services may substantially enhance many residents’ accessibility to services, 7 

including the young and the aged, those unable to drive, and the currently public-transit dependent. AVs 8 
lower the burden of travel or value of travel time (VOTT) for those previously driving. These lowered travel 9 

costs improve access perceptions for everyone – as long as the resulting congestion does not lower overall 10 

travel times (de Almeida Correia et al., 2019; Huang et al., 2020; Zhong et al., 2020). Such door-to-door 11 
service may eventually be integrated with or replace public transit (PT) systems (Wen et al., 2018), (Imhof 12 

et al., 2020). Self-driving features can eliminate the need to park close to one’s destination (Millard-Ball, 13 
2019), though empty AV use is only likely to be permitted in use of SAV fleets, and capped (at 15% of fleet 14 

miles, for example), to avoid excessive congestion. Ridesharing (with strangers, as done in buses, elevators, 15 

and airplanes) helps lower travel costs (Agatz et al., 2011), and SAVs are expected to lower private-vehicle 16 
ownership levels, as well as parking provision (Blumenberg et al., 2021; Fiedler et al., 2018; Xu et al., 17 

2015).  18 

Level 4 AVs (Lent et al., 2019) have been predicted to comprise 24% to 87% of the US light-duty vehicle 19 

fleet by 2045 (Bansal & Kockelman, 2015). Americans’ willingness to pay to add AV features ranges from 20 

$650 to $1,800 depending on the level of automation (Asgari & Jin, 2019), and 10% to 20% of US (light-21 

duty) vehicle-miles traveled (VMT) may be made by SAVs in 2045 (Quarles et al., 2021). Travel cost and 22 

time, wait time, any walk distances, and vehicle comfort will affect traveler choices, which will vary across 23 

demographics and unobserved preference attributes (Krueger et al., 2016).  24 

While accessibility is often quantified in terms of number of opportunities reachable within a certain 25 
distance or time band (Hansen, 1959), utility-based measures are more meaningful because they better 26 

reflect individual preferences and can be converted into a willingness to pay, enabling more useful 27 

comparability across persons and neighborhoods (Jang & Lee, 2020). Using the results of random-utility-28 
based choice models, differences in expected utility (between cases and settings, or for the same traveler 29 

living in two different neighborhoods, for example) can be normalized by estimates of the marginal utility 30 
of money. Monetized accessibility can then be interpreted as a person’s willingness-to-pay to achieve the 31 

access benefits of the higher-utility setting, all else constant.  32 

This paper estimates utility-based access measures to quantify the expected or average benefits of making 33 
SAVs available to residents of Texas’ Dallas-Ft Worth Metroplex. The focus is on vulnerable persons and 34 

locations, with results summarized across various aggregations (e.g., urban vs suburban vs rural settings). 35 

METHODS 36 

This section describes assumptions and equations used to simulate and analyze the influence of SAV access 37 

by applying utility-based measures to quantify access benefits. The travel cost of different modes (HV, PT, 38 

and SAV) will be estimated with realistic assumptions based on distance and travel time. Using this travel 39 
cost information, access benefits due to SAV access are evaluated to estimate the impact of different SAV 40 

fares on accessibility.  41 

Data Description 42 

The North Central Texas Council of Governments (NCTCOG) provided the demographics including 43 
population and employment, and travel skim data of 5,386 traffic survey zones (TSZs) for model year 2020 44 

in Dallas-Fort Worth (DFW), TX. The travel skim data provides travel time estimates (in minutes) between 45 
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all origin-destination TSZ pairs for AM peak (6:30-9:00), PM peak (3:30-6:30), and off-peak (the rest). 1 

The travel cost (in cents) of HV, PT and SAV for traveling from origin i to destination j are estimated by 2 

modifying Liu et al’s model (Liu et al., 2017), as shown in Eq. (1) to Eq. (3). This model assumes the value 3 

of travel time for HV users is twice as large than that of PT users and SAV users. Two different demographic 4 

groups are assumed, one has a higher value of travel time of $15/hr. and the other has a lower value of travel 5 

time of $7.5/hr. The weighted value of travel time for an origin i is estimated by assuming that persons 6 
below the poverty estimate have the lower value of travel time, and the other group has the higher value of 7 

travel time. The travel cost of HVs and SAVs are relying on both travel time and travel distance, while the 8 
cost of PT is only affected by the travel time. HV has a fixed parking cost, and PT and SAV have a fixed 9 

ticket fare of $2 and $1, respectively. The parking cost of an HV differs by the type of destination. If the 10 

destination is an urban area, the parking cost is assumed as $3, if it is suburban, $1.5, and if it is rural, $0.50 11 
is assumed. For PT and SAV, out-of-travel time is assumed to reflect the time needed to walk and wait to 12 

start the travel. 13 

𝐶𝐻𝑉,𝑖𝑗 = 𝑃𝑎𝑟𝑘𝑖𝑛𝑔 + 60𝐷 +  𝑉𝑂𝑇𝑇 ∙ 𝐼𝑉𝑇𝑇                                                 (1) 14 

𝐶𝑃𝑇,𝑖𝑗 = 200 + (𝑉𝑂𝑇𝑇/2)𝐼𝑉𝑇𝑇𝑃𝑇 + 2𝑉𝑂𝑇𝑇(𝑂𝑉𝑇𝑇𝑊𝑎𝑙𝑘 + 𝑂𝑉𝑇𝑇𝑃𝑇𝑤𝑎𝑖𝑡)                         (2) 15 

𝐶𝑆𝐴𝑉,𝑖𝑗 = 100 + 𝐹𝑎𝑟𝑒 ∙ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + (𝑉𝑂𝑇𝑇/2) 𝐼𝑉𝑇𝑇 + 2𝑉𝑂𝑇𝑇(𝑂𝑉𝑇𝑇𝑆𝐴𝑉𝑤𝑎𝑖𝑡)                    (3) 16 

where 17 

𝑃𝑎𝑟𝑘𝑖𝑛𝑔= Parking cost by destination ($3 for Urban, $1.5 for Suburban, and $0.50 for Rural destination j) 18 

𝐷= travel distance from origin i to destination j (mi.) 19 

𝑉𝑂𝑇𝑇= weighted value of travel time of origin i by population group 20 

      $15/hr. and $7.5/hr. for population above and below poverty level, respectively 21 

𝐼𝑉𝑇𝑇= in-vehicle travel time from origin i to destination j (hr.) 22 

𝐼𝑉𝑇𝑇𝑃𝑇= 1.5𝐼𝑉𝑇𝑇 23 

𝑂𝑉𝑇𝑇𝑊𝑎𝑙𝑘  & 𝑂𝑉𝑇𝑇𝑃𝑇𝑤𝑎𝑖𝑡= out-of-vehicle travel time from i to j,  24 

uniformly distributed between 0 and 15 minutes 25 

𝐹𝑎𝑟𝑒= $0.50, $0.75, $1.00, and $1.25 per mile assumed 26 

𝑂𝑉𝑇𝑇𝑆𝐴𝑉𝑤𝑎𝑖𝑡= out-of-vehicle travel time from i to j,  27 

randomly determined between 0 to 10 minutes by following Gamma distribution  28 

with shape parameter 𝑘=2, scale parameter 𝜃=1 29 

In Liu et al’s model (Liu et al., 2017), SAVs are assumed to pick the closest available travel request within 30 

a predefined service radius. In the case of SAVs arriving earlier than the traveler’s prior activity ends, it 31 

waits until the traveler finishes the activity by idling on the road. When both the SAV and the traveler are 32 

ready, they move together to the traveler’s destination. After arrival at the destination, the SAV becomes 33 

available for the next travel request. 34 

Model Development 35 

The log sum method used by Kalmanje & Kockelman (Kalmanje & Kockelman, 2009) is used to evaluate 36 

the accessibility improvements with SAV access. Accessibility improvements are defined to be the change 37 

in consumer surplus or compensating variation (CV), which is measured by log sum differences of the 38 

traveler’s systematic utilities. This log sum method of welfare estimation is known to be better than the rule 39 

of half method, since rule of half assumes a linear relationship between consumer demand and generalized 40 
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travel costs (Kockelman & Lemp, 2011). 1 

The multinomial logit models for mode / departure-time choices are obtained from (Gupta, 2004) as shown 2 

in Table 1. For the trip purposes, only home-based work (HBW) and home-based non-work (HBNW) trips 3 

are considered in this paper. Using the model specifications from Table 1, a measure of generalized travel 4 

cost across all mode and departure time combinations is estimated by Eq. (4). 5 

Table 1. Joint Model of Mode and Departure Time Choice 6 

Parameters HBW HBNW 
Level of Service  
Time (min) -0.0548 -0.0755 
Cost (₵) -0.0098 -0.0158 
Constants  
HV AM Peak 0.3347 0.0844 
HV PM Peak 0.2397 0.1872 
HV Off-peak -1.3938 -0.1143 
PT AM Peak -5.3211 -3.6438 
PT PM Peak -5.2257 -4.0821 
PT Off-peak - -5.0853 
SAV AM Peak -2.3515 -0.5004 
SAV PM Peak -1.7653 -0.3273 
SAV Off-peak -3.5061 -0.6731 

Source: (Gupta, 2004) 
 7 

𝐿𝑂𝐺𝑆𝑈𝑀𝑖𝑗𝑝 = 𝑙𝑛 (∑ 𝑒𝑥𝑝(𝛽𝑡𝑝𝑇𝑇𝑖𝑗 + 𝛽𝑐𝑝𝐶𝑚,𝑖𝑗 +𝑚,𝑡∈𝑆𝑖𝑗
𝛽𝑚𝑡𝑝))                                  (4) 8 

where𝑆𝑖𝑗  denotes the choice set of all mode, departure-time combination set, 𝑇𝑇𝑖𝑗  refers to the travel time 9 

(minutes), and 𝐶𝑚,𝑖𝑗 represents the travel cost (cents) obtained from Eq. (1) to Eq. (3) from origin i to 10 

destination j using mode m, 𝛽𝑡𝑝 is the time coefficient by trip purpose p, 𝛽𝑐𝑝 is the cost coefficient by 11 

trip purpose p, 𝛽𝑚𝑡𝑝 is the constant with respect to mode m, departure time t, and trip purpose p. The ‘no-12 

vehicle owned’ population may not have utility benefits from HVs, so the HV utility should be discounted 13 

by the vehicle ownership. The no-vehicle owned population by TSZs are obtained from the social 14 

vulnerability index provided by Centers for Disease Control and Prevention/ Agency for Toxic Substances 15 

and Disease Registry/ Geospatial Research (CDC/ATSDR, 2018).   16 

The systematic utility of choosing a certain destination j from a particular origin i for trip purpose p is 17 
determined not only by the generalized travel cost, but also by the attractiveness that destination j can 18 

provide. In (Gupta, 2004), total employment (𝐸𝑀𝑃𝑗 ), population (𝑃𝑂𝑃𝑗), and size (𝑆𝐼𝑍𝐸𝑗) of the destination 19 

j are suggested as the attractiveness that affects the traveler’s destination choice from origin i. Eq. (5) 20 

represents the systematic utility of choosing destination j, suggested by (Gupta, 2004), with model 21 

specifications shown in Table 2.  22 

𝑉𝑖𝑗𝑝 = 𝛽𝑙𝑜𝑔𝑠𝑢𝑚,𝑝𝐿𝑂𝐺𝑆𝑈𝑀𝑖𝑗𝑝 + 𝛽𝑒𝑚𝑝,𝑝𝑙𝑛(𝐸𝑀𝑃𝑗) + 𝛽𝑝𝑜𝑝,𝑝𝑙𝑛(𝑃𝑂𝑃𝑗) + 𝛽𝑠𝑖𝑧𝑒,𝑝𝑙𝑛(𝑆𝐼𝑍𝐸𝑗)            (5) 23 

 24 

Table 2. Destination Choice Model 25 

Parameters HBW HBNW 
Impedance  
Log sum of generalized costs 0.3618 0.5714 
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Zonal Attractiveness  
log(total employment) 0.4836 0.2284 
log(population) 0.0053 0.0690 
log(size) 0.0248 0.1468 

Source: (Gupta, 2004) 
 1 

The expected maximum utility of the travel from origin i for trip purpose p with all modes m and departure 2 

times t can be derived using Eq. (6). It is the log sum of the exponential equations of the utilities for traveling 3 

to destinations j∈D from origin i, where D is the set of all destinations. Therefore, the changes in consumer 4 

welfare or consumer surplus (𝛥𝐶𝑆) can be computed by the difference of this log sum between the two 5 

scenarios as shown in Eq. (7). In Eq. (7), 𝑉𝑖𝑝
1  and 𝑉𝑖𝑝

0  denotes the systematic utility of the scenario of 6 

interest and the base case, respectively. The log sum difference is divided by the marginal utility of money 7 

(𝛼𝑝) for trip purpose p to monetize the difference. According to (Kalmanje & Kockelman, 2009), 𝛼𝑝 =8 

𝛽𝑙𝑜𝑔𝑠𝑢𝑚,𝑝𝛽𝑐𝑝 can be derived from the destination choice model by taking the derivative of the systematic 9 

utility in Eq. (5) with respect to the travel cost, 𝐶𝑚,𝑖𝑗. This paper proposes the monetized difference of 10 

consumer surplus (𝛥𝐶𝑆𝑖𝑝) derived from Eq. (7) as a measure to quantify accessibility. 11 

𝐸(𝑀𝑎𝑥(𝑉𝑖𝑝)) = 𝑙𝑛(∑ 𝑒𝑥𝑝(𝑉𝑖𝑗𝑝)𝑗∈𝐷 )                                                    (6) 12 

𝛥𝐶𝑆𝑖𝑝 =
1

𝛼𝑝
(𝐸(𝑀𝑎𝑥(𝑉𝑖𝑝

1 ) − 𝐸(𝑀𝑎𝑥(𝑉𝑖𝑝
0 ))                                                (7) 13 

MODEL ANALYSES RESULTS 14 

The utility-based accessibility measures are evaluated with various SAV fares ($0.50, $0.75, $1.00, and 15 
$1.25 per mile) and different trip purposes (HBW and HBNW). Two scenarios are assumed, ‘SAV Access’ 16 

and ‘HV Ban After Access’. The ‘SAV Access’ scenario compares the accessibility measures of having 17 

SAVs in the mode choice option (m∈ {𝐻𝑉, 𝑃𝑇, 𝑆𝐴𝑉}) versus the base case (m∈ {𝐻𝑉, 𝑃𝑇}) where no SAVs 18 

are assumed. The ‘HV Ban After SAV Access’ scenario evaluates the accessibility differences of a future 19 

where HVs are banned after SAV access (m∈ {𝑃𝑇, 𝑆𝐴𝑉} ) versus the base case (m∈ {𝐻𝑉, 𝑃𝑇, 𝑆𝐴𝑉} ) 20 

assuming SAVs coexist with existing HVs and PTs. 21 

SAV Access  22 

The accessibility measures by comparing ‘with SAV’ versus ‘without SAV’ are estimated. NCTCOG 23 

categorized the 5,386 TSZs as ‘Central Business District’, ‘Outer Business District’, ‘Urban Residential’, 24 
‘Suburban Residential’, and ‘Rural’ areas. This paper simplified this categorization by defining the first 25 

three categories as ‘Urban’ (n=3,116) area and followed the categorization of ‘Suburban’ (n=1,204) and 26 

‘Rural’ (n=1,066) areas as NCTCOG defined them.  27 

In Table 3, SAV access results in access benefits for HBW trip purpose since all regions in DFW will have 28 

positive changes in consumer surplus. With a low SAV fare ($0.50/mi), the access benefits did not show 29 
much difference by region. With higher SAV fares, the accessibility decreases since SAVs become less 30 

attractive. For HBW trip purpose, Table 3 shows 11.8% lower average accessibility improvements 31 

($0.15/person trip/zone) with SAV fare $1.25/mi compared to $0.50/mi case ($0.17/person trip/zone). When 32 
compared by the regional category, urban regions show a greater decrease in access benefits followed by 33 

suburban and rural regions with the increase of SAV fares. It is presumed that urban areas may have other 34 
travel mode to use when the SAV fare is high (e.g., public transit), so that SAV becomes less attractive for 35 

urban residents with higher SAV fares. Also, rural areas with longer travel time may still enjoy the 36 

advantages of SAVs even with higher SAV fares, since SAV users are assumed to have a lower value of 37 

travel time than HV users. 38 
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HBNW trip purpose follows a similar tendency with respect to the SAV fare, but with greater access benefits 1 
than HBW. Table 3 suggests under SAV $0.50/mi assumption, overall access benefits for HBNW purpose 2 

are 117% higher than that of HBW purpose, and overall HBNW access benefits are 126% higher than that 3 

of HBW with SAV fare $1.25/mi assumption. HBW trips are more regular than HBNW trips by having 4 

home at one end of the trip and work at the other, so that the traveler may be more used to the route, 5 

destination, and infrastructures (parking facilities, traffic signals, etc.) of the trip than in the case of HBNW 6 
trip. Therefore, SAVs can be advantageous when traveling to a non-work and possibly unfamiliar location 7 

for a HBNW trip. For instance, SAV travelers may not have to take care of parking, even though they are 8 
traveling to an unfamiliar location without having experience of where the parking lot is located. SAVs will 9 

pick-up and drop-off the travelers autonomously without having severe parking limitations. 10 

The difference in HBNW trip compared to HBW is that in HBNW trips, urban regions have the highest 11 
access benefits followed by suburban and rural regions for all SAV fare scenarios. This result suggests that 12 

a non-work trip originating from urban regions will be the most beneficial combination to operate SAVs. 13 

Table 3. Accessibility Measures with SAV Access ($/person trip/zone) 14 

SAV 
Fare 

HBW HBNW 

Urban Suburban Rural Overall Urban Suburban Rural Overall 

$0.50/mi 0.17 
(0.02) 

0.17 
(0.02) 

0.17 
(0.02) 

0.17 
(0.02) 

0. 21 
(0.03) 

0.20 
(0.03) 

0.19 
(0.02) 

0.20 
(0.03) 

$0.75/mi 0.16 
(0.02) 

0.16 
(0.02) 

0.17 
(0.02) 

0.16 
(0.02) 

0. 20 
(0.03) 

0.19 
(0.03) 

0.19 
(0.01) 

0.20 
(0.02) 

$1.00/mi 0.15 
(0.03) 

0.15 
(0.02) 

0.16 
(0.02) 

0.15 
(0.02) 

0. 20 
(0.02) 

0.19 
(0.02) 

0.19 
(0.02) 

0.19 
(0.02) 

$1.25/mi 0.14 
(0.03) 

0.14 
(0.02) 

0.16 
(0.03) 

0.15 
(0.03) 

0. 19 
(0.03) 

0.18 
(0.02) 

0.18 
(0.02) 

0.19 
(0.02) 

Note: Average (St.Dev.) 
 15 

HV Ban After SAV Access 16 

This paper follows the possible SAV access scenario by first introducing SAVs to the market (‘SAV Access’ 17 

scenario); then, SAVs fully replace the existing HVs thereafter (‘HV Ban After SAV Access’ scenario). Thus, 18 

in this section, the scenario of interest restricts HV use (m∈ {𝑃𝑇, 𝑆𝐴𝑉}), while the base case assumes HVs 19 

coexist with SAVs and PTs (m∈ {𝐻𝑉, 𝑃𝑇, 𝑆𝐴𝑉}).  20 

Restricting HVs after SAV access results in loss of accessibility for HBW trip purpose since all regions in 21 
DFW will have negative changes in consumer surplus. Table 4 shows that the higher the SAV fare is, the 22 

higher the negative impact is in all regions, because SAVs become less attractive. Moreover, greater 23 

uncertainty in accessibility is expected with higher SAV fares, where the standard deviation increases with 24 

higher SAV fares. 25 

When compared by the regional category, urban regions show a greater decrease in average accessibility 26 
than suburban or rural areas in high SAV fares. As urban regions had smaller accessibility improvements 27 

from the SAV access than other regions, especially with higher SAV fares, restricting HVs in urban regions 28 

would be detrimental. Therefore, HV use will be still preferred in terms of enhancing overall accessibility 29 

even after SAVs are introduced.  30 

When compared by trip purpose, Table 4 shows that HBNW trips had less negative impact than HBW trips. 31 

SAV access scenario showed that HBNW had higher accessibility improvements with SAVs than HBW, so 32 

HBNW was less affected by removing HVs from the market. As was the case in HBW purpose, having 33 
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higher SAV fare results in greater negative impact in accessibility in HBNW.  1 

Table 4. Accessibility Measures with HV Ban After SAV Access ($/person trip/zone) 2 

SAV 
Fare 

HBW HBNW 

Urban Suburban Rural Overall Urban Suburban Rural Overall 

$0.50/mi -9.98 
(0.48) 

-10.09 
(0.47) 

-9.93 
(0.43) 

-10.00 
(0.47) 

-4.92 
(0.23) 

-5.02 
(0.22) 

-5.10 
(0.15) 

-4.98 
(0.23) 

$0.75/mi -10.24 
(0.52) 

-10.33 
(0.50) 

-10.09 
(0.48) 

-10.23 
(0.52) 

-5.01 
(0.22) 

-5.09 
(0.21) 

-5.14 
(0.14) 

-5.05 
(0.21) 

$1.00/mi -10.46 
(0.57) 

-10.54 
(0.54) 

-10.22 
(0.54) 

-10.43 
(0.57) 

-5.08 
(0.23) 

-5.14 
(0.21) 

-5.16 
(0.15) 

-5.11 
(0.21) 

$1.25/mi -10.66 
(0.62) 

-10.72 
(0.58) 

-10.34 
(0.59) 

-10.61 
(0.62) 

-5.13 
(0.23) 

-5.19 
(0.22) 

-5.18 
(0.15) 

-5.16 
(0.22) 

Note: Average (St.Dev.) 
 3 

ACCESSIBILITY FOR VULNERABLE POPULATION 4 

SAVs have the potential to enhance the mobility and accessibility of vulnerable populations. Elderly, 5 

disabled, and those without a driver’s license may benefit from the efficient self-driving door-to-door 6 

service (Wang et al., 2020). Ridesharing can lower the price for rides and provide more affordable travel 7 

options to travelers (Shen et al., 2018). The self-driving feature allows SAVs to reduce parking costs, 8 

thereby providing reasonable travel cost to and from the urban cores (Millard-Ball, 2019). Riders will be 9 
able to participate in other activities while riding in the SAV, enabling them to use their time in a more 10 

efficient way (Steck et al., 2018). When the riders agree with sharing their information to others, 11 

autonomous vehicles can contact emergency services or drive to the nearest health care facilities directly in 12 

emergency situations (Gluck et al., 2020).  13 

In this sense, the welfare impacts of SAVs for the vulnerable population in the Dallas-Fort Worth region are 14 
analyzed in detail. The types of vulnerabilities used in this paper are ‘below poverty estimate’, ‘income per 15 

capita’, ‘aged 65 or older’, ‘disabled’, ‘no vehicles owned’, and ‘minority population who are not white or 16 
non-Hispanic, obtained from the social vulnerability index (CDC/ATSDR, 2018). Percentage of persons 17 

below the poverty estimate and income per capita by zone represents the vulnerability from lack of 18 

economic capacity. Past studies suggests that opportunities including access to employment, healthy food 19 

and healthcare are not equally shared by low-income populations (Dillahunt & Veinot, 2018). The 20 

percentage of persons aged 65 or older and persons with a disability corresponds to the lack of ability to 21 
travel freely. The percentage of persons with no vehicles owned shows the lack of mobility. Finally, the 22 

percentage of minority group (defined as all except white or non-Hispanic) stands for the racial or ethnic 23 

groups who are underserved in American society.  24 

 25 
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 1 

Figure 1. Distribution of Vulnerability (a: Below Poverty Population, b: Income per Capita, c: Aged 2 

65+, d: Disabled, e: No-vehicle Owned, f: Minority) 3 

 4 

Figure 1 shows the spatial distribution of each vulnerability type in the study area obtained from the social 5 

vulnerability index (CDC/ATSDR, 2018). The average percentage of the population below the poverty 6 
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estimate is 13.97%, and a higher percentage is expected in urban centers and rural areas. Average annual 1 
income is $35,074 per capita and suburban areas had the highest income level. The average percentage of 2 

population aged over 65 is 11.88%, and rural areas at the southwestern part of DFW showed highest rate 3 

over 65. The average percentage of disabled population is 10.36%, and rural areas showed higher rates than 4 

other areas. The average percentage persons with no vehicles owned is 5.37%, and they are concentrated in 5 

urban cores. The average percentage of minority groups inhabiting an area is 51.45%, and southeastern 6 

suburban areas showed the highest rate. 7 

Figure 2 shows the accessibility benefits by each type of vulnerability after SAVs become accessible. The 8 
best-case scenario of SAV fare ($0.50/mi) is assumed since this is the lowest SAV price, resulting in the 9 

highest accessibility. For all types of vulnerabilities except ‘aged over 65’, accessibility is increasing when 10 

more people are vulnerable. This result suggests that SAV HBW trips become affordable to all groups to 11 
satisfy their mobility needs, and having more access to SAVs can improve the welfare of vulnerable 12 

population. Nonetheless, the access benefits tend to fall if more population are aged over 65, but still with 13 
positive values of access benefit. Seniors tend to travel less than other groups, so SAVs’ access benefits 14 

decrease with more seniors in the population. For the older population, other modes of transportation should 15 

be still considered to offset the decreasing access benefits from SAVs with older population. 16 

HBNW trips follow the similar tendency, but with greater access benefits from SAVs. In terms of income 17 

and age, higher income groups and a higher percentage of older residents results in lower access benefits 18 
from SAVs. The high-income groups will have a higher value of travel time, and they may be reluctant to 19 

share their trips via ridesharing options. However, the poverty, disability, no vehicles owned, and minority 20 

groups showed increased access benefits when the degree of vulnerability is high. Having higher access 21 

benefits with a higher percentage of persons below the poverty estimate corresponds to the higher access 22 

benefits with lower income per capita. The disabled population and no-vehicle population groups’ need of 23 
mobility can be satisfied with SAV access, resulting in higher access benefits when the percentage of these 24 

persons are high. Minority groups who are underserved in American society can also benefit with SAV 25 

access. 26 

Figure 3 shows the worst-case SAV fare scenario with pricing of $1.25/mi, which is the highest SAV fare 27 

assumed in this paper, resulting in the lowest SAV accessibility. The values of access benefit are smaller 28 
than those of the best-case scenario, but access benefits for both HBW and HBNW trips have a similar 29 

tendency to the best-case scenario with respect to the degree of vulnerability: access benefits increase with 30 
a higher percentage of persons below poverty, disabled, no vehicles owned, or classified as minority group, 31 

and access benefit decreases with higher income and higher percentage of persons aged 65 or above.  32 
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 1 

Figure 2. Accessibility Benefits (SAV Fare $0.50/mi assumed, a: Below Poverty Population, b: 2 

Income per capita, c: Aged 65+, d: Disabled, e: No-vehicle Owned, f: Minority) 3 

  4 
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 1 

Figure 3. Accessibility Benefits (SAV Fare $1.25/mi assumed, a: Below Poverty Population, b: Income 2 

per capita, c: Aged 65+, d: Disabled, e: No-vehicle Owned, f: Minority) 3 

EXTREMELY VULNERABLE ZONES’ SAV ACCESSIBILITY 4 

The extremely vulnerable zones have extremely worse conditions than the average estimate of the DFW 5 

region. In this paper, extremely vulnerable zones have a value above the average estimate of the percentage 6 
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of persons that are below the poverty level, aged 65 or over, disabled, have no vehicle, or in minority groups, 1 
and below the average estimate of the income per capita. A total of 196 zones out of 5386 TSZs are classified 2 

as extremely vulnerable zones. Figure 4 shows the location of these 196 zones in two different SAV fare 3 

scenarios ($0.50/mi and $1.25/mi) and two different trip purposes (HBW and HBNW). Among the 196 4 

extremely vulnerable zones, the zones that have SAV access benefits above the average are colored in 5 

patterned green, and zones with SAV access benefits below the average are colored in solid red. Thus, the 6 
conditions of extremely vulnerable zones can be improved with SAV access when the access benefits are 7 

above average, but the conditions may be even worse after SAV access when the access benefits are below 8 

average. 9 

 10 

Figure 4. Location of the Most Vulnerable Zones and Access Benefits (a: HBW $0.50/mi, b: HBNW 11 

$0.50/mi, c: HBW $1.25/mi, d: HBNW $1.25/mi) 12 

Table 5 shows the comparisons of the extremely vulnerable zones’ access benefits in more detail. The 13 
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$0.50/mi scenario has more zones with access benefits above average than the $1.25/mi scenario. 1 
Comparing the extremely vulnerable zones’ access benefits to the overall average access benefits, the 2 

$0.50/mi scenario generally has a slightly smaller difference in % difference than the case from $1.25/mi 3 

scenario. By comparing the trip purposes, the conditions in HBNW trip purpose were better than that of 4 

HBW trip purpose. More zones were above the overall average in HBNW trip purpose, and the % difference 5 

from the overall average was smaller, indicating more stable access benefits can be expected in HBNW 6 

purpose trips. 7 

Table 5. Extremely Vulnerable Zones’ Accessibility Benefits Compared to Overall Average  8 

$0.50/mi 
HBW HBNW 

Below Average Above Average Below Average Above Average 
# of Zones 14 182 7 189 

% Difference -4.1% +23.2% -2.0 % +22.5% 
$ Difference -0.01 +0.04 <-0.00 +0.05 

$1.25/mi 
HBW HBNW 

Below Average Above Average Below Average Above Average 
# of Zones 33 163 10 186 

% Difference -5.4% +24.9% -1.9% +20.9% 
$ Difference -0.01  +0.04  <-0.00  +0.04  

 9 

In Table 5, a notable remark can be made for the $1.25/mi scenario, HBW purpose results. The % difference 10 

of these zones’ average access benefits showed the greatest difference of -5.4%/+24.9% from the average. 11 

access. This is presumably because of the high SAV fare, some extremely vulnerable populations’ trips 12 

cannot be satisfied properly and results more observations of below average access benefits than other 13 

scenarios. This result suggests that certain population may not benefit from SAV access as much as others, 14 
if the SAV system is not designed deliberately. A variable SAV fare by origin and destination should be 15 

considered, while local communities should consider providing alternative modes (e.g., public transit) and 16 

subsidizing SAV fares to support specific groups who may not enjoy the state-of-the-art technology due to 17 

their socioeconomic conditions. 18 

CONCLUSIONS 19 

SAVs have the characteristics of both HVs (via door-to-door service) and public transit (via shared rides); 20 

thus, SAVs have the potential to enhance the accessibility and mobility of residents living in an urban 21 
environment. This paper proposed a utility-based accessibility measure to monetize the access benefits of 22 

SAVs and focused on the access benefits of vulnerable populations. By fare and trip purpose scenarios, a 23 

lower SAV fare had higher access benefits than higher SAV fares due to lower travel cost, and HBNW trips 24 

had higher access benefits than HBW trips due to SAVs’ advantage (e.g., no parking needed, self-driving 25 
feature) expected while traveling to a less routine destination. Another possible scenario is when HVs are 26 

banned after SAVs are fully adopted. The result suggests that HVs are still required, especially for HBW 27 

trips from urban areas with the highest SAV fare assumption. 28 

In-depth analyses of SAV access benefits were performed on the vulnerability groups. In the best-case 29 

scenario with the lowest SAV fare, both HBW and HBNW trips showed difference in access benefits, where 30 
access benefits increased with a higher rate of persons below poverty, grouped as a minority, aged 65 or 31 

above, no vehicles owned, disabled, or income was low. On the other hand, in the worst-case scenario 32 

having the highest SAV fare, the access benefit falls and results in lower accessibility. Those who could not 33 
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afford the high SAV fare had lower access benefits than those who could afford the SAV fare. However, the 1 
access benefits were still positive suggesting that SAVs can improve vulnerable populations’ mobility and 2 

welfare conditions. 3 

Among the vulnerable population, even more extremely vulnerable groups’ SAV access benefits were 4 

analyzed. The results suggest that SAVs may improve the accessibility conditions at some locations, but 5 

some population may not enjoy the access benefits as others may, if the fare was high and the trip purpose 6 
was HBW, which are fundamental parts of living. In order to help the vulnerable population, subsidizing 7 

SAV fares via transit providers, food stamps, or other methods should be considered. SAV fleet is 8 
advantageous by providing cost-efficient door-to-door service and demand-responsive mobility options, so 9 

that transit agencies can shift to subsidize SAV use to support not the general public, but also extremely 10 

vulnerable population. This paper emphasizes that SAV systems should be designed deliberately with 11 
careful attention to underserved groups, so that they are not left behind in the introduction of new 12 

technologies.  13 
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