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ABSTRACT 
A variety of land use models now exist, driven by theoretical advances, data availability, 

enhanced computation, and new policy-making needs.  This paper describes the process of 
developing and applying a disaggregate model system that seeks to simulate the subdivision and 
land use change of parcels, and the spatial allocation of households and employment across 
zones.  Relying on multinomial logit specifications, random number generation, and a seemingly 
unrelated regression model with both spatial lag and spatial error components, the model 
development process was accompanied by a variety of challenges.  Some issues are specific to 
the model presented here, but many are common for integrated transport and land use models.  It 
is hoped that solutions to these issues and lessons learned offer useful insights for on-going 
improvements in land use modeling endeavors of all types. 

Comparisons of road pricing- and trend-scenario results for the Austin, Texas region 
highlight how policies may shape land and travel futures.  While the road pricing policy did not 
alter land use intensity patterns in a significant way, it was forecasted to increase speeds across 
the region’s network and reduce regional congestion levels. 
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INTRODUCTION 
Urban land use models (LUMs) seek to predict a region’s future spatial distribution of 
households and employment, and provide key inputs to models of travel demand, emissions, and 
air quality.  Integrated transport-land use models (ITLUMs) allow analysts to anticipate system 
response to new policies, preference functions, economic conditions and other scenarios.  
Though not nearly as complex as the human systems they seek to mimic, such model systems are 
very complicated.  Such complication results in multiple challenges, and attendant abstractions 
result in many modeling limitations as well as prediction errors. 

In this study, a new style of LUM is developed, to examine land use change at the parcel 
level while applying systems of equations for land use intensity (population and employment by 
type) across travel analysis zones (TAZs).  This LUM was estimated for and then applied to the 
Austin-Round Rock Metropolitan Statistical Area (MSA) of Texas, under a business-as-usual 
scenario and a road pricing scenario (incorporating congestion tolls on freeways and carbon 
taxes on all roads). 

As functionally distinct observational units, parcels lend themselves to disaggregate 
analysis with discrete responses for use type and subdivision.  Models that emphasize parcel-
level applications offer more behavioral realism (e.g., full-parcel development, rather than 
gridcell division) and enjoy significant potential in the land use modeling domain.  Such models 
also allow meaningful investigation of the influence of highly local neighborhood conditions on 
parcel development.  Past studies of neighborhood impacts (e.g. Verburg et al. 2004, Irwin and 
Bockstael 2004, Wang and Kockelman 2006) tend to use relatively coarse spatial resolution, 
focus on a single type of land use, or control for land cover categories identified from satellite 
images (rather than the actual land use).  With the increasingly available parcel level data and the 
advancement of geographic information system (GIS) technology, parcel-level LUMs are not 
only advantageous but also feasible.  

Parcel land development is often associated with changes of households and/or jobs, 
which are then aggregated to the level of TAZs in order to provide key inputs to travel demand 
models (TDMs).  TAZs ensure reasonable representation of traffic networks and flows, but are 
rather arbitrary delineated.  Anselin (1988) suggested that dependence is often present in cross-
sectional data obtained using arbitrary spatial units (e.g., TAZ).  Models without explicit 
treatment of these spatial dependencies may result in inappropriate inference.  Recent spatial 
econometric advances (e.g. Das et al. 2003, Kelejian and Prucha 2004) allow modelers to 
disentangle such relationships, via spatial lag and spatial error processes.  

This paper presents the logic of a largely parcel-based land use modeling system that 
accommodates various forms of spatial dependencies, in the land use change and intensity 
values.  It also emphasizes the nature of key challenges encountered in model formation and 
application, their solutions, and lessons learned.  It is hoped that these will shed light on future 
endeavors for developing more predictive yet practical LUMs. 

EXISTING LAND USE MODELS 
With increasing computational power and theoretical advances, many operational LUMs have 
been developed.  And several studies have summarized and compared existing models (e.g., 
Miller et al. 1998, PBQ&D 1999, US EPA 2000, and Dowling et al. 2005).  The general 
consensus is that many limitations remain.  Of course, to some extent there are “different horses 
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for different courses”, and the appropriateness and usefulness of any tool varies by context.  
Lemp et al. (2006) simply summarized four major theoretical constructs underlying the majority 
of LUMs: gravity allocation, cellular automata, spatial input-output, and discrete response 
simulation.  

 In gravity models, regional transportation accessibility is core to the spatial allocation of 
jobs (by type) and households (by category).  Zone-based specifications generally include lagged 
jobs and households, as well as some measure of land availability and land use conditions.  Other 
influential factors, such as price adjustments, presence of built space, zoning restrictions, and 
topographic conditions are overlooked.  Gravity models tend to use regional totals to adjust 
forecasts across all zones, and have been found to perform less well with disaggregate zone 
systems and/or sparse zone activity levels (PBQ&D 1999).   

A representative gravity model is the Federal Highway Administration-sponsored 
Transportation Economic and Land Use Model (TELUM), which enjoys a user-friendly 
graphical user interface and is freely downloadable at http://www.telus-national.org/index.htm.  
However, its code is not shared, zone count is limited, and some key documentation is missing in 
its User Manual (2006) (e.g., parameter calibration, objective functions and land consumption 
variable definitions).  A more flexible, open-source version of this model has been written in 
MATLAB, and is available at http://www.ce.utexas.edu/prof/kockelman/G-
LUM_Website/homepage.htm.  This gravity model was applied to the Austin-Round Rock MSA 
(Zhou et al. 2008), and the forecasts only appear reasonable after imposing a series of rules 
(restricting excessive growth and declines in population and jobs at the zone level), suggesting 
that local knowledge and expert opinion may be needed to manually adjust gravity model 
forecasts.  

Cellular automata (CA) models are a class of artificial intelligence (AI) methods.  Other 
AI methods include neural networks and generic algorithms, which also have been used to 
simulate and/or optimize land use change (Raju et al. 1998, Balling et al. 1999), but the CA-
based SLEUTH model (Slope, Land use, Exclusion, Urban extent, Transportation and Hill 
shade) is the most widely applied (Clarke et al. 1997, Silva and Clarke 2002, Syphard et al. 
2005).  It represents a dynamic system in which discrete cellular states are updated according to 
a cell’s own state, as well as that of its neighbors.  However, SLEUTH relies on just five 
coefficients, and is calibrated in a rather ad hoc fashion1. While CA models may mimic many 
aspects of the dynamic and complex land use systems, they generally lack behavioral 
foundations to explain the process.  Moreover, they emphasize land-cover type, not land use 
intensity, so post-processing is needed to generate employment and household count patterns 
(which are, of course, critical to travel demand modeling). 

Spatial input-output models are used to anticipate the spatial and economic interactions of 
employment and household sectors across zones, using discrete choice models for mode and 
input-origin choices.  Production and demand functions consider transport disutility between 
zones, and people (and generally freight) move from one location to another in order to 
equilibrate supply and demand.  Representative models include TRANUS (see, e.g., Johnston 
and de la Barra 2000), PECAS (e.g. Hunt and Abraham 2003), and RUBMRIO (e.g., Kockelman 
et al. 2004).  Trade-based spatial input-output models are most suitable for larger spatial units 

                                                 
1 The model is calibrated by minimizing a variety of discrepancy measures, using historical data to initialize the runs 
and current data for comparison. 
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(e.g., countries, regions, states and/or nations), so spatial resolution can be poor.  Good trade and 
production data are also difficult to come by.  It is worth noting that PECAS now includes a 
disaggregate sub-model for space development, to anticipate developer actions at the level of 
parcels or grid cells (see, e.g., PECAS 2007 and Hunt et al. 2008).  This advance results in a 
hybrid of spatial input-output (for activity allocation) and microsimulation.   

Random utility maximization for discrete choices (McFadden 1978) is the basis of most 
microsimulation models.  Waddell’s UrbanSim (Waddell 2002, Waddell et al. 2003, Waddell and 
Ulfarsson 2004, Borning et al. 2007) simulates location choices of individual households and 
jobs, while anticipating new development on the basis of such models.  In some contrast, 
Gregor’s LUSDR (Land Use Scenario DevelopeR) emphasizes fast model runs and the stochastic 
nature of results, seeking a balance between model completeness and practicality.  Allocating 
groups of residential and business development on the basis of mostly multinomial logit (MNL) 
equations, LUSDR does not model price adjustments.  The rationale behind utility maximization 
is defensible, but these choice-based models tend to require extensive data and consist of several 
submodels.  The interactions among these model components make it hard to discern effects of a 
policy-decision variable, and uncertainties of one sub-model may be easily passed to other parts 
of the model system.  In addition, numerous factors affect individual household and firm 
decisions, and these factors interact in complicated ways, often demanding some form of 
dynamic equilibration. For such reasons, opportunities for model improvement always exist.  For 
example, UrbanSim does not (yet) tie households’ workers to jobs or allow populations of jobs 
and workers to evolve.  Many studies (Van Ommeren et al. 1999, Rouwendal and Meijer 2001, 
Clark et al. 2003, and Tillema et al. 2006) have suggested significant impacts of commute time 
(or cost) on residential and/or job site location decisions; and worker (and overall household) 
status can change rather rapidly. 

While a variety of LUMs exist, the limitations of existing models are reasonably well 
understood.  Many new modeling theories and approaches are emerging, including use of agent-
based bidding (e.g. Zhou and Kockelman 2008c) and simulation of agent evolution and their 
dynamic behaviors (e.g., Moeckel et al. 2002).  To make use of theoretical advances and recent 
available GIS data while illuminating challenges in LUM development, a very different approach 
was formulated here.  

ANOTHER APPROACH 

First calibrated and then applied to the Austin-Round Rock MSA, this new LUM implements 
several recent advances in spatial econometrics, while exploiting the relatively recent availability 
of parcel-level data in Central Texas.  Based on a model of land use change followed by a model 
of land use intensity, it is referred here as the LUC-LUI model. 

Figure 1 illustrates the relationships of various LUC-LUI model components.  The LUC 
model anticipates how individual parcels evolve: whether an undeveloped parcel will divide into 
several smaller parcels during a pre-specified time interval (e.g., 5 years in this study), how big 
these subdivided parcels are likely to be, and what land use types will emerge on each (including 
undeveloped use).  The likelihood of subdivision was simply modeled using a binomial logit and 
newly generated parcel sizes were determined using log-linear regression techniques.  Land 
development on such previously undeveloped parcels was modeled using an MNL for various 
use alternatives (e.g., large lot single family, single family, multi-family, commercial or office, 
industrial, civic, and undeveloped).  These alternatives are rather distinct; they do not include 
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mixed uses and neglect variations in building-floor densities.  A variety of possible explanatory 
variables were considered, including attributes of individual parcels (e.g., size, shape, and slope), 
neighborhood conditions (nearby acres of different land uses [via a series of annuli, centered on 
each parcel in question]), and regional and local accessibilities terms (based on TDM results). 

FIGURE 1   The Land Use Model System (LUC-LUI) 

 
In the LUC model, only undeveloped parcels are considered (via a series of three sub-

models).  56 percent of all undeveloped parcels (i.e., 22,400 out of 40,000 parcels) subdivided 
and/or changed use between 1995 and 2000 in the study area, while less than 1 percent of all 
developed parcels (just 1,100 parcels, out of 167,000 total) experienced such changes.  In 
addition, as mentioned above, the LUC model focuses on land use types, rather than built space.  
Thus, focus on wholly new development seems reasonable.   

Land use change at the parcel level is generally associated with an increase (or decrease) 
in activity, and the LUI model is designed to anticipate changes in the number of households and 
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employment (by type), using a seemingly unrelated regression (SUR) with two spatial processes, 
as follows: 

( ) ( ) mmmmmmmmmmmmmm εZδεXWyβεXβWyy +=+=++= ',',ρρ    (1) 

mmmm ξWεε += λ           (2) 

where m = 1:M and indexes the four equations for each zone (i.e., counts of households and 
basic, retail and commercial jobs), ym is an n by 1 vector of response variables for equation m, 
Xm is a matrix of explanatory variables for equation m (including recent changes in land use 
areas, lagged counts of households and jobs, undeveloped land, land use balance and regional 
accessibility), βm is vector of  parameters to be estimated, ρm is spatial lag autoregressive 
coefficient, and λm is spatial error autoregressive coefficient.  The LUC and LUI model 
specifications are rather statistical in nature; due to space limitations, many of their details are 
described in Zhou and Kockelman (2008a, 2008b). 

 The LUC and LUI models are sequentially applied, and outputs of the LUC model (i.e., 
parcel-level land use changes) serve as key inputs to the LUI model (in the same model year). 
LUI effects filter to the LUC model in a downstream time step via regional and local 
accessibility variations, as anticipated by the TDM.  Both land use models enjoy mechanisms to 
help ensure reasonable regional totals: The LUC model’s alternative-specific constants were 
designed to reflect regional/five-county changes, and the LUI model’s household and job 
forecasts were adjusted to match predetermined regional control totals (without any backwards 
adjustments to the LUC model).  Issues with such adjustments are discussed later, in the 
Additional Lessons section. 

DATA ISSUES 
Data sets for detailed models of land use systems generally come from multiple sources, and the 
Austin LUC-LUI application is no exception.  Here, the data sets include land use parcel maps, 
base-year counts of households (by category) and jobs (by type) at the TAZ level, transportation 
network details, and topographic data.  Unfortunately, land use parcel data for the entire (five-
county) MSA is limited (to a single year), requiring creative treatment of estimated parameters 
for reasonable results when the LUC model is applied to the entire region. 

In order to track the dynamics of parcel evolution, the LUC model requires parcel maps 
at two (or more) points in time.  Only one (for the year 2005) could be obtained from the Capital 
Area Council of Governments (CAPCOG), who assembled the map using property appraisal 
data.  Thus, the LUC model was estimated initially only for the City of Austin and its two-mile 
extraterritorial jurisdiction (ETJ) using 1995 and 2000 parcel maps.  This model was then 
applied to the entire region’s set of year-2005 undeveloped parcels.  To ensure that region-wide 
forecast values matched target values2 within a predefined tolerance (1 square mile per land use 
type in this study of a 4,280-square mile region), alternative specific constants were iteratively 
adjusted.  

As noted earlier, the LUI model estimates changes of household and job counts (by type) 
across five-year time steps, based on land use changes as well as lagged values of land use 
intensity, undeveloped land, land use balance and regional accessibility.  It should be noted that 
                                                 
2 The region-wide “targets” were forecasted based on 2005 land use parcel map, as well as regional household and 
job counts/targets for 2005 and 2010. 
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the LUI model, which relies on a SUR model with two spatial processes and a spatial weight 
matrix, cannot be easily extended to a larger region, with new zones added, nor some subset of 
zones3. For this reason, year 2000 land use conditions had to be backcasted for each TAZ, to 
ensure that the application set of zones matched the model estimation.  Such is a limitation of 
various spatial econometric techniques, meriting one’s attention well before final model 
specification.  Of course, this same guidance is true in models of all types: one should understand 
all modeling objectives (including policy tests and outputs of interest), data set limitations and 
any methodological constraints before finalizing the specification.  Especially, data deficiencies 
present many other issues for model formulation and application, as described below. 

ADDITIONAL LESSONS 
As alluded to above, further details on the LUC-LUI model’s specification, parameter estimates, 
and application results can be found in Zhou and Kockelman’s (2008d) report.  For purposes of 
this paper, a more interesting question is how does such a model perform in practice? What 
deficiencies and challenges emerge, and can these be resolved? 

Limits on Development and Model Extrapolations 
Left unchecked, models calibrated on the basis of past trends in land use change can lead to 
overdevelopment or underdevelopment in the future.  This is particularly true in a case where 
more centrally located data points (e.g., parcels within the City of Austin and its ETJ) determine 
the specification and their parameters are “transferred” to the regional setting.  While this 
particular scenario was avoided here in the first time step − thanks to early parameter adjustment 
based on a five-year target − such adjustments may be of little use over the longer term, and 
model estimates can take on a life of their own.   

If targets are not embedded naturally into the model, post-processing is generally used, 
requiring heroic and unsatisfying assumptions (such as proportional adjustment of all zones’ 
values) in order to hit regional control totals.  Here, the LUC and LUI models are sequentially 
applied, and forecasts of the LUI model had to be adjusted in order to ensure reasonable regional 
totals.  Parcel subdivision and land use change could be undertaken (in random order across 
undeveloped zones, as is presently the case) until a certain target of total land in each use is met.  
But this does not guarantee that application of the subsequent LUI model will then result in 
reasonable household and job counts for each model year.  Totals by type can get out of synch, 
and modelers are left with little or no recourse. 

Meeting control totals is a tricky issue that deserves great care.  While models like 
UrbanSim and LUSDR allocate jobs and households up to pre-specified targets, in each 
category, thus avoiding the control-totals issue.  They do not enjoy endogenous determination of 
such quantities and rely on random order in agent assignments in each model year, thus 
neglecting within-year bidding competition for scarce space.  In order to match regional control 
total expectations for Austin, the LUI model results were post-processed, in two steps. First, 
households and jobs were added or removed uniformly across the entire MSA (in proportion to 
TAZ sizes) in order to maintain their relative values.  Next, unreasonable forecasts were removed 
using simple rules: if a zone was forecasted to have a negative count, zero values were assigned.  

                                                 
3 The issue in prediction essentially is that any zone’s (best) prediction depends, in a simultaneous way, on those of 
its neighbors, as with standard time-series data.  However, prediction for a single equation has been proposed in 
more standard spatial auto-regressive systems (Pace and LeSage 2008). 
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Adjustment of zone-level LUC model results (by scaling land acreages up or down, according to 
use type) could have been pursued as well.  Whichever post-processing technique is used, 
however, the options are unsatisfying. 

Related to the idea of parameter transferability is the idea of model extrapolation − over 
time and space.  As models move forward in time, past data sets and their parameter estimates 
are less and less likely to apply.  Preferences evolve, along with incomes, household sizes, 
technologies, energy prices, and various other key inputs.  As regions expand, variables and 
estimates that made good sense for the original region lose their value.  One example is sub-
center nucleation, as a previously one-center region begins to enjoy multiple centers.  Another 
example is the variable of distances to the nearest highway.  Since paired land use data sets were 
only available for the City of Austin and its ETJ, this variable’s maximum was originally 1.2 
miles.  For application of the resulting model to the larger region, the distance grew to 40.3 miles 
in certain cases, potentially resulting in values that dominated model results.  Here, this variable 
was capped at 1.2 miles across all locations; no great options generally exist in such cases.  
Proper data sets need to be present from the start in order to avoid these kinds of questionable 
assumptions relatively late in the modeling process.  

Implications of Model Specification for Purposes of Policy Analysis 
While decision-making support is the primary purpose of most LUMs, it often ends up being 
difficult to code a variety of land use policies in a particular model.  Consider the example at 
hand: certain parcels can be removed from LUC consideration (due to an urban growth 
boundary, for example), their land use alternatives may be restricted (due to zoning, for 
example), or the attractiveness of their alternatives adjusted (due to subsidies for different land 
use types, for example); however, a sophisticated model of counts, using a spatial system of 
equations that share information in their error terms is not easily adapted to cases where certain 
zones are not allowed to experience growth in certain land use intensity values (due to zoning or 
other constraints) or some subset of values are otherwise pre-determined (due to prior knowledge 
of near-term development, for example).  Spatial econometric tools are still emerging, and this 
challenge may one day be resolved, but in the meantime it represents a hurdle here that was 
unfortunately unforeseen. 

The effects of transportation policies will largely depend on the accompanying TDM’s 
specification, and the LUM linkage.  For example, variable-road pricing policies will require that 
time and cost metrics appropriately impact trip time of day, mode, and destination choice 
decisions, and that network assignment results feed back into trip distribution and other travel 
decisions (for consistency in sub-model assumptions and system-wide equilibration).  While 
travel demand model specifications are largely outside the scope of this paper, it is very 
important to consider specification of the transportation-land use linkage, to ensure that 
transportation policies can affect land use patterns, if we believe that land use patterns respond in 
some way to transportation system conditions.  Typical practice is to have regional accessibility 
terms feature in zone attractiveness equations for new development.  In less simplistic and more 
spatially detailed LUMs (e.g., 150 m grid cells commonly used in UrbanSim or the parcels used 
here), more local transportation system attributes can be used.  Here, they included parcel-based 
number of transit stops within 0.5 mile, network travel times to the region’s CBD, and distance 
to the nearest freeway.  
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Other policies of interest also exist.  The proposed LUM does not consider land price 
signals, and is insensitive to fiscal policies, such as differential property taxation and subsidies.  
This could be remedied, to some extent, by controlling for neighboring parcels’ land prices in the 
LUC Model (to anticipate land value impacts on development decisions) and directly modeling 
property valuation (for price predictions across parcels in each time step). 

Inclusion and Significance of Explanatory Variables 
This issue simply refers to the fact that various explanatory factors are not controlled for in the 
specification (e.g., soil quality, property tax rates, the presence of views, and school district 
scores).  Ideally, more meaningful factors impacting land development decisions should be 
included, to enhance model flexibility in application.  Of course, this brings us back to the very 
fundamental issue of data availability: someone will first need to assemble such variables for all 
zones/locations, trusting that these vary a fair bit across zones (which is unlikely with some 
variables, like construction costs, in many cases), and then hope that they emerge as statistically 
significant and with intuitive signs in the estimated parameter set.  There are simply no 
guarantees that the data acquisition efforts will pay off.  And it generally is enough work to 
acquire more basic information (like parcel location, current and past land uses, network and 
demographic variables, neighborhood land use conditions for each parcel, and so forth); 
expending constrained resources to acquire variables that may or may not offer much to the 
model is a real risk. 

In addition, when integrating a TDM and LUM, no transportation-system variables are 
guaranteed to have a practically or statistically significant effect on location choice or land 
development patterns.  Location choice is a complex decision. Land markets reflect the 
interacting decisions of multiple actors, and developers, households and firms are not entirely 
rational or well informed of their options.  Moreover, reliance on cross-sectional data sets for 
location choices (very common in practice, due to data availability) misses true move decisions, 
and can lead to anomalous results (e.g., negative coefficients on regional accessibility variables), 
reflecting the fact that many jobs and households are entrenched in past location choices and 
built spaces, rather than being able to choose anew, based on rational decision-making processes, 
where access is thoughtfully considered.  In practice, simple Euclidean distance-to-CBD metrics 
are often far better predictors of land values, land use change, and land use intensity than more 
meaningful and rigorous measures of urban form (e.g., Kockelman 1997, Bina and Kockelman 
2006).  

Such facts of modeling are unfortunate, but real.  Many policies of interest may simply 
not be testable because the data sets exhibit no reasonable response to these variables or the 
variables do not vary over observational units to begin with (which is regularly the case with 
macroeconomic indicators [like interest rates] or potential policy variables that affect an entire 
region’s agents all at once [such as gas prices]).  Moreover, many desirable data sets simply do 
not exist.  For example, when formulating the parcel-based LUM discussed here, zoning variable 
simply does not exist for the entire region. 

MODEL APPLICATION 
The above discussion illuminates many modeling issues present in various LUM paradigms, 
including the one used here.  In applying the LUC-LUI model, coupled with a relatively standard 
TDM, one can illuminate even more potential issues and modeling challenges.  Here, the 
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integrated LUM-TDM system was applied to anticipate the year-2030 distribution of households 
and jobs and travel conditions across the Austin-Round Rock MSA. 

To better appreciate model sensitivities and the potential implications of different 
policies, two scenarios were examined: a business-as-usual (BAU) or trend scenario and a road 
pricing scenario.  The BAU scenario assumes that development trends observed over the five-
year calibration will continue, and no new policies are imposed.  The road pricing scenario 
combines congestion pricing with a gas (or carbon) tax.  A congestion charge was set to equal 
the implicit cost of marginal delay (imposed per added vehicle-mile-traveled, assuming a 
$6.75/person-hour value of travel time) on all freeway segments in the network, and the carbon 
tax was assumed to be 4.55 cents per mile4 on all links in the network.  These two scenarios were 
simulated through year 2030 at five-year intervals. 

Simulating Behavioral Randomness 
Since land use changes are discrete in nature, it is very natural to model such behavior via Monte 
Carlo simulation of MNL alternatives.  To achieve something similar in the LUI model, a 
Cholesky decomposition (see, e.g., Greene 2001) of the SUR model system’s covariance matrix 
(shown as Table 1) was used to generate appropriate multivariate normal random numbers.  To 
ensure greater comparability between scenarios, the same series of random numbers were used in 
each scenario (though different seeds were used in different model years).   

TABLE 1   Covariance Matrix of Residuals in the Land Use Intensity (LUI) Model 
 Households Basic Jobs Retail Jobs Service Jobs 
Households 2,2461 2,214 -251 824 
Basic Jobs 2,214 170,054 346 -9,115 
Retail Jobs -251 346 23,968 7,013 
Service Jobs 824 -9,115 7,013 135,772 

Note: The model’s response variables are the changes in each of the four counts (households and three job 
types) in a five-year interval, and the number of observations (TAZs) is 1,245. 

 
Year 2030 forecasts were generated based on the cumulative simulation results of five 

model years (2010, 2015, 2020, 2025, and 2030), which can average out some elements of 
randomness from time step to time step.  Ideally, analysts simulate the results of such models 
over 50 to 100 times, to indicate the range and average of behavioral tendencies over time (as 
described, e.g., in Law and Kelton 2006 and Gregor 2007).  In this case, however, the burden of 
computing neighborhood variables (at several annuli) for the LUC model and the time required 
to run TDM precluded multiple runs.  (Each 25-year sequence of LUM and TDM runs required 
roughly 40 hours, not including manipulation and interpretation of results.5)  This highlights the 

                                                 
4 This value was based on assumetions that every gallon of gasoline sold at the pump is responsible for the emission 
of 26 pounds of carbon dioxide (U.S. EPA 2007), the cost of removing carbon from the atmosphere (or simply 
avoiding its production) is $70/ton , and average fuel economy is 20 miles per gallon of gasoline.. 
5 Kakaraparthi and Kockelman’s (2008) recent experiences with UrbanSim are better, as that expertly coded 
package requires just about about 15 hours for LUM predictions across the three-county study region, at 150 m 
gridcell resolution, over the 25-year period. However, each interaction with a TDM requires another 3 hours (for 
data transfer and model runs in TransCAD). Thus, for the same 25-year period, the entire process entails roughly 30 
hours (before final output manipulations are performed). 
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benefits of simpler models; while they generally come at a cost of spatial resolution as well as 
behavioral and/or econometric sophistication, they do offer proficient programmers an 
opportunity to batch run multiple scenarios (simulating variation in any number of assumptions, 
including policy variables, parameter estimates, and input assumptions) and offer stakeholders 
far more information on potential model outcomes.  

Only through model application did a clear issue emerge in predictions: 
heteroskedasticity in job and household counts (across zones) was unaccounted for in the LUI 
model specification.  Largely as a result of this, a couple very small TAZs (with areas of just 
0.013 square mile) ended up with what appear to be excessive counts (achieving year 2030 
household densities of 87 and 47 households per acre).  Related to this are issues apparent in the 
original data sets, provided by the regional MPO: four TAZs ostensibly lost more than 500 
households between 2000 and 2005 (with the biggest loss at 1645), seven lost more than 2000 
basic jobs (8062 was the biggest loss) while five gained more than 2000 basic jobs (the biggest 
gain was 9118), and six TAZs lost more than 2000 service jobs (maximum of 4413) while four 
gained more than 2000 such jobs (maximum of 6277).  Gaining thousands of households or jobs 
over a five-year period is questionable, and losing thousands is unrealistic during a period when 
the region is growing.  While the econometrically sophisticated approach outperformed other 
existing model specifications (Zhou and Kockelman 2008b), such data inconsistencies can take a 
toll on model performance (overall R2 =0.320).  Roughly, 68% of overall count variation could 
not be explained by the model, contributing to extreme values in simulation forecasts. 

Determining New Parcel Shapes 
Another valuable lesson emerges in application of the parcel subdivision model.  Application of 
the log-linear regression model of new-parcel sizes is straightforward, but providing parcel 
shapes is another matter. 

This study used ArcGIS and MATLAB software to rasterize the parcel maps into 240 feet 
grid cells and then converted these maps into ASCII files for use (as a matrix) in MATLAB.  
MATLAB assembled 240 ft cells from left to right in each subdividing parcel, and then up to 
down, in order to hit predicted new-parcel sizes.  This arbitrary approach resulted in new parcels 
with a strong east-west orientation, rather than more natural patterns of parcel formation.  New 
parcel shaping is a difficult issue to resolve using basic mathematical techniques, but certain 
parallels for better models may exist in engineering studies of breakage, for example. 

SCENARIO COMPARISONS 
Figure 2a and 2b show the forecasted land use intensity patterns across TAZs in year 2030 for 
the business-as-usual and road pricing scenarios.  Both sets of predictions suggest that 
households and jobs tend to cluster in urban areas and along regional freeways.  The road pricing 
scenario resulted in very similar land use patterns, indicating that the increased travel costs 
(averaging just 6 cents/mile) may not alter location choices, though this policy does have a 
significant impact on travel behavior predictions.  
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FIGURE 2a   Household and Employment Densities in Year 2030 (Business-As-Usual Scenario) 
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FIGURE 2b   Household and Employment Densities in Year 2030 (Congestion Pricing & Carbon Tax Scenario) 
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The count-weighted average densities for the BAU and road pricing scenarios were found 
to be similar: 1,568 and 1,532 households per square mile, and 6,391 and 6,375 jobs per square 
mile, respectively.  Such minimal feedback from TDM to LUM was also found in recent 
application of the same scenario in a gravity-based LUM (integrated with the same TDM) for the 
same region (Zhou et al. 2008), supporting the notion that moderate increases in travel costs may 
not be reflected in land markets.  The sensitivity of LUMs to TDM certainly deserves further 
investigation, using various modeling approaches and policy tests.   

Of course, if a LUM is relatively insensitive to TDM inputs, modelers can skip the 
trouble of model integration and simply run the LUM forward to the future year of interest 
(holding accessibilities and most other transportation system variables constant), running the 
TDM only at the final stage.  Such decisions will depend on the size and scope of transportation 
system changes under the scenario − and, in the hopes of urban system modelers everywhere, 
actual behavioral tendencies. 

Regional vehicle miles traveled (VMT) is forecasted to almost double over the 25-year 
period, reaching 83.7 million vehicle-miles per day under the BAU scenario; but just 71.0 
million/day under the road pricing scenario (a 15% reduction from the BAU total, or a 66% 
increase relative to base year VMT).  VMT-weighted speeds and VMT-weighted volume-to-
capacity ratios suggest that road pricing increases speeds about 6 percent across the region’s 
network during peak hours (from 50.7 to 53.9 miles/hour) while reducing average peak-period 
volume-to-capacity ratios by 18 percent (from 0.622 in the BAU scenario to 0.511 in the road 
pricing scenario).  

CONCLUSIONS 
In order to illustrate the challenges and complexities inherent in LUM development and 
application, this study devised a new model of household and employment patterns, using logit 
models for undeveloped parcel subdivision and land use change, continuous models of new-
parcel size, and a system of spatial equations for zone-level counts.  While this new LUM 
utilizes recent advances in parcel data generation and manipulation, as well as recent innovations 
in spatial econometrics theory, like nearly all LUMs, it leaves much to be desired.  

While various deficiencies and challenges emerged during model formulation, calibration 
and application, most were largely resolved via careful model specification, investigation of 
early forecasts, and subsequent parameter adjustments.  However, others remain (such as 
heteroskedasticity in zone-level counts changes), resulting in certain facets of unrealistic 
prediction.  As in nearly all LUMs, the data sets used here come from several sources, and data 
deficiencies are responsible for many of the issues encountered.  Nevertheless, ensuring that 
models have a way to hit reasonable control targets (for total population and employment, for 
example) can be key to avoiding later (generally highly unsatisfactory) post-processing of such 
critical outputs.  Similarly, ensuring natural mechanisms for matching supply and demand (of 
land and built space) can avoid a host of later problems. 

Policy analysis is generally core to the development of LUMs, and policy objectives 
should have a significant impact on model specification, as well as estimation and application 
methods.  Not all needs can be anticipated from the start, however, and faster model run times 
enjoy the advantage of facilitating diagnostic tests for model errors and timely correction of 
deficiencies.  In general, there is much to be learned from the actual process of developing new 
model specifications, but all LUMs are likely to remain imperfect for the foreseeable future.  
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Nevertheless, there is much of interest and much to gain from such journeys, offering at least 
some insight for respective futures. 
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