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ABSTRACT 
In this paper, we propose a multiple discrete-continuous (MDC) model approach that (a) does 
not need the total budget to be observed or predetermined, (b) allows for any finite or not-so-
finite budget over the entire set of inside and outside goods, and (c) preserves a strong 
endogenous utility-theoretic link between inside good consumptions and the budget allocated to 
the inside goods (that is, to the product group of interest). We show that our proposed model, 
including a fractional MDC model at the lower level linked up to a Tobit model for the budget 
allocation to the inside goods, is strictly consistent with a two-stage budgeting utility theoretic 
structure. As importantly, by using reverse Gumbel distributional assumptions for the stochastic 
terms in the model system, we derive an incredibly simple closed-form model that, to our 
knowledge, is a first of its kind in the econometric literature. In doing so, we formally introduce 
a new distribution, which we label as the minLogistic distribution, to the statistical literature, and 
derive the properties of the distribution that is then used in the forecasting stage of the proposed 
model. An application of the proposed model to investigate the household vehicle fleet 
composition and usage demonstrates its potential relative to an unlinked and exogenously 
developed budget for the inside goods. The proposed model has the potential to open up a whole 
new world of MDC applications in general, and particularly for those cases with an unobserved 
total budget over the inside and outside goods.  
 
Keywords: Multiple Discrete-Continuous Model, Two-Stage Budgeting, Reverse Gumbel 
Distribution, Utility-Theoretic Model, MinLogistic Distribution, Vehicle Fleet Modeling 
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1. INTRODUCTION 
There has been a surge in the application of discrete-continuous models in several fields in recent 
years, particularly for the case of multiple discrete-continuous (or MDC) choice situations.  Such 
situations are characterized by the choice of consuming multiple alternatives from a set of 
mutually-exclusive alternatives (rather than only one of the mutually-exclusive alternatives, as in 
traditional “single” discrete choice models), along with a continuous non-zero consumption 
intensity for each of the consumed alternatives (see Bhat, 2008). These MDC choices are 
pervasive in the social sciences, including the transportation, recreation, economics, marketing, 
actuarial science, ecology, biostatistics, and epidemiology fields. Examples include individuals’ 
time-use choices (decisions to engage in different types of activities and time allocation to each 
activity), investment portfolios (where and how much to invest), and grocery purchases (brand 
choice and purchase quantity).  

Three broad approaches in the literature to model MDC data include those associated 
with (1) statistical censoring, (2) vertical choice-making behavior, and (3) horizontal choice-
making behavior. The first approach, based on Tobin’s (1958) model (see, for example, 
Srinivasan and Bhat, 2006, Fang, 2008, Anastasopoulos et al., 2012, and Hou et al., 2020), uses a 
set of latent variables to represent continuous demand for each of the alternatives, and then uses 
a censoring mechanism to allow for zero consumption (that is, the corresponding alternative is 
not chosen for consumption) and positive consumptions (the corresponding alternative is chosen 
for consumption, and the latent variable value, which is positive, represents the continuous 
consumption intensity). Interestingly, while this multivariate Tobit-based approach (based on the 
classical multivariate Tobit model and its extended variants) has typically been viewed as a 
reduced-form statistical stitching approach that is not utility-theoretic, Saxena et al. (2022a) 
recently showed that this approach can in fact be viewed as a very restrictive case of a utility-
based model that assumes no differential satiation effects across inside goods and has an infinite 
budget available for consumption. The approach also can get tedious and be fraught with 
computational instability as the number of alternatives increases.  

The second approach, the vertical choice-making behavior approach, assumes that the 
multiple discreteness is a consequence of a “vertical” stream of multiple choice occasions of an 
individual, and the individual is assumed to choose one and only one alternative at each choice 
instance (that is, at each choice instance, a single discrete choice model is assumed to apply). 
However, preferences may vary within the same individual across choice instances, leading to 
the observation of multiple discreteness over the vertical stream of choice instances (that is, one 
and only one alternative is observed to be consumed at each choice occasion; then, across 
multiple single choice occasions, one observes different alternatives being chosen). Also, at each 
choice occasion, the vector of goods under consideration may exhaust the consumption space of 
consumers across all product categories (that is, represent a complete demand system) or may 
focus only on goods within a specific product category (that is, represent an incomplete demand 
system). The complete demand system requires data on prices and consumptions of all 
commodity/service items, and can be impractical when studying consumptions in finely defined 
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commodity/service categories (see Bhat and Pinjari, 2014). Thus, it is rather ubiquitous to use an 
incomplete demand system. Within this incomplete demand vertical behavior approach, which 
has been more often applied to multiple discrete-count models rather than multiple discrete-
continuous models (that is, the budget is more often in the form of counts rather than a 
continuous value), the product of the probability of choice of an alternative at any choice 
instance with the budget provides the budget allocation to each good in the product category 
under consideration. The budget (for the product category under consideration) itself is either 
exogenously determined (no linking between the instance-specific single choice models at each 
instance and the budget) or endogenously determined (linking present between the single choice 
model and the budget). Examples of the former exogenous budget method include Morey et al., 
1993, Hendel, 1999, and Paleti et al., 2014. This exogenous budget method, while easy to 
estimate and implement, does not explicitly consider the substitution and income effects that are 
likely to lead to a change in the budget because of a change in a variable that impacts the single 
discrete choice. The structure without this linkage is also not consistent with utility theory (see 
Bhat et al., 2015a). In the latter endogenous linking method, the single discrete choice model 
corresponding to choice instances is linked to the budget. Examples of the use of this method 
include Bockstael et al., 1987, Mannering and Hamed, 1990, Hausman et al., 1995, Rouwendal 
and Boter, 2009, Bhat et al., 2015a, and Wagner et al., 2019). When the single discrete choice for 
alternatives within a product category at any choice instance is based on the typically used 
multivariate extreme-value error terms (such as based on logit or nested logit or other GEV 
models), Rouwendal and Boter (2009) show that the use of the expected maximum utility from 
the discrete choice model as the price index for the product group as the linkage to the budget 
equation for that product group is consistent with a two-stage budgeting utility maximizing 
framework if the linkage is motivated from a separable indirect utility function approach across 
product groups. But all these methods and strategies of this second vertical choice making 
approach assume that the multiple discrete-continuous observations are a result of repeated 
single discrete-continuous (SDC) choice occasions. Such a vertical choice behavior process 
based on the aggregate accumulation of single discrete choice decisions at each of the many 
event instances, does not consider the possibility that the multiple discrete-continuous 
observations may originate from a single horizontal choice of multiple alternatives 
simultaneously, as discussed next.  

The third approach, the “horizontal choice-making behavior” approach, considers the 
multiple discreteness as arising fundamentally from inherently imperfect substitutes at a single 
choice occasion (see Wales and Woodland, 1983, Kim et al., 2002, von Haefen and Phaneuf, 
2003, and Bhat, 2005). This approach is the one of interest in the current paper, and so will be 
discussed at some length here. Basically, in many choice situations, each decision agent may 
choose multiple alternatives (from the set of available alternatives) horizontally and 
simultaneously. For example, in the recreational literature, the interest may be on the annual 
expenditure on fishing trips, and the split of this annual expenditure to different angler sites 
based on site amenities, fish catch rates, fish size, target species, bag costs, trip distance, and 



3 

angler characteristics. Similarly, in the transportation field, the focus may be on the time spent in 
leisure activities over a weekend day and the split of this time across different leisure activity 
types based on built environment characteristics, activity participation costs, and 
individual/household characteristics. In these choice situations, it is only reasonable to assume 
that satiation (or variety-seeking) effects set in as the intensity of investment (of expenditures 
and times) in any single alternative increases. In other words, consumers horizontally select an 
assortment of goods due to diminishing marginal effects (that is, satiation or variety-seeking 
effects) for each good rather than as a vertical collection of multiple single choice instances. In 
this horizontal choice-making behavior approach, consumers are assumed to maximize a direct 
utility function ( )U x over a set of non-negative consumption quantities 1( ,..., ,..., )k Kx x x=x  
subject to a budget constraint, as below: 

Max ( )U x such that . E=x p  and 0kx ≥ , (1) 

where ( )U x  is a quasi-concave, increasing and continuously differentiable non-linear utility 
function with respect to the consumption quantity vector, p is the vector of unit prices for all 
goods, and E is the total expenditure (or income). Again, it is common to use an incomplete 
demand system, typically in the form of the use of a Hicksian composite commodity approach in 
which the analyst assumes that the prices of elementary goods within each broad product group 
of consumption items vary proportionally. This Hicksian composite group approach is discussed 
more in the next section. 
 
1.1. The Hicksian Composite Group Approach 
The Hicksian approach works by replacing all the elementary alternatives within each broad 
group (that is not of primary interest) by a single composite alternative representing the broad 
group. The analysis proceeds by considering the composite goods as “outside” goods and 
considering consumption in these outside goods as well as the “inside” goods representing the 
product group of main interest to the analyst. It is common in practice in this Hicksian approach 
to include a single outside good (considered essential in that there is some positive consumption 
of this essential good) with the inside goods (see von Haefen, 2010).  Generally, the outside good 
is treated as a numeraire with unit price, implying that the prices and characteristics of all goods 
grouped into the outside category do not influence the expenditure allocation among the inside 
goods (see Deaton and Muellbauer, 1980). The outside good allows for the overall demand for 
the inside goods to change due to changes in prices and other influential factors of the inside 
goods. In this way, the Hicksian approach may be viewed as a single stage utility-theoretic 
approach, where changes in the price (or other attribute) of any inside good lead to reallocations 
between the outside good and the many inside goods. Typically, within this Hicksian approach, a 
direct utility approach is taken to solving the constrained utility maximization problem of 
Equation (1), in which the utility function ( )U x  is considered to be random over the population. 
Then, applying the Karush-Kuhn-Tucker (KKT) first-order conditions, one can derive the 
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probabilities for any consumption pattern (including corner solutions; see Wales and Woodland, 
1983, Kim et al., 2002, von Haefen and Phaneuf, 2003, and Bhat, 2005).  

Within the Hicksian direct utility approach, a number of different utility forms for ( )U x  
have been used in the literature for the MDC case. Most of these assume additive separability of 
preferences in the utility form (but see Vasquez-Lavin and Hanemann, 2008 and Bhat et al., 
2015b for relaxations of this assumption). Bhat (2008) proposed a Box-Cox utility function form 
for the inside good utilities and a non-linear utility form for the outside good utility that is quite 
general and subsumes earlier utility specifications as special cases, and that is consistent with the 
notion of weak complementarity (Mäler, 1974), which implies that the consumer receives no 
utility from a non-essential good’s attributes if she/he does not consume it. Then, if a 
multiplicative log-extreme value error term is superimposed to accommodate unobserved 
heterogeneity in the baseline utility preference for each alternative, the result is the MDCEV 
model, which has a closed-form probability expression and collapses to the MNL in the case that 
each (and every) decision-maker chooses only one alternative. Alternative error term 
specifications in the baseline utility preference have also been used, leading to the MDC probit 
(MDCP) model and finite mixture MDCP models (for example, Bhat et al., 2013, Bhat et al. 
2016, and Saxena et al., 2022b).  

Regardless of the error distribution assumption made, the application of the Hicksian 
composite approach with non-linear utility forms for the inside and outside goods necessarily 
requires the budget E to be observed. In recent years, a variant of Bhat’s (2008) utility form has 
received increasing attention (Bhat, 2018, Bhat et al., 2020, and Saxena et al., 2022a), based on 
employing a linear utility structure for the outside good. Such a linear outside good utility 
structure has the advantage of not needing observation of the budget quantity, which indeed may 
be unobserved in many situations.1  This utility variant also will generally provide better discrete 
component predictions than the traditional non-linear outside good utility form, especially when 
the outside good takes up a substantial share of the continuous consumption.2 However, as 
indicated in Saxena et al. (2022a), this linear outside good utility form may not work well in 
terms of data fit and prediction ability when the overall budget amount, even if unobserved, is 
known to be non-infinite and the outside good takes up only a small share of the continuous 
consumption. The reason is that the formulation, while ensuring the positivity of consumptions 
of the inside goods (that may or may not be consumed), does not guarantee, within the model 
formulation and estimation itself, the positivity of the consumption of the essential outside good. 

                                                 
1 Some earlier studies have tried to “skirt” the overall budget unobservability problem by imposing a natural 
maximum constant budget amount across all individuals, or adding a constant allocation to an outside good to 
construct an overall budget, or developing a customized maximum budget amount for each individual, or developing 
an independent first-stage regression model for total budget (see, for example, Bhat and Sen, 2006, Pinjari et al., 
2016). But these are all rather ad hoc ways of developing a total budget. 
2 In the traditional MDC model estimation, a large budget expenditure on the outside good will tend to drive the 
baseline preferences of the inside goods to small values and also drive the satiation to be extremely high for these 
goods, resulting in convergence instability. On the other hand, the use of a linear utility form for the outside good, 
because it focuses better on fitting the discrete probabilities and does not involve the appearance of the outside good 
consumption in the baseline preference for the inside goods handles such situations much better. 
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In a recent paper, Bhat et al. (2022) address this situation by making a truncation correction to 
ensure positivity of the outside good consumption in estimation when the budget is known or a 
finite limit can be placed to the budget even if unknown. This improves the accuracy of model 
parameter estimation and the resulting predictions. There are, however, two problems with this 
study. First, the overall budget needs to be known or needs to be set. In some cases, the ceiling 
on the budget may be known, such as the number of hours in a day in a time-use model. But this 
is not always the case, and ad hoc assumptions will need to be made. Second, the study, because 
it is based on a Hicksian composite good approach, does not expressly consider potential 
exogenous variable effects on an overall budget that can then impact individual good 
consumptions. That is, by defining the goods of interest as inside goods, changes in exogenous 
variables directly impact the consumptions of these inside goods (even if the true effect is an 
indirect impact through budget changes), co-mingling strict budget effects (that is, income 
effects) and strict allocation effects (that is, substitution effects). For example, consider the case 
of a price decrease of a particular inside good. This will have a substitution effect in terms of a 
draw away from other inside goods to the good whose price was lowered. However, the overall 
consumption on the product group (that comprises all the inside goods) may also increase 
because the overall group price index has now dropped, leading to an increase in the 
consumption of each inside good because of an income effect. The net effect on consumption of 
the inside goods will be a combination of the income and substitution effects, which is not 
handled by the Hicksian composite good approach.3 As stated by Bhat et al. (2020), “approaches 
to handle both an endogenous budget as well as consumption quantities separately but within a 
single unifying utility-theoretic framework have been elusive; additional investigations in this 
area are certainly an important direction for further research.” 

 
1.2. The Current Paper in Context 
In this paper, we develop a new framework for MDC models based on a utility-consistent two-
stage budgeting approach (rather than the single stage Hicksian composite good approach), 
which can handle unobserved but finite and endogenous budgets. Our approach is based on an 
endogenous linking of a fractional split MDCEV model with a total budget equation for the 
specific product group (that contains the inside goods) under consideration. This approach, a first 
to our knowledge in the econometric literature, is also different from earlier MDC efforts that 
focus exclusively on the set of inside goods and that consider the budget for the inside goods as 
being determined exogenously (as in Bhat, 2005). In such earlier efforts, the lack of any linking 
between the inside good allocations and the total budget for the inside goods ignores the 
substitution and income effects that are likely to lead to a change in the budget because of a 
change in a variable that impacts any single inside good choice. In our endogenous linking, we 
ensure compatibility with a two-stage budgeting utility maximizing structure by invoking a 
separable direct utility function between the product category of interest and other product 

                                                 
3 This is also true of the Hicksian composite good-based stochastic-frontier approach of Augustin et al. (2015) and 
Pinjari et al. (2016). 
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categories. In doing so, we develop an appropriate and economic theory-consistent linking 
function (which is really a price index for the product group under consideration that can 
represent the entire product group at the higher level of budget allocation to the product group, 
followed by the second stage fractional allocation to each good within the product group). 
Specifically, we start from Bhat’s (2008) utility formulation for the second stage fractional 
allocation within a single product group (with the budget of the fractions across all alternatives in 
the product group being equal to one), and adopt a reverse Gumbel distributional assumption for 
the stochastic terms in the baseline preferences of each of the inside alternatives. We also 
consider a reverse Gumbel distribution for the random error term for the total budget for the 
product category in the first stage, including a stochastic group price index for the product 
category as developed from the second stage as an exogenous stochastic variable. By including 
censoring in the budget equation for the product category of interest, we accommodate the 
possibility of zero allocation to the product category. With these assumptions on the statistical 
distribution of the error terms, we formally introduce a new univariate distribution to the 
statistical literature, which we label as the “minLogistic” distribution, and derive its properties 
and moments.  The end-result is an incredibly surprising closed-form model for the resulting 
multiple discrete-continuous extreme value model that, to our knowledge, is a first of its kind in 
the econometric literature.  
 
2. MODEL FORMULATION AND STATISTICAL SPECIFICATION 
2.1. Reverse Gumbel MDCEV (RG-MDCEV) Model of Fractional Split 
In this section, we start with the second stage of the allocation among inside goods within the 
product category under consideration (say product category G). We use the MDCEV framework 
as a fractional allocation model, with the fractional allocation based on consumption 
expenditures rather than consumption quantities of the inside goods. This facilitates the use of 
the MDCEV model as a conditional (on total expenditure on the product category) multiple 
discrete expenditure fractional allocation. As we show later, the use of expenditure allocation 
(rather than quantity allocation) at the second stage of a two-stage utility-theoretic approach is 
necessary for consistency with a Gorman polar utility form-based linking with the first stage.  

Consider the following constrained direct utility form:  

1
( ) ln 1

K
k

k k
k k

fU γ ψ
γ=

   = +  
   

∑f


  (2) 

1
. . 1,

K

k
k

s t f
=

=∑    

where / ,k k kf p x y= and y  is the total budget allocated to product category G. An important 
point to note is that the utility function of Equation (2) is written in the form of continuous 
fractional splits (allocations) of consumption of the total non-zero budget ( y >0) allocated to the 
product category of interest, such that the fractions sum to one conditional on a non-zero 
allocation to the product category. The possibility of zero allocation to the product category 
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( y =0) is handled through a censoring mechanism in the total budget for the product category, as 

discussed later. Also, in the above utility function, ( )U f  is a quasi-concave, increasing, and 
continuously differentiable function with respect to the fractional consumption quantity (K×1)-
vector f  ( 0 1kf≤ ≤  for all k), and kψ  and kγ  are parameters associated with good k.4 The 

function ( )U f in Equation (2) is a valid utility function if 0>kψ , and 0>kγ  for all k (we will 
use the terms “good” and “alternative” interchangeably to refer to any good k). As discussed in 
detail in Bhat (2008), kψ  represents the baseline marginal utility, and kγ  is the vehicle to 
introduce corner solutions (that is, zero fractional splits) for the goods, but also serves the role of 
a satiation parameter (higher values of kγ  imply less satiation). The satiation operates at the 
fractional split level, so that the marginal utility of a good decreases as the fractional split 
investment in the good increases.  

To ensure the non-negativity of the baseline marginal utility, while also allowing it to 
vary across individuals based on observed and unobserved characteristics, kψ  is parameterized 
as follows: 

1exp lnk k k kpψ ε
σ

 ′= − + 
 
β z , , ,...,2 ,1 Kk =   (3) 

where kz  is a set of attributes that characterize alternative k and the decision maker (including a 

constant), kp  is the unit price for good k, the inverse of σ  (σ >0) is the coefficient on ln kp , and 

kε  is a standardized scale error tern that captures the idiosyncratic (unobserved) characteristics 
that impact the baseline utility of good k. A constant cannot be identified in the β term for one of 
the K alternatives. Similarly, individual-specific variables are introduced in the vector kz  for (K–
1) alternatives, with the remaining alternative serving as the base.5 Also, the parameter σ  is 
estimable if there is price variation across the inside goods (and may be normalized to one when 
there is no price variation). For later use, we will write the baseline marginal utility kψ  in 
Equation (3) as: 

( ) 1/

1exp , where exp( )k k k k k
kp σψ µ ε µ

 
′= =  

 
β z .                                            (4) 

                                                 
4 The assumption of a quasi-concave utility function is simply a manifestation of requiring the indifference curves to 
be convex to the origin (see Deaton and Muellbauer, 1980, p. 30 for a rigorous definition of quasi-concavity). The 
assumption of an increasing utility function implies that for any good k, the subutility function is such that 

1 0 1 0( ) ( ) if .k k k k k kU f U f f f> >     
5 The origin of these identification conditions is the unit sum constraint associated with the fractional splits. Also, 
note that one could as well have considered the baseline marginal utility function for alternative k in Equation (3) as: 

( )exp ln ,k k k kpψ ε′= − +β z


 with the error term kε
  being distributed with scale σ. It is easy to show that nothing 

changes in our entire formulation or model results, except that .σ=β β


 We prefer to use the notation in Equation (3) 
because it simplifies the presentation.   
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kµ  corresponds to the systematic part of the baseline utility of alternative k. In the current paper, 
and unlike Bhat (2008) and many other MDCEV applications, we will assume a standard 
extreme value type 1 (Gumbel) distribution based on the limiting distribution of the minimum of 
random variables (that is, a standardized reverse Gumbel specification) for the kε  terms (the 
reason for this will become clear later): 

( ) . and ( ) Prob( ) 1 for 1,2,3,...,
t t

k k

e t e
kf t e e F t t e k Kε ε ε− −= = < = − = .  (5)                                                 

A similar reverse Gumbel distribution has been assumed in Mondal and Bhat (2021) and Bhat et 
al. (2022), though for quite different reasons than the motivation here. Based on the above 
reverse Gumbel distribution form for each error term, one can write the joint multivariate 
survival distribution function (SDF) for the error terms 1k kη ε ε= −  as follows:6  

2 3 2 2 3 3

2

1( , ,..., ) Prob( , ,..., )
1 k

K K K K
t

k

t t t t t t
e

η η η

=

= > > > =
 + 
 

∑


  ηS .  (6) 

The multivariate cumulative distribution function (CDF) of the 2( ,..., )Kη η=η   vector can be 
written as a function of the SDFs corresponding to the random variates as follows: 

| |
2 3 2 2 3 3

{2,... },| | 1
( , ,..., ) Prob( , ,..., ) 1 ( 1) ( ) ,D

K K K D D
D K D

t t t t t tη η η
⊂ ≥

= < < < = + −∑ t


  ηF S             (7) 

where SD (.) is the SDF of dimension D, D represents a specific combination of the η  terms 
(representing a specific sub-vector of the η  vector; there are a total of 

2( 2) ( 2,2) ( 2,3) ... ( 2, 2) 2 1KK C K C K C K K −− + − + − + − − = −  possible combinations, |D| is the 
cardinality of the specific combination D, and Dt  is a sub-vector of the vector 2 3( , ,..., )K= t t tt  
with the appropriate elements corresponding to the combination D extracted. The probability 
density function corresponding to Equation (6) and Equation (7) may be derived in a 
straightforward manner as below: 

1 1 12 3 2 3
2 3

2 3 2 3

2

2

( , ,..., ) ( , ,..., )( , ,..., ) ( 1) ( 1) ( 1)
... ...

exp( )
( 1)!

1 exp( )

K K KK K
K

K K

K

k
k

KK

k
k

S t t t S t t tf t t t
t t t t t t

t
K

t

− − −

=

=

∂ ∂
= − = − −

∂ ∂ ∂ ∂ ∂ ∂

 
 
 = −    +    

∑

∑

η

 (8) 

                                                 
6 The kη  error terms (k = 2, 3,…, K) are essentially multivariate logistically distributed with a correlation of 0.5, 
with the SDF expression as given below (see Bhat et al., 2020). 
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To find the optimal fractional splits of goods, the Lagrangian is constructed and the first 
order equations are derived based on the Karush-Kuhn-Tucker (KKT) conditions. The procedure 
is identical to Bhat (2008), except with a different error distribution than in Bhat (2008). 
Specifically, the Lagrangian function for the model, when combined with the budget constraint, 
is: 

1
( ) 1

K

k
k

L U fλ
=

 = + − 
 

∑f  ,  (9) 

where λ  is a Lagrangian multiplier for the constraint. The KKT first-order conditions for 
optimal fractional allocations ( op

kf ) are as follows: 
1

 1 0
op

k
k

k

fψ λ
γ

−
 

+ − = 
 



, if 0op
kf > , k = 1, 2,…, K  (10) 

  0kψ λ− < , if 0op
kf = , k = 1, 2,…, K. 

The optimal fractional allocation satisfies the conditions in Equation (10) plus the constraint 

1
1.

K
op

k
k

f
=

=∑   The unit sum constraint for the fractions implies that only K–1 of the op
kf  values 

need to be estimated, since the fractional allocation to one good is automatically determined 
from the fractional allocations of all the other goods.  To accommodate this constraint, designate 
activity purpose 1 as a purpose to which the individual allocates some non-zero fraction of 
consumption. For the first good, the KKT condition may then be written as: 

1

1
1

1

1
opfλ ψ
γ

−
 

= + 
 



               (11) 

Substituting for λ  from above into Equation (8) for the other goods (k = 2,…, K), and taking 
logarithms, we can rewrite the KKT conditions as: 

1 1( )k k k kV V Vη ε ε= − = = −

    if fractional split = op
kf  (k = 2, 3,…, K), 0op

kf > (k = 2, 3,…, K) 

1 0 0 1( )k k k kV V Vη ε ε= − < = −

  if 0op
kf =  (k = 2, 3,…, K), where  (12)      

1 ln ln 1
op

k
k k k

k

fV p
σ γ

 
′= − + + + 

 
β z



 (k = 1, 2,,…, K), and 0
1 lnk k kV p
σ

′= − +β z  (k = 1, 2,…, K). 

Then, we get the expression below in the reverse Gumbel MDCEV (or RG-MDCEV) model for 
the fractional allocation pattern, where the first M inside goods are consumed at levels op

kf  

( 2,3,...,k M= ), and 1
2

1
M

op op
k

k
f f

=

= −∑  :  
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( )
1 1,0 2 2,0 ,0

1 2

2

2 3 1 1 1 2

2 3 1,0 2,0

,..., ,0,0,...,0

| |  ... ( , ,..., , , , , ) ,...,

( , ,..., , , , ,
| |  

M M M M K K

M M K

op op
M

V V V

M M M K M M K

M
M M M K

P f f

J V V V d d d

V V V
J

η η η

η

η η η

η η η η η η

η η η

+ + + +

+ +

= = =

+ + + +

=−∞ =−∞ =−∞

+ +

=

∂
=

∫ ∫ ∫
η

  

  

  



 

  

     


  

  


f

F

2 2 3 3

,0

2 3 , ,...,

)
...

M M
M V V Vη η η

η η η
= = =

∂ ∂ ∂
  

  

  

 

1 1| |

{ 1, 2,..., },| | 1
0

1 1

exp exp
| | ( 1)! ( 1)

exp( ) exp( ) exp( )

M M

k k
i iD

M MM MD M M K D
k k k

k k k D

V V
J M

V V V

= =

⊂ + + ≥

= = ∈

    
    

    = − + −     +        

∑ ∑
∑

∑ ∑ ∑
       (13) 

where 
11

1| |  ,  where  
M M

i
ii i

J c
c==

  
=   
  

∑∏ 1
i op

i i

c
f γ

 
=  

+ 

.  

The probability that all the inside goods are consumed at fractional levels 2 3, ,...,op op op
Kf f f    is: 

( )2 3

1
2 3

1

, ,...,

exp
| |  ( , ,..., ) | | ( 1)!

exp( )

op op op
K

K

k
i

K KK

k
k

P f f f

V
J V V V J K

V

=

=

 
 
 = = −

 
 
 

∑

∑
η

  

f
        (14)               

The probability that none of the inside goods are consumed is: 

( )
10

0 10 0

| | | |

{2,..., },| | 1 {2,..., },| | 1

10,...,0 1 ( 1) 1 ( 1)
1 k k

V
D D

D K D V D K D V V

k D k D

eP
e e e⊂ ≥ ⊂ ≥

∈ ∈

= + − = + −
   + +   
   

∑ ∑
∑ ∑

.   (15) 

The parameters to be estimated in the model above include the β  vector, the 1 2( , ,... )Kγ γ γ=γ  
vector, and the σ  scalar. However, note that these parameters from the RG-MDCEV fractional 
model also appear in the total budget model, and hence we discuss the overall estimation 
procedure in Section 2.3 after first discussing the total budget (in the product group) and the 
linking approach between the fractional allocation model and the total budget model.  
 
2.2. Total Budget in Product Group and Linking with the RG-MDCEV Model 
2.2.1. Theoretical Background 
This section is motivated by the basic idea of two-stage budgeting based on separable direct 
utility functions across mutually disjunct product groups; that is, the overall utility from 
consuming in different product groups is the sum of separable sub-utilities for each product 
group. This implies that once the budget for any specific product group is known, the optimal 
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allocation to specific commodities within the group is solely a function of the group budget and 
the vector of prices of individual commodities within the group. The two-stage budgeting 
concept is then based on the notion that, given an overall separable utility function across 
product groups, the total overall budget can first be split across group-level budgets and then 
followed by the allocation of the group budget over the individual goods within the product 
group category under consideration (see Strotz, 1957). Gorman (1959, 1961), building off the 
two-stage budgeting idea, examined the conditions under which the first level allocation of the 
total budget to different product groups could be undertaken without detailed information about 
the prices of individual goods within each product group. That is, the conditions under which a 
specific group of commodities can be treated as a single commodity with a single group price 
index so that, at the first level, the total budget across all product categories can be split up across 
groups based only on the single price index for each group. For this, each group indirect utility 
function should satisfy Gorman’s polar form (GPF) for each product category.  
 
2.2.2. Unconditional Demand 
To set the framework, we first propose a logarithm form quality-adjusted price index for each 
inside good k within the product group G of interest as follows: 

( ) ( )1/

1 1

1ln ln , or .
1/

M M

k k k k j k j k k k k j k j
j j
j k j k

σπ ψ γ γ γ ψ ψ π ψ γ γ γ ψ ψ
σ

−

= =
≠ ≠

  
  − = + − = + −      

∑ ∑    (16) 

For now, assume that 1/ 0k kσπ − > ∀  (we will revisit this issue in the next section). The second 
term on the right side of the expression above is a summation over all consumed goods 
( 1,2,..., )j M− . The reason for this specific form will become clear later. The negative sign in 
front of ln kπ  on the left side of the above equation is because kπ  is a price index, which should 

increase or decrease as the actual price of good k (that is, kp  as embedded within kψ ) increases 

or decreases. Similarly, as kγ  increases, satiation for good k decreases and the desirability of the 
good increases, which is similar to the effect of a price decrease. In effect, then, in logarithm 
form, kπ−   represents the total quality-adjusted utility of good k, which is then normalized by the 
coefficient on the actual log(price) variable (representing the marginal utility of income), so that 
ln kπ  represents, in log form, the quality-adjusted price index. Such a logarithmic form has been 
used for single discrete choice models in Rouwendal and Boter, 2009 and Truong and Hensher, 
2014, though our formulation above is for a multiple discrete fractional allocation model; also of 
note is that 1/ 1/(1/ )k k

σ σπ π− =   is another (reciprocal-based) form of a quality-adjusted utility of 

good k, which, like kπ−  , increases as the price kp  decreases and decreases as the price kp  

increases (we will revisit this issue again later for a more crisp interpretation of 1/
k

σπ −
 ).  
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Collect the quality-adjusted price indices kπ  for the inside goods of product category G 

in a vector 1 2( , ,..., ).Kπ π π=π     Consider the following indirect utility function form for group G, 
assuming, as discussed earlier, that the product category G is separable from other groups of 
commodities within the overall direct utility function across all product groups: 

*
* *( , ) ( ) ( ),

( )
yW y a q a

b
= + = +π π π

π
  



                   (17) 

where *y  is the budget allocated to group G, ( )b π  is a group price index for group G (which is a 
composite group price index used at the first stage in the two-stage budgeting that is a function 
of the quality-adjusted price indices of the inside goods; that is, the elements of the vector π ), 

( )a π ) is another function of π , and *q  is the total quantity consumed across all elementary 
commodities within product group G. To be able to use a single group price index for Group G 
(essentially viewing the entire product group G as one single commodity with a single price 

index of ( )b π , so that 
*

*

( )
yq

b
=

π
), Equation (17) needs to be consistent with GPF. That is, (.)b  

needs to be homogenous of degree 1 and ( )a π  homogenous of degree 0. As in Hausman et al. 
(1995), we assume that ( )a π is a constant. So, we use the constant elasticity of substitution 
(CES) formulation and write: 

( )( )1/( ) ,k
k

b
σ

σπ
−

− =   
∑π      (18) 

which is clearly homogenous of degree 1 as required because 

( ) 1/ ( )k
k

b
σ

σαπ α
−

−  =  
∑ π  . (19) 

Also, as desired, the group price index ( )b π  increases as the price kp  of any good k increases 
(note that 0).σ >  

To be sure, the GPF is essentially the condition that allows the consideration of an entire 
set of elementary commodities in a product group to be represented as one aggregate commodity 
with a singular price. In the specific context of the current discussion, defining *

kq  as the quantity 

allocated to good k within the product category G (so, * *

1

K

k
k

q q
=

=∑ ), the GPF conditions on ( )b π  

and ( )a π  in Equation (17) is the vehicle that allows us to view the entire product group G as one 
aggregate commodity with a composite price index of ( )b π . To see this, applying Roy’s identity 
to the Gorman polar indirect utility form of Equation (17) with ( )a π  as a constant, one can write 
the Marshallian demand for good k within the product group G as follows:  
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* 1/
* * *

* * 1/

( , ) / 1 ( ) 1 , 1,2,..., .
( , ) / ( )

k k
k

k k k
k

W y bq y y k K
W y y b

σ

σ

π π
π π π

−

−

 
  ∂ ∂ ∂  = − = = =    ∂ ∂ ∂    

 
∑

π π
π π
  

    

  (20) 

The above equation implies that * * * *

1 1
( ) ( ) .

K K

k k k
k k

y b q b q qπ π π
= =

 = = = 
 
∑ ∑    Also, note that another 

consequence of the GPF condition is that the total budget *y  allocated to product group G is 
only dependent on the total consumption *q  in the product group, and entirely independent of the 
allocation (distribution) of the budget *y  to individual elementary commodities within the 
product group. The result is that, as in Hausman et al. (1995), the total budget cannot appear as a 
determinant of the fractional split MDCEV model (in other words, the GPF requires that the 
group price index-based linking function ( )b π  have only the quality adjusted price index vector 
π  as an argument, and cannot include *y ). Further, the linking function needs to be exogenous 
and strictly upward from the second stage fractional split model to the first stage total budget 
model (this has implications in the empirical specification).  
 For further reference before moving forward, note that, corresponding to the demand of 
Equation (20), we can also write the fractional demand for (allocation of the budget *y to) good k 
as follows: 

* 1/
*

* 1/ , 1, 2,..., .k k k
k

k
k

q f k K
y

σ

σ

π π
π

−

−

 
 = = = 
 
 
∑



 



           (21) 

 
2.2.3. Conditional Demand 
Equations (20) and (21) provide the notional demand and notional fractional demand, 
respectively, on good k, because they are critically predicated on the assumption that 

1/ 0k
σπ − > for all inside goods k. In reality, though, there is nothing to prevent 1/

k
σπ −

  from being 

zero or even negative. As we will now show, the condition 1/ 0k kσπ − > ∀  is equivalent to 
assuming that all the inside goods are chosen for consumption. That is, the indirect utility of 
Equation (17) corresponds to a direct utility maximization problem that does not include the non-
negativity constraints on the inside good consumptions and assumes that * 0y ≥ . So, the entire 
discussion in the previous section assumes that these non-negativity constraints are automatically 
honored. But let’s consider the more realistic case when, conditional on consumption in the 
product category (that is, still assuming * 0y > ), only goods 1 to M are consumed and others are 
not. In this situation, following Lee and Pitt (1986), the notional fractional demands can be 
viewed as latent variables that correspond to the actual observed optimal fractional consumptions 

op
kf  in a specific way, which is based on recognizing the non-negativity constraints. Use a 

transformation from the vector π  to a strictly non-negative vector of virtual prices 

1 2( , ,..., )Kπ π π=π  that support the non-negative fractional demands, conditional on * 0y > ,  
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such that 1/ 1/ 1/ 1/ 1/if 0; 0 if 0.k k k k k
σ σ σ σ σπ π π π π− − − − −= ≥ = <   As we show in Appendix B, the 

inequality 1/ 0k
σπ − < , in fact, is just another way of writing the condition for zero consumption of 

good k based on the KKT conditions in Equation (10) (that is, the strictly non-negative virtual 
price vector π  represents shadow prices corresponding to the indirect utility function of 
Equation (17), but now accommodating the non-negativity constraints of the direct utility 
function). With this, we can define a switching regime where good k is consumed if 1/ 0k

σπ − ≥  

( 1/ 1/
k k

σ σπ π− −=  ) and not consumed if 1/ 1/0 ( 0)k k
σ σπ π− −< = . In this regard, 1/

k
σπ −

  may be viewed as 
the threshold quality-adjusted utility of good k that needs to be positive for positive consumption 
of good k. Then, the non-negative observed fractional demands corresponding to Equation (21) 
may be written as follows: 

1/
*

1/ 0, 1, 2,..., .op k
k

k
k

f y k K
σ

σ

π
π

−

−

 
 = > = 
 
 
∑

            (22) 

Thus, from an economic standpoint, the second stage expenditure-based conditional (on 
consumption in the product group) fractional allocation MDCEV model should be: 

( )
1/ 1/ 1

1/ 1/

1 1 1

, 1, 2,..., (for consumed goods)

0, 1, 2,..., (for non-consumed goods)

M

k k k j k j
j
j kop k k

k K M M

k m j j
k m j

op
k

f k M

f k M M K

σ σ

σ σ

ψ γ γ γ ψ ψ
π π

π π ψ γ

− − =
≠

− −

= = =

+ −   
   
   = = = =
   
   
   

= = + +

∑

∑ ∑ ∑








 (23) 

The denominator in the first expression above takes the form as shown because of the following 
equality: 

( ) ( )1/

1 1 1 1 1 1
, because 0.

M M M M M M

m m m m j m j m m m j m j
m m j m m j

j m j m

σπ ψ γ γ γ ψ ψ ψ γ γ γ ψ ψ−

= = = = = =
≠ ≠

   
   = + − = − =      
   

∑ ∑ ∑ ∑ ∑ ∑     (24) 

Thus, from a theoretical standpoint, using the unconditional linking form of Equation (18) as the 
product group price index from the expenditure-based fractional split model to the total 
expenditure (in product group) first stage model is consistent with utility-based two-stage 
budgeting as long as the (conditional on product category consumption) fractional split model 
among the consumed inside goods takes the form in Equation (23). As we discuss later, Equation 
(23) is exactly the form for forecasting the fractional splits among consumed goods in the 
product category, conditional on positive investment in the product category. Thus, our proposed 
theoretical framework with the unconditional linking form of Equation (18) is consistent with 
two-stage utility-based economic theory. Also, the MDCEV fractional allocation model is to be 
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interpreted as a conditional budget share model, and not a quantity share model, consistent with 
the discussion earlier in this section.  
 Finally, the entire analysis above is predicated on * 0.y >  That is, fractional 

consumptions of inside goods within the product category G are relevant only if * 0.y >  So, we 

treat *y  as a latent variable for modeling purposes, and relate the actual observed budget y to *y  

such that * * *if 0; 0 if 0.y y y y y= > = ≤  This positivity condition is based on the structure of 
first budget equation, as discussed next. 
  
2.2.4. Total Budget (in Product Group) Empirical Specification 
In the empirical specification, we use the linking function 

( )( )1/( ) k k k
k k

b
σ σ

σπ ψ γ
− −

−   = =      
∑ ∑π  . As discussed in Section 2.2.2, the linking function has to 

be completely exogenous to the total budget equation. This generates problems if the 
stochasticity in ( )expk k kψ µ ε=  is carried over as such into the total budget first stage equation, 

because this engenders a correlation between the first stage budget equation and the second stage 
MDCEV model. This can be addressed in one of two ways. The first is to use the expected value 

of ( ) k k
k

b
σ

ψ γ
−

 =   
∑π  (or the expected value of the logarithm of ( )b π ) as the deterministic 

linking function. The second is to use a different set of error terms kτ  instead of kε  in the linking 

function (with kτ  being independent of kε ), so that ( )expk k kψ µ τ= . In this paper, we adopt the 

second approach, which, unlike the first approach, recognizes unobserved individual 
heterogeneity in the linking effect. We assume for convenience that the error terms kτ  are 
independent across inside goods, The linking function then may be written as: 

( )( ) ( )( ) exp exp , where .k k k k k k k k
k k

b a a
σ σ

µ τ γ τ µ γ
− −

   = = =      
∑ ∑π   (25) 

The linking function ( )b π  is always positive, by construction. The total budget y  needs to be 
non-negative, though it can take the value of zero. For modeling purposes, consider the censored 
Tobit regression equation: 

*

*

* *

ln ( ) ln exp( )

, with ln exp( )

0 if 0
if 0

k k
k

k k
k

y b a

a

y
y

y y

λ λζ λσ τ λζ

λη η ζ σ τ

 ′ ′= − − = + −  
  ′= − = −    

 ≤= 
>

∑

∑

θ s π θ s

θ s



 (26) 
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where s  is an exogenous variable vector, θ  is a corresponding coefficient vector, λ  is a scalar 
link parameter (λ >0), and ζ  is a random variable capturing the effects of unobserved variables. 
The linking parameter appendage to the error term ζ  in the first line of Equation (26) is 
innocuous, and is only for presentation ease in the characterization of the error term η . As the 

price of any inside good k ( kp ) decreases, or as the non-cost systematic (log) baseline utility 

element for any inside good k ( k′β z ) increases, the value of η  falls, and the value of the budget 
allocated to group G, ,y  increases.  

To continue with the model formulation, one needs the distribution of the underlying 
latent variable *y , or, equivalently, the distribution of the random variable η . We now assume 
that the random variable ζ  is reverse Gumbel distributed with a scale σ . With this assumption, 
the distribution of the random variable η  takes a surprisingly elegant form because the survival 
distribution function (SDF) of the difference between a reverse Gumbel distribution with scale  
σ  and σ  times the logarithm of the weighted sum of independent standard exponentially 
distributed random variables has a closed form (note that exp( )kτ  is standard exponentially 

distributed, because kτ  is standard reverse-Gumbel; also, note that, by construction, ka >0 for all 
k). This univariate distribution for η , to our knowledge, has not appeared in the statistical 
literature, but is what we will refer to as the minLogistic distribution.7 The precise distributional 
shape of η  will depend on the values of ka , but the distribution is skewed toward the left, 
similar to that of a reverse Gumbel distribution (except for the case when K=1, in which case the 
minLogistic distribution collapses to a simple symmetric logistic distribution).8,9 Figure 1 

                                                 
7 This distribution was proposed by Bhat recently and applied in a pair of recent papers for a different application; 
see Mondal and Bhat, 2021 and Bhat et al., 2022; but much more of its properties are derived and formally presented 
here; these properties will be put to good use not only in estimation, but also in forecasting, as discussed later. 
8 Note also that, because η  appears in negative form on the right side of Equation (26), the effective distribution for 

*y , takes a distributional form that has a long right tail. This is consistent with expenditure data or mileage data, 
which is rarely symmetric, and has a long trailing right edge. This is also the reason why a lognormal form has been 
used to model such expenditure data. In our case here, the convenience of the distribution form with linking leads us 
to use the reverse Gumbel distribution for ζ , which translates to the right skew of *y . Interestingly, when there is 
no linkage, the only error term appearing in Equation (26) is the reverse Gumbel variable ζ , which still lends the 
desirable right-skew to the distribution for *y .  
9 When there is no linkage, λσ  serves as the scale parameter of the error term in the Tobit regression of Equation 
(26) (λ  and σ  are identified separately only if there is price variations across the goods in the product category 
under consideration in the fractional MDCEV model; otherwise, σ  needs to be normalized to one and λ  is 
identified). With linkage, the linkage parameter λ  (that captures the systematic baseline preference effects as well 
as unobserved heterogeneity of the baseline preference effects on the overall price index for the product category) is 
estimable, but σ again is estimable only if there is price variation across commodities in the product group. 
However, with linkage, heteroscedasticity is also introduced in the Tobit model because of the kτ  error terms, as 
will be noted later in Equation (30). Finally, if one uses the empirical specification where the expected value of 
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provides a sample plot of the distribution for a situation with three goods (K=3) with  
1 2 31, 2, and 3a a a= = = , and σ =1. Additional properties of this new minLogistic distribution 

of the random variable η  ( 0 )ka k> ∀  with scale σ  are now presented (with proofs) below (the 
expressions have also been verified through simulation experiments): 
 
Property 1 
With the above-mentioned distributional assumptions on the error terms kε  and ζ , the survival 
distribution function (SDF) of η  takes a closed-form as follows (see Appendix A.1 for the 
derivation): 

( )/

1

1( ) Prob( ) , 0 .
1

η kK
t

k
k

S t t a k
a e σ

η

=

= > = > ∀
+∏

  (27) 

The corresponding cumulative distribution function and density functions are readily obtained 
as10:   

( )/

1

/
/

1( ) Prob( ) 1 , 0 ,
1

1( ) ( ) , 0 .
1

η kK
t

k
k

t k
η kt

k k

F t t a k
a e

af t e S t a k
a e

σ

σ
η σ

η

σ

=

 
 
 = < = − > ∀
 +  
 

= × × > ∀ + 

∏

∑

          (28) 

 
Property 2 
The minLogistic distribution is strongly unimodal (see Appendix A.2). The mode does not have 
a closed-form expression in the general case when K>1, but is the solution to the following 
equation that can be obtained numerically (see Appendix A.2): 

                                                                                                                                                             

( )G k k
k

b
σ

ψ γ
−

 =   
∑π  (or its monotonic transformation, such as a logarithm transformation) is employed as the 

deterministic linking function, it is possible to separately identify the linking parameter λ  from a separate scale 
parameter for the ζ  error term as well as σ  in the case of price variation in the fractional MDCEV model. If there 
is no price variation, σ  has to be normalized to one, but the linking parameter λ  again is identifiable separately 
from the scale parameter for the ζ  error term. Essentially, this alternative deterministic linking specification, which 
we do not consider in this paper, adds a parameter while maintaining homoscedasticity in the Tobit model. The 
deterministic linking specification also nests the unlinked model. Our empirical stochastic linking approach, on the 
other hand, has the same number of parameters as the unlinked model, while also engendering heteroscedasticity in 
the Tobit equation (see also Section 4.4.2). Thus, it is parsimonious and affords more flexibility, though the error 
term distribution of the Tobit model gets altered; so our empirical model does not nest the unlinked model.  
10 When K=1, it is straightforward to note that the distribution of η  takes a symmetric Logistic distribution, with a 
location parameter of ln ka−  and a scale parameter of σ . 
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For the case when K=1, the minLogistic distribution collapses to a symmetric logistic 
distribution, and there is a closed form solution for the mode, which occurs at (1/ ) ,aϖ σ= ×  as 
can be readily seen by applying the formula above for K=1. For the case of the minLogistic 
distribution plotted in Figure 1, application of the Equation (29) reveals a mode at –1.78, which, 
as can be seen from Figure 1, is the point at which the density function reaches its peak value.  
 
Property 3 
The mean and variance of the minLogistic distribution are given by the following closed-form 
expressions (see Appendix A.3): 
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  (30) 

In case one or more of the ka  values are equal, the corresponding expressions become rather 
unwieldy to write in a generic form; however, the nice and elegant expressions above will 
provide almost the exact values if applied after introducing very small perturbations to the ka  

values to make them unequal. Note also that, in our current application, the ka  values will 
generally not be the same because of alternative specific parameters in the baseline preference 
utilities. An important issue to note above is that the variance of the error term η  is 
heteroscedastic across individuals (as ka  would vary across individuals), an issue we will get 
back to later in this paper.11  

                                                 
11 An important derivative of the results in Equation (30) is that, to the author’s knowledge, this is the first time in 

the statistical literature that the expected value and variance of the random variable ln exp( )k k
k

aξ σ τ =   
∑  has 

also been derived. Specifically, 
2 2

( ) ( ), and ( ) ( ) ,
6

E E Var Var π σξ γσ η ξ η= − − = −


  where γ  is the Euler’s constant 

and π  is the usual ratio of the circumference of a circle to its diameter.  
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Property 4 
The mean and variance of the minLogistic distribution truncated from above at the point c are 
given by the following simple expressions (see Appendix A.4): 
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where 2
0

ln(1 )( )
h

t

tLi h dt
t=

−
= − ∫ in the variance expression represents the dilogarithm function and 

is easily computed using one-dimensional integration (even if not having an analytical 
expression).  However, note that the expected value of the minLogistic distribution truncated 
from above (first expression in Equation (31)) is a closed-form expression.  

With the above properties in hand, and defining ,ϑ λσ=  the cumulative distribution of 
*y  may be derived from Equation (26) as: 
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and the corresponding density function is: 
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3. MODEL ESTIMATION AND FORECASTING 
Collect the parameters to be estimated in a vector ( , , , , )σ λ′ ′ ′=μ β γ θ . The likelihood function 
corresponding to no allocation to product group G is given by:   

( )
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μ .  (34) 



20 

The likelihood corresponding to non-zero allocation to the product group with a budget 
allocation of h , and the fractional allocation to the first M inside goods in the product group is: 

( )*
* *

2( ) = ( ) ,..., ,0,0,...,0My
L f h P f f×μ   , (35) 

where the probability of the fractional allocation on the right side of the above equation is 
provided by Equation (13). Similar functions may be written for the case of a budget allocation 
of y  and fractional allocation to all inside goods (based on Equation (14)) and the case of a 
budget of y  and fractional allocation to only one inside good (based on Equation (15)). 

The above model formulation does not consider unobserved heterogeneity in the 
sensitivity to exogenous variables. This may be introduced in a straightforward way by allowing 
the andβ θ  parameters to be randomly distributed. For example, assuming a specific continuous 

parametric distribution (say f


) for ( , )′ ′ ′=ψ β θ  with an underlying parameter vector ψ , the 
likelihood function for the case of a budget allocation of y , and the fractional allocation to the 
first M inside goods in the product group, is: 

 *
* *

2( , , , ) = ( ) Prob[ ,..., ,0,0...,0] ( ; ) .My
L f h f f fσ ϑ ×∫
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ψ γ ψ ψ dψ
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   (36) 

In the random parameter specification above, there should be no covariance across the elements 
of andβ θ  to preserve strict exogeneity of the linking function in the first stage budgeting 
equation. The log-likelihood function may be developed across all individuals, and the 
parameters may be estimated using maximum likelihood estimation-based approaches.  

For model forecasting, it is easy enough to predict the total expected budget allocated to 
the entire product category using the properties of the minLogistic distribution as follows: 
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The expression above may be used to forecast the expected value of the total budget allocation 
for the product category for any individual, and also may be used to compute elasticity effects of 
variables that directly impact the overall budget allocated to the product group under 
consideration (that is, the effects of variables in the s  vector) or that indirectly impact the overall 
budget allocated to the product group (that is, the effects of variables in the kz  vector or the 

price variable kp  on y ). The variance maybe computed as follows, using the properties 
discussed earlier: 
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An issue with applying the above formulas directly, though, is that the procedure would always 
result in some positive allocation to the product group. This may be okay when computing 
aggregate budget allocations to the product group across a set of individuals, but may not be 
appropriate when the forecasts are at an individual level to be embedded within an agent-based 
model with additional downstream models. An approach to preserve the possibility of zero 
allocation during forecasting is to first forecast the discrete allocation between zero units for the 
inside goods and some positive quantity for the goods. And then for those observations that are 
forecasted to have a positive allocation, the closed form expectation formula derived in this 
paper can be applied. The approach is as follows: 
• Step 1: Compute the probability of a zero allocation for the product group G using Equation 

(34). Draw a random variable from the uniform distribution. If this draw is higher than the 
computed probability of zero allocation, declare a zero allocation for product group G for the 
observation and put ˆ 0 ( 1,2,..., ). STOPky k k M= ∀ = .  

• Step 2: The expected value for an observation with a non-zero allocation to the product 
category may be obtained as follows (again using Equation (31)): 
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 12 (39) 

                                                 
12 An important benefit of the proposed closed-form model in forecasting is that the first and second moments of the 
continuous consumption values are easily computed because of their closed form nature (as shown here in this 
equation for the first moment of the budget for the product category). This is unlike the case of the linear outside 



22 

However, the central purpose of a multiple discrete-continuous model is to predict the intensity 
of consumption (including potentially zero consumptions) of the inside goods. To do so, one 
needs to adopt a simulation technique to consistently predict the second stage fractional 
allocation among the goods in the product group as well as the intensity of total budget allocated 
to the entire product group. The procedure for predicting the MDCEV fractional allocation and 
actual amount of consumption to the inside goods (including possibly zero allocation) may be 
described as follows (continuing on from Step 2 from earlier), assuming a preset number of R 
draws of the error vector 1 2( , ,..., ) 'Kε ε ε=ε  to compute the expected value for each observation: 

• Step 3: If procedure did not stop at Step 1 above as discussed there, set r = 1. 
• Step 4: Draw K independent realizations of kε , one for each good ( 1,2,..., )k k K=  from the 

reverse extreme value distribution with location parameter of 0 and the scale parameter equal 
to one; label this distribution as REV(0,1) . Compute kψ  using Equation (3). 

• Step 5: Re-order the goods in descending order of kψ ; set a new index m ( 1, 2,...,m K= ) for 

this new ordering of the inside goods. Let mψ  be the re-ordered vector of values of kψ  and 

mγ  be the re-ordered vector of values of .mγ   

• Step 6: Set M = 2 and 1 1.f =  
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13              

(40) 
• Step 8: Set M = M + 1. If M = K, go to Step 9 (discussed later). Otherwise, go to Step 7.  
• Step 9: If the intent is to predict consumption intensities for each of the inside goods across 

multiple individuals, compute the predicted expenditure intensity for each of the inside goods 
                                                                                                                                                             
good closed-form MDCEV utility models of Bhat (2018), Bhat et al. (2020) and Saxena et al. (2022a) in which 
forecasting becomes challenging because the first and second moments of optimal consumption of inside goods 
might not always be finite without an upper bound on the budget for the product category. Ironically, though, the 
situation of an infinite budget is precisely when the linear outside good utility models are technically applicable.  
13 The derivation of this expression is provided in Appendix B. It is straightforward to see that the fractional 
allocations among the consumed goods will sum to one, because the second term in the numerator of the expression 
above cancels out across the different consumed goods. As we show in Appendix B, the expression also guarantees 
that the predictions mf  for any consumed good will be positive and less than 1. Note also that the form of this 
expression matches that needed for consistency with two-stage budgeting, as discussed in Section 2.2.3. Finally, the 
second term in the numerator of this expression is critical because it guarantees that the KKT condition of equal 
marginal utility at the point of actual expenditure on the consumed goods holds, as also discussed in Appendix B. 
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for the specific draw of the vector 1 2( , ,..., ) 'Kε ε ε=ε  for each individual as the product of the 
predicted continuous allocation for the product group and the fractional budget allocation to 
each inside good: ˆ ( ) ( 1, 2,..., ).op

k ky f E y k k K= × ∀ =  But if the intent is to predict 
consumptions at an individual level for embedding into a larger prediction system, keep 

op
kf and compute ( | 0)E y y >  per Step 2. 

• Step 10: Set r = r + 1; if r = R, go to Step 11; otherwise go to Step 4.  
• Step 11: If the goal is aggregate predictions, compute the mean of ˆky  (as computed from 

Step 9) for each good k across the different realizations, and declare that as the expenditure 
estimate. If the intent is to get predictions at an individual level, obtain the probability of 

0op
kf =  as the number of times out of R repetitions that the state occurred, and translate that 

probability into a deterministic assignment similar to Step 1 undertaken for the total budget 
allocation to the product group. If the fractional deterministic assignment is non-zero for 
good k, predict the budget allocated to good k for the individual as the average of the product 
of the non-zero op

kf values and the corresponding ( | 0)E y y >  values across the R 
repetitions. 
 

4. AN EMPIRICAL DEMONSTRATION 
4.1. Background 
Travel in the U.S. is predominantly undertaken using private motorized four-wheeler 
automobiles. This automobile dependence to pursue out-of-home activities may be traced to a 
number of reasons, including separation of residential locations from activity centers, relatively 
inexpensive costs of motorized vehicle ownership and maintenance, low gas prices, inadequate 
options to reach destinations by non-automobile means, and a traditional culture of valuing 
personal privacy and convenience. This dependence also has far-reaching impacts at multiple 
societal levels, including activity accessibility inequities across population segments at the 
individual/household level, and elevated levels of traffic congestion at the regional level (with 
ensuing repercussions on on-road vehicular travel determinants of fuel consumption and 
greenhouse gas (GHG) emissions). In fact, household motorized vehicle use accounts for about 
58% of the GHG emissions from the transportation sector, a sector which itself is the single 
largest contributor to anthropogenic GHG emissions in the U.S. (EPA, 2021a, page ES 27). This 
contribution from household vehicle use to GHG emissions, despite substantial improvements in 
fuel efficiency through technological advancements, may be explained primarily by the shift in 
the body type of vehicles owned by households from passenger cars to light duty trucks. In 
particular, while light duty trucks (including pick-up trucks, minivans, and sport utility vehicles) 
accounted for just about 20% of the new vehicle market 35 years ago and 50% of the fleet less 
than ten years back, they accounted for about 70% of the new vehicle market in 2020 (EPA, 
2021b, page 21). 
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The importance of modeling and predicting household vehicle holdings by body type and 
use has not gone unnoticed by travel demand researchers and practitioners. Specifically, while 
much of the research in the past in the area was focused on the body type of the most recently 
purchased or most used vehicle in a household, and even that in broad binary classes such as car 
versus non-car or sports utility vehicle (SUV) versus non-SUV vehicles, more recent studies 
have considered the entire household vehicle holdings using a more disaggregate classification of 
vehicle type (see Ma and Ye, 2019 for a review of such studies). Further, because of the 
increasing interest in, and legislative initiatives to, proactively influence the regional fleet mix of 
vehicles through environmental policies aimed at reducing mobile-source pollutants and GHG 
emissions, models of household vehicle fleet composition are being embedded within larger 
activity-based travel and emissions forecasting systems (see, for example, Vyas et al., 2012, You 
et al., 2014, and Cambridge Systematics, 2021).  

 A modeling framework that has received substantial attention in household vehicle fleet 
mix and use modeling is the MDCEV model, which incorporates the notion that households own 
and use different vehicles for different functional purposes. As such, the MDCEV model 
framework offers an elegant, theoretically consistent, and econometrically integrated approach to 
jointly model household vehicle ownership, vehicle type, and vehicle usage decisions. But the 
traditional MDCEV approach (for example, Garikapati et al., 2014 and Cambridge Systematics, 
2021) needs an overall budget of miles traveled by all modes (including by non-motorized modes 
and other non-private vehicle modes) to be able to have the travel by motorized private vehicle 
modes to be sensitive to such characteristics as individual and household demographics, built 
environment, and fuel costs. This is achieved by assuming the presence of an outside good 
labeled, for example, as the “non-private mode”. But since the mileage traveled by such “non-
private modes” is not readily available from typical survey data, ad hoc assumptions are made 
for this outside good mileage. Our approach in this paper, however, does away with the need to 
make such ad hoc assumptions.  
 
4.2. The Data and Sample Description 
The sample for this demonstration is based on vehicle ownership and use data from the 2017 
National Household Travel Survey in the state of Texas. The motorized private vehicles owned 
by each household are categorized into one of five vehicle types: (1) Passenger cars (coupes, 
sedans, hatchbacks, crossovers, and station wagons; cars for short), (2) Vans, (3) Sports Utility 
Vehicles (SUVs), (4) Pickup trucks (PUTs), and (5) Other (non-pickup trucks and recreational 
vehicles). The final estimation sample includes 1423 Texan households (including those with 
zero vehicle ownership) who owned no more than one vehicle within each of the five vehicle 
types. Of course, a household might own multiple vehicle types. A separate hold-out validation 
sample of 418 Texan households was also created (details of the sample formation are provided 
in Bhat et al., 2020, though the sample in the current study also includes households with zero 
vehicles that were not included in the earlier study). The MDC variable corresponds to 
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ownership of each privately owned vehicle type and the amount of annual miles on each vehicle 
type (zero annual miles using private automobiles is allowed).  

Table 1 provides information on the distribution of vehicle types in the vehicle-use 
dataset (the table summarizes the statistics across the estimation and validation samples, for a 
total of 1841 households). Not surprisingly, the percentage of zero-car households is quite low at 
3.4% (see the last row under the column “zero vehicle HH”). Also, as expected, the most 
frequently owned vehicle types (if one or more vehicles are owned) correspond to passenger 
cars, SUVs, and PUTs (see the penultimate column of Table 1, which shows a total of 1138 
households (61.8%) owning cars, 825 (44.8%) households owning SUVs, and 615 (33.4%) 
households owning PUTs). At the other end, vans and other types of vehicles (non-pickup trucks 
and recreational vehicles) are the least likely to be present in household vehicle fleets, with only 
163 (8.9%) households owning vans and only 95 households (5.2%) owning non-
pickup/recreational vehicles. The percentage of pickup trucks and vans in the mix increases 
within households with more than one vehicle. Across all households, the vehicle fleet in the 
sample includes 57% of light duty trucks (vans, SUVs, and PUTs), which is about the range of 
light duty trucks in the US household vehicle fleet mix about five years back. In terms of 
vehicle-use, the last column of Table 1 indicates that SUVs tend to be the most widely used if 
held by a household, followed by pickup trucks and passenger cars. 

 
4.3.  Model Specification 
Several types of variables were considered in the first stage total annual mileage model as well as 
the second stage fractional MDCEV model. These included household sociodemographics 
(household size, presence and number of children, number of workers, household income, family 
structure, and dwelling type), and residential density and employment density variables.  

The focus here is on demonstrating the application of the proposed model rather than 
necessarily on substantive interpretations and policy implications. But, we did undertake a 
rigorous specification analysis with the data available to arrive at the best possible specification 
(including considering alternative functional forms for continuous independent variables such as 
income, including a linear form, piecewise linear forms in the form of spline functions, and 
dummy variable specifications for different groupings). Further, to accommodate heterogeneity 
across individuals in the effect of observed variables not only in the baseline preference function 
(the kψ  function as in Equation (4)), but also in the satiation parameters (the kγ  parameters), we 

parameterized the satiation parameters as exp( )k kδ ω′ , where kω  is a vector of decision maker-

related characteristics and kδ  is a vector to be estimated (note that 0 ).k kγ > ∀  This allows the 
discrete choice decision of consuming an alternative (owning a particular vehicle type) to be less 
closely tied to the continuous choice of the amount of consumption (that is, vehicle mileage) of 
that alternative (see Bhat, 2008).  

The performance of our two-stage linked Reverse Gumbel MDCEV (or simply the 
“linked” model for presentation convenience) is examined against a two-stage unlinked MDCEV 
model (or simply the “unlinked” model for presentation convenience). The latter unlinked model 
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uses an independent Tobit model for modeling the total budget and an unlinked fractional 
MDCEV model given the budget. In this unlinked model, the fractional MDCEV component and 
the corresponding forecasting expressions remain the same as earlier, but Equation (26) now 
takes the following unlinked form: 
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  (41) 

with ζ  now being a reverse standard Gumbel variate, and λ  being a scale parameter. Of course, 
equivalently, the equation above may be written in terms of a traditional standard Gumbel variate 
υ  as: 
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The likelihood component for an observation with no budget allocation to the product category 
in this unlinked case is: 
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The corresponding likelihood component for an observation with non-zero budget allocation to 
the product category is: 
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The moments of the resulting censored traditional Gumbel distribution for y  in this unlinked 
model may be readily computed (interestingly, even the moments of censored versions of the 
traditional Gumbel distribution appear to have only been recently formally derived and 
presented; see Baran et al., 2021 and Neamah and Qasim, 2021). With the results from these 
papers, the equivalent expressions to Equation (31) in this unlinked case (as used in model 
evaluation later) are: 
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We undertake a comparative data fit investigation of the linked and unlinked models both in the 
estimation sample as well as the hold-out sample, and using both likelihood-based measures as 
well as more intuitive non-likelihood based measures. Because the direction of effects of 
variables from the two models were similar, we will not present the results of the unlinked model 
in this paper (this is available from the author). However, some of the substantive differences 
between the linked and unlinked models are discussed, even as our focus will be more on the 
data fit measures between our proposed model and the unlinked model. 
 
4.4.  Model Results 
For completeness, we now discuss the substantive results from our proposed linked model. Table 
2 presents the results for the fractional MDCEV model, and Table 3 presents the results for the 
Tobit budget model.  
 
4.4.1. MDCEV Fractional Split Model Results 
The parameter estimates in Table 2 relate to the impact of variables on the logarithm of the 
baseline preference, except for the results specific to satiation toward the bottom of the table. 
The five vehicle type alternatives are (1) Passenger car, (2) Van, (3) SUV, (4) PUT, and (5) 
Other. In the table, we retain some variables whose coefficients do not rise to a statistical 
significance level of 0.05, but that still provide intuitive and useful insights.  
 
Household sociodemographic effects: Household demographics have a significant effect on 
vehicle type choice, particularly the effect of annual household income. Table 2 indicates that 
low income households (less than $35,000 annual income) are more likely to own vans and less 
likely to own “other” (non-pickup and recreational) vehicles, while increasingly higher income 
households are more likely to own SUVs. This latter result is not surprising, because most of the 
luxury vehicles reside within the SUV class, and SUVs are known to be gas-guzzlers that require 
quite a bit of fuel cost outlays. Interestingly, the preference for PUTs is highest in the middle 
income bracket ($75-$125K annual income range), though households with higher than $35K 
annual income more generally have a higher preference for PUTs than those with household 
income less than $35K. The preference for PUTs in the middle-income bracket may be reflective 
of the use of such vehicles for work-related activities associated with farming and transportation.   

In terms of household lifecycle effects, there is a clear preference for vans among 
households with children (less than 15 years of age), presumably because vans are more 
spacious, safe, and comfortable for travel with small children. Besides, parents may prefer a van 
also because it opens up the possibility of carpooling arrangements of children with other 
parents, making the transportation of children efficient across multiple families and engendering 
a mutually beneficial arrangement for all parents involved. In addition to the effect of children on 
the preference for vans, the results also indicate that households with more adult individuals 
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prefer vans to other vehicle types, and least prefer cars. Interestingly, after controlling for 
number of adults and children, there was no additional effect of number of workers in the 
household on vehicle type choice. This is, in part, because of a rather high correlation between 
number of adults and number of workers within the sample of Texan households used here, as 
well as because vehicle types other than cars have become so mainstream in the vehicle fleets of 
households, and serve distinct functionalities in the everyday lives of individuals, that 
employment status of individuals does not play much of a role in vehicle type choice. Finally, 
within the category of household demographics, the race of the individuals in a household is also 
found to impact vehicle-type holding and usage, even after controlling for income effects. 
Specifically, all-white households are clearly much more likely to own pickup trucks and other 
vehicle types (other truck types/recreational vehicles). As also pointed out by Bhat et al. (2020), 
pick-up truck ownership statistics do reveal that about 75% of the purchases of the top five 
pickup trucks in the U.S. are by white households.    

 
Household and work location attribute effects: Relative to households in areas with a low 
population density (4000 persons per square mile or lower in the census block group of the 
household’s residence), households in locations with high population density (more than 4000 
persons per square mile in the Census block group of the household’s location) have a higher 
preference for passenger cars. This result is to be expected, reflecting the relative ease of 
maneuverability with small-sized vehicles in highly dense travel areas as well as the higher fuel 
efficiency afforded by cars in stop-and-go traffic. The result regarding the higher inclination of 
households residing in less dense employment locations (less than 750 employees per square 
mile) to own pickup trucks supports the earlier suggestion that such households may be more 
likely to be self-employed in farming and other related pursuits, and trucks make it particularly 
convenient to haul large-sized items and operate in relatively rugged terrain.  
 
Baseline preference constants: The presence of count variables (such as number of adults and 
children) in the specification renders the interpretation of the baseline preference constants 
difficult. However, as expected, the vans and other (non-pickup trucks/recreational) vehicle types 
have the highest negatively valued constants, conforming to their relatively low representation in 
household vehicle fleets compared to cars, SUVs, and PUTs. 
   
Satiation effects through γk parameters: The satiation parameters (the kγ  parameters) are 

parameterized as exp( )k k′δ ω , and the results in the lower panel of Table 2 represent the elements 

of the coefficient vector δ . A positive coefficient has the effect of increasing the kγ  parameter 
and, thereby, reducing satiation effects, while a negative coefficient has the effect of decreasing 
the kγ  parameter and increasing satiation effects. The results reveal that, conditional on 
ownership, households with an annual income over 35K tend to put less mileage (higher 
satiation) on PUTs and other recreational vehicles compared to other vehicles. Given that most 
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households in this range are likely to have a combination of passenger cars and PUTs, it stands to 
reason that these households will put more mileage on the smaller vehicle from a fuel cost 
standpoint.  In addition, the results also suggest that, conditional on ownership, the highest 
income households will put less mileage on SUVs (relative to other vehicle types) than their 
lower-income peers. While this may seem counter-intuitive, it is simply the model’s way of 
reflecting the reality that, should households in the low and middle-income ranges happen to 
decide to own SUVs (which must mean that they are likely to particularly value the functionality 
of SUVs, given that households in these income ranges are not likely to own SUVs in the first 
place), the intensity of SUV use in such SUV-owning low-to-middle income households may not 
be much different from the intensity of SUV use in SUV-owning high income households. Thus, 
given the high baseline preference for SUVs among households in the highest income bracket, 
and the fact that the baseline preference not only dictates the discrete consumption choice, but 
also serves as the basis from which satiation effects start operating, the model increases the 
satiation parameter for high income households to ensure that SUV use among SUV-owning 
households do not vary much based on income earnings. Interestingly, though, the situation is 
reversed for vans, where higher income households, if they choose to own vans, appear to use 
such vehicles quite considerably. This may reflect the association between choosing vans and 
wanting to pursue leisure trips among high income households. Noteworthy in the results for the 
satiation parameters is that no other household or individual or location attribute affects intensity 
of use. This is evidence of the close association between vehicle type purchase and use decisions. 
That is, the intended use intensity and functionality of vehicle types is carefully considered by 
households even as a purchase is being made, rather than households determining intensity of 
use after purchasing vehicles.  The constants related to the satiation parameters (the last row of 
Table 2) again have no clear interpretation; they work alongside the baseline parameters to 
determine intensity of usage after accounting for observed variable effects.  
 
4.4.2. Total Mileage Tobit Model Results 
The coefficients in Table 3 provide the Tobit model results. The coefficients in the table 
correspond to the effects of variables (elements of the θ  vector) and the coefficient λ  (linking 
parameter) on the underlying latent propensity corresponding to the total intensity of travel (that 
is, total motorized mileage), as in Equation (26). The results here are intuitive, indicating the 
lower travel mileage propensity among (a) low income households (annual income of less than 
$35K), (b) households with more adults and more workers, (c) white households, and (d) 
households located away from high population and employment density locations.  

Most importantly, in the context of the current paper, the linkage parameter turns out to 
be 0.713. The standard error is 0.0155, with a corresponding highly statistically significant t-
statistic of 21.83 relative to the value of 0 (note that, unlike a log-sum in a nested logit model, 
there is no interpretation for the linking parameter to have the value of 1, and there is no 
requirement that the parameter value must fall in the range of 0-1; in our application, it so 
happens to be in this range). The linkage result is clear indication of the endogeneity of the total 
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mileage to the composition of the household vehicle fleet, and reflects the strong effects of 
variables impacting vehicle type decisions on the total mileage. Of course, the linkage parameter, 
as already discussed, also reflect scale effects in the Tobit regression, and generates 
heteroscedasticity in the underlying *y  variable, as should be clear from the expression for the 

variance of the error term η  (see Equation 30) embedded in *y .14 In this context, in the unlinked 
model, the error term for the underlying latent variable for the Tobit regression (that is, the error 
term in *y , which is λζ   in Equation (41)) is homoscedastic. As is well known, ignoring 
heteroscedasticity when present in a Tobit model will, in general, lead to inconsistent estimation, 
which is another problem with the unlinked model.  

But accommodating linkage is not simply an esoteric econometric issue. It can have 
important policy implications from a structural standpoint. For example, based on our results, 
neighborhood densification (through employment densification) would reduce motorized travel 
directly (based on the negative sign in the Tobit regression on employment density), but also 
have an additional indirect negative linkage effect though the decrease in PUT baseline 
preference in high employment density areas (based on the negative sign on the PUT baseline 
preference in Table 2). That is, the results show that densification will have a more negative 
effect on total motorized mileage (through the cumulative of the two combined effects just 
discussed) than what would be estimated if the linkage were not considered. In addition, in our 
empirical analysis, the direct effect of employment density is –0.323, while the unlinked Tobit 
model indicated a complete lack of an employment density effect (the coefficient was not 
statistically different from zero at even the 0.27 level of significance). The net result is that the 
linked model estimates a clear reduction in total motorized mileage overall due to densification, 
while the unlinked model indicates no such reduction. Further, the reduction in total mileage 
from the linked model then leads to a large reduction in PUT mileage in the linked model. 

Finally, we should also note that the introduction of the linkage will, in general, provide 
more stability in estimation by adding a non-linear (in components) linking term with good 
variation in its values. For example, while in the linked model, the coefficient on the variable 
“income less than $35K” turned out to be –0.587 and highly statistically significant, the 
corresponding coefficient in the unlinked model turned out to have a large standard error, with 
associated convergence problems in estimation. 
 
4.5.  Data Fit Measures 
Data fit measures are presented in two forms – likelihood-based data fit measures and non-
likelihood based data fit measures. 
 
4.5.1. Likelihood-Based Data Fit Measures 
In the estimation sample, we estimate a base model with four constants in the baseline preference 
(number of alternatives minus 1), five constants for the satiation effects (one per alternative), a 
                                                 
14 The heteroscedasticity depends upon the ka  values in a complicated, but utility theoretic, manner. 
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constant in the Tobit model, and the scale (in the linked model, the scale and the linking 
parameters get confounded and cannot be disentangled, as discussed earlier). The base model 
will not have the same log-likelihood at convergence for the linked and the unlinked models 
because the distribution of the kernel stochastic term is different between the two models 
(reverse Gumbel in the unlinked model and minLogistic in the linked model). But we do 
compute a 2ρ  value for each of the fully specified linked and unlinked models relative to the 
base model for the unlinked specification.   

 


2 ( )1
( )

θL M
L c

ρ −
= − ,  (46) 

where ( )θL  and ( )L c  are the log-likelihood functions at convergence and the base unlinked 
model, respectively, and M is the number of parameters (excluding the constants) estimated in 
the model. If the difference in the indices is 2 2

2 1( )ρ ρ τ− = , then the probability that this 

difference could have occurred by chance is no larger than 0.5
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small value for the probability of chance occurrence suggesting that the difference is statistically 
significant and the model with the higher value for the adjusted likelihood ratio index is 
preferred.  

All of the above metrics correspond to the estimation sample. We next undertake a 
similar analysis for the hold-out sample, maintaining the estimated coefficients. These predictive 
likelihood-based measures for the unlinked and linked models may be informally compared in 
terms of  2ρ  fit.  

The likelihood based data fit measures for the estimation sample are provided in Table 4. 
Both the linked and unlinked model log-likelihood values are clearly superior to the base 
“constants only” model, as can be observed from the nested likelihood ratio test (fifth row) for 
the estimation sample).  These results demonstrate the value of our variable specification. Also, 
from the non-nested likelihood ratio statistics value provided in the final row, it can be inferred 
that the probability of the adjusted likelihood ratio index difference between the linked and the 
unlinked model occurring by chance is literally zero. The superior fit of the linked model carries 
over to the hold-out sample, with the 2ρ  measure being 0.055 for the linked model and 0.049 for 
the unlinked model. Overall, the likelihood measures clearly favor the linked model over the 
unlinked model in the current empirical context.  
 
4.5.2. Non-Likelihood Fit Measures 
To further supplement the disaggregate likelihood-based performance at the multivariate and 
disaggregate levels, we use the hold-out sample to evaluate the performance of the models 
intuitively and informally at a disaggregate and aggregate level. At the disaggregate level, we 
estimate the probability of the observed multivariate discrete-continuous outcome for each 
individual, and compute an average probability of correct prediction for the consumption 
outcome. At the aggregate level, to keep the presentation manageable, we focus on only those 
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households that own two vehicles. This also will be useful to assess the performance when 
households hold more than one vehicle, which is the reason to use an MDC-based model in the 
first place. We then design an informal heuristic diagnostic check of model fit by computing the 
aggregate percentage of households predicted to hold each of the 10 vehicle type (paired) 
combination outcomes. These predicted percentages falling into each combination category are 
compared with the actual percentage of households in each combination (using both a mean 
absolute percentage error (MAPE) statistic and a weighted mean absolute percentage error 
(MAPE) statistic, which is the MAPE for each combination weighted by the actual percentage 
shares of households in each combination).  

For the continuous consumption predictions, we predict the continuous mileages for each 
household and each vehicle among households predicted to have two vehicles, using 
ˆ ( )op

k ky f E y=   from Step 9 of the forecasting algorithm. In using this procedure, we use 1000 
error vector replications per individual observation. We then compute the aggregate predicted 
continuous mileage values for each vehicle type across these households, and compare the 
predicted mileages against the actual mileages by vehicle type for two-vehicle owning 
households.  

In terms of the results, the average probability of correct prediction (APCP) at the 
multiple discrete-continuous level (across all combinations, including zero vehicles) is 0.0635 
for the unlinked model and 0.0660 for the linked model. This difference across all combinations 
is marginal, and to be expected because the fractional MDCEV model is not affected much by 
linkage or no-linkage. Where we can expect more difference is in the prediction of zero vehicle 
count (because the Tobit model is the one that determines zero vehicle count) and the continuous 
consumption values (also determined by the Tobit model, as this model provides the overall 
mileage across all motorized vehicles). In this regard, the APCP for the discrete outcome of zero 
vehicle households is 0.2326 for the unlinked model, but increases to 0.2485 for the linked 
model (in the current empirical setting, this improvement of the linked model for zero-vehicle 
households gets tempered when the average probability of correct predictions is considered 
across all vehicle type combinations, because of the low percentage of households with zero 
vehicles in Texas). Within households with non-zero vehicles, the APCP of the actual vehicle 
combination owned and the observed vehicle mileage on each owned vehicle is 0.0572 for the 
unlinked model and 0.0592 for the linked model.  

Moving on to the predictions of vehicle type holdings in two-vehicle households, the left 
panel of Table 5 provides the observed and predicted percentage of households in each possible 
two-vehicle combination. In the three combinations that make up over 84% of households 
(corresponding to the Car-SUV, the Car-Pickup, and the SUV-Pickup combinations), the linked 
model clearly outperforms the unlinked model. This is also reflected in the weighted mean 
absolute percentage error (MAPE), which is 23.2% for the unlinked model, but only 16.0% for 
the linked model (see the last row of the table) across all the ten combinations for two-vehicle 
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households).15 The right side panel of Table 5 provides the mean observed continuous-level 
mileages for each vehicle type within each combination (the mean being computed across all 
households falling in each combination), and the corresponding mean continuous-level 
predictions (the mean being computed across households predicted to fall in each combination). 
The table does not show the results for the combinations including the “other” vehicle type 
because of the extremely small fractions of households in these combinations and the wide 
variations in mileage across the small number of households with “other” vehicle usage). Several 
noteworthy observations may be made based on these results. First, the predicted mean mileages 
are remarkably close to the actual mean mileages for cars, the most often owned vehicle type by 
two-vehicle households, with the APE for car mileage being less than 15% for all combinations 
that include a car. Second, the linked model does slightly better than the unlinked model on both 
the unweighted and weighted mean MAPE values. Third, unlike the case of discrete 
consumptions where the weighted performance of the linked model is substantially superior to 
that of the unlinked model, there is a smaller difference in the accuracy of the continuous 
mileage predictions in the current empirical context.  

Overall, however, the performance of the proposed model at the aggregate as well as 
disaggregate levels reinforces the notion that the choice of vehicle type combination, the 
intensity of use of each vehicle type, and the total mileage are all closely linked, and emphasizes 
the value of modeling these dimensions based on the linked structure proposed in this paper. 
Importantly, given the different stochastic distributional forms of the linked and unlinked 
models, data fit alone need not be the guiding factor in choosing the linked model (in fact, it is 
not inconceivable that the unlinked model would perform even better than the linked model from 
a pure data fit standpoint in some empirical situations). But, from a behavioral standpoint, the 
linked model accommodates the notion that changes in the attributes of the goods within the 
product group of interest not only have a substitution influence, but also an income effect 
through a change in the total consumption quantity in the product group. As we have shown in 
Section 2.2.1, this linkage between inside good attributes and the total consumption quantity in 
the product group is consistent with two-stage budgeting and utility maximization, while the 
linked model completely ignores such linkage and is not consistent with utility maximization. 
Thus, regardless of data fit considerations, in most circumstances, the analyst may prefer to use 
the linked model from a behavioral standpoint.  
 
5. CONCLUSIONS 
In this paper, we propose an approach that does not need the total budget to be observed or 
predetermined, allows for any finite or not-so-finite budget over the entire set of inside and 
outside goods, and preserves a strong endogenous utility-theoretic link between inside good 
consumptions and the budget allocated to the inside goods (that is, to the product group of 
interest). At the same time, the proposed approach also makes the forecasting process simple and 

                                                 
15 We do not consider the MAPE for the “van-other” combination because there were no households in this 
combination in the hold-out sample.  
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easy. Our approach, inspired by similar efforts in the past in the context of the vertical choice-
making approach, models an endogenous budget for the inside goods as well as consumption of 
the inside goods separately, but within a unified utility-theoretic framework. As importantly, 
different from earlier applications in the vertical choice making approach, we also allow 
unobserved heterogeneity in the intensity of linking between the inside good preferences and the 
budget allocation for the product group of interest. We show that our proposed model, including 
a fractional MDCEV model at the lower level linked up to a Tobit model for the budget 
allocation to the inside goods, is strictly consistent with a two-stage budgeting utility theoretic 
structure. Then, by using a reverse Gumbel distributional assumption for the stochastic terms in 
the baseline preferences of each of the inside alternatives in the fractional MDCEV model, and a 
reverse Gumbel distribution for the random error term in the Tobit model, we derive an 
incredibly simple closed-form model for the resulting multiple discrete-continuous extreme value 
model that, to our knowledge, is a first of its kind in the econometric literature. In doing so, we 
formally introduce a new distribution, which we label as the minLogistic distribution, to the 
statistical literature, and derive the properties of the distribution that is then used in the 
forecasting stage of the proposed model. An application of the proposed model to investigate the 
household vehicle fleet composition and usage demonstrates its potential relative to an unlinked 
and exogenously developed budget for the inside goods.  

Of course, there are many directions along which the proposed model may be extended, 
most of which also are certain to dismantle the closed-form nature of the proposed model. But, 
with strategic accommodation, some of these extensions should be readily estimable because of 
advances in simulation and analytic approximation techniques. First, as discussed in Section 3, 
random parameters may be added to one or both of the fractional MDCEV model or the Tobit 
model, which can allow for unobserved heterogeneity in sensitivity to exogenous variables, as 
well as correlation across the inside good preferences. Second, the Tobit model may be replaced 
by a system of two equations, one equation for zero versus positive total consumption for the 
inside goods and another for the total budget allocation to the inside goods, given positive 
consumption. The linking term from the fractional MDCEV can be introduced in each of these 
equations, while still retaining a closed-form model. Of course, one can further introduce a 
correlation across the two equations (that may replace the Tobit model) through an error-
component mixing approach, or by employing well-known bivariate parametric distributions. 
Third, from an empirical standpoint, while the traditional single-stage budgeting MDCEV model 
is not applicable for cases with an unknown total budget over the inside and outside goods (our 
proposed model is), it would be interesting to undertake an empirical comparison of the 
traditional MDCEV model with the proposed two-stage budgeting MDCEV model for cases 
when the budget is observed. Both models are applicable in this situation. While the proposed 
model does have the benefit of disentangling substitution and income effects (see Section 1.1), a 
comprehensive empirical comparison of the two models based on data fit as well as policy 
implications may bring out interesting results. Fourth, approaches that relax the need for strict 
exogeneity of the linking function in the first stage budget model and that allow the first stage 
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total budget itself to impact the second stage fractional splits would be helpful, though would 
almost definitely also destroy the utility-theoretic and/or closed-form nature of the model.  

The proposed two-stage budgeting MDCEV-Tobit should prove to be beneficial in a 
number of multiple discrete-continuous choice contexts. The closed-form probability structure 
makes the estimation procedure no more difficult than for traditional MDCEV models. As such, 
we believe that the proposed model can open up a whole new world of MDC applications in 
general, particularly for those cases with an unobserved total budget over the inside and outside 
goods and/or general nested linkages of model systems with an MDC model at the lower level. 
In closing, we are excited by the prospect that the proposed model can add to the arsenal 
(intended and used here in only a pacifist way) at the disposal of choice modelers and 
econometricians when analyzing MDC situations.  
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Table 1. Data Description for the Vehicle-Use Case Study (sample size = 1841) 

Vehicle-type 

Vehicle-type distribution 

Household (HH) vehicle ownership levels Average 
annual 
mileage Zero vehicle 

HH 
1-vehicle 

HH 
2-vehicles 

HH 
3-vehicles 

HH 
4 or more 

vehicles HH 
Total vehicles 
of each type 

Passenger car -- 490 (55.9%) 528 (34.7%) 106 (27.8%) 14 (24.1%) 1,138 8620 

Van -- 37   (4.2%) 97   (6.4%) 22   (5.8%) 7 (12.1%) 163 7520 

SUV -- 254 (29.0%) 463 (30.5%) 96 (25.2%) 12 (20.7%) 825 9895 

Pickup truck -- 92 (10.5%) 404 (26.6%) 106 (27.8%) 13 (22.4%) 615 8805 

Other -- 4   (0.4%) 28   (1.8%) 51 (13.4%) 12 (20.7%) 95 3740 

Total 63 (3.4% of all 
households) 877 (100%) 1520 (100%) 381 (100%) 58 (100%) -- -- 
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Table 2. RG-MDCEV Fractional Split Model Results 

Variables 
Coefficient estimates (t-stats) 

Passenger 
car Van SUV Pickup 

truck Other 

Household sociodemographic      

Household Income      

Income less than $35,000 annually --  0.331 
(2.37) 

--    --  -0.221 
(-1.30) 

Income between $35,000 - $75,000 annually --  -- 0.244 
(2.14) 

0.227 
(1.71)  

-- 

Income between $75,000 - $125,000 annually --  -- 0.478 
(3.63) 

0.590 
(3.94) 

-- 

Income greater than $125,000 annually -- -- 1.231 
(7.26) 

0.318 
(1.95) 

-- 

Number of children in the household -- 0.329 
(6.58) 

-- -- -- 

Number of adults in the household -0.406 
(-5.87) 

0.317 
(2.91) 

-- -- -- 

Race is white (Base: Non-white) -- -- -- 0.432 
(3.85) 

0.590 
(2.73) 

Household location attributes      

Population density more than 4000 persons/sq. mile 
(Base: less than 4000 persons/sq. mile) 

0.328 
(3.75) 

-- -- -- -- 

Employment density more than 500 workers/sq. mile 
(Base: less than 500 workers/sq. mile) 

-- -- -- -0.323 
(-3.38) 

-- 

Baseline preference constants --  -3.192 
(-13.72) 

-1.494 
(-10.29) 

-1.772 
(-9.45) 

-3.095 
(-12.77) 

Satiation effects      

Income between $35,000-$75,000 annually --  -- -- -0.824 
(-2.78) 

-2.628 
(-4.48) 

Income between $75,000-$125,000 annually -- 0.724 
(2.24) 

-- -1.363 
(-4.22) 

-1.760 
(-2.60) 

Income greater than $125,000 annually --        1.614 
(4.67) 

-2.142 
(-7.32) 

-0.837 
(-2.08) 

-3.781 
(-6.28) 

Satiation constant -0.266 
 (-2.70) 

1.994 
(4.27) 

0.942 
(4.95) 

0.575 
(2.36) 

0.988 
(1.89) 
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Table 3. Tobit Model for Total Mileage by Motorized Modes 

Variables Coefficient estimates t-statistics 
Household sociodemographic   

Income less than $35,000 annually -0.587  -6.06 

Number of adults  0.180   3.00 

Number of workers  0.383   9.79 

Race is white  0.236   3.42 

Household location attributes   

Population density more than 4000 persons/sq. mile 
(Base: less than 4000 persons/sq. mile 

-0.088  -1.30 

Employment density more than 500 workers/sq. mile 
(Base: less than 500 workers/sq. mile) 

-0.264  -3.69 

Linkage Parameter  0.713 21.83 

Constant  0.182   1.09 

 
 
 
Table 4. Likelihood Based Data Fit Measures 

 Estimation Sample (N = 1423) 
Unlinked Model Linked Model 

Log-likelihood at Convergence (predictive for hold-out 
sample) 

-4,879.0 -4,868.1 

Log-likelihood at Constants (predictive for hold-out 
sample) 

-5,306.6 -5,336.3 

Number of non-constant and non-scale parameters 41 41 

Number of constant parameters (in MDCEV baseline 
preference and satiation, and Tobit model) plus scale 
parameter  

11 11 

Nested Likelihood Ratio Test w.r.t Constants Only Model 
(informal test in hold-out sample) 

855 936 

Adjusted Likelihood Ratio Index (predictive for hold-out 
sample) with respect to the unlinked base model 

0.075 0.077 

Non-Nested Likelihood Ratio Test between the Unlinked 
and Linked Models (informal test in hold-out sample) 

Φ(-4.58) << 0.001 
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Table 5. Aggregate Level Predictions for Two-Vehicle Households 

Combination 

Discrete-level Prediction (Percentage) Continuous-level Prediction (Annual Mileage Values are miles/1,000) 

Actual 

Unlinked Model Linked Model Unlinked Model Linked Model 

Predicted APE Predicted APE 

Vehicle 1 Vehicle 2 Within 
combination 

mileage 
MAPE 

Vehicle 1 Vehicle 2 Within 
combination 

mileage 
MAPE Actual Predicted APE Actual Predicted APE Predicted APE Predicted APE 

Car-Van 6.59 4.87 26.1 4.66 29.2 9.68 8.38 13.4 13.29 8.53 35.8 23.0 7.75 19.9 9.33 25.6 23.3 

Car-SUV 32.97 38.07 15.5 36.72 11.4 10.05 8.94 11.0 13.77 8.74 36.5 25.2 9.03 10.1 8.77 36.3 25.3 

Car-Pickup 25.27 29.44 16.5 27.11  7.3 11.02 9.97 9.5 10.79 7.53 30.2 19.8 9.70 12.0 7.44 31.0 21.4 

Car-Other 1.10 2.20 100.0 2.25 100.5 – – – – – – – – – – – – 

Van-SUV 1.65 2.41 46.1 2.48 50.3 15.13 8.89 41.2 12.33 10.16 17.6 30.6 11.90 21.3 8.81 28.5 24.6 

Van-Pickup 3.30 2.64 20.0 2.49 24.5 9.88 10.27 3.9 4.30 8.45 96.5 32.0 11.27 14.0 8.03 86.7 36.1 

Van-Other 0.00 0.40 – 0.40 – – – – – – – – – – – – – 

SUV-Pickup 25.80 17.29 33.0 21.25 17.6 11.62 10.87 6.5 12.01 7.97 33.6 20.3 11.05 4.9 8.31 30.8 18.0 

SUV-Other 1.10 1.39 29.0 1.37 24.5 – – – – – – – – – – – – 

Pick-Other 2.22 1.33 40.0 1.27 42.8 – – – – – – – – – – – – 

Mean APE – – 32.6% – 31.8% – – – – – – 25.2% – – – – 24.8% 

Weighted 
MAPE 

– – 23.2% – 16.0% – – – – – – 22.6% – – – – 22.5% 
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APPENDIX A: MinLogistic Distribution Properties 

A.1: Derivation of the Survival Distribution Function   
From Equation (26), 
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where ζ  and kµ  are all standard (and independent) reverse-Gumbel terms. Using standard 
reverse-Gumbel distribution properties, we may write:  
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Next, consider the first integral. Straightforward integration and application of the limits 

provides the result that it is equal to 
1
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 Other subsequent integrals may be similarly 

computed to give the result that: 
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 as in Equation (27).  

Equation (28) results directly from the above survival distribution function.  
 
A.2: Unimodality and Modal Value of the MinLogistic Distribution 
To prove that the minLogistic distribution is unimodal, it suffices to show that the density 
function is log-concave. That is, that the logarithm of the density function is globally concave 
(see Saumard and Wellner, 2014).   
 
Thus, we need to show that: 
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From Equation (28) in the text, 

 

 

 

 

 

 

 
Which immediately implies that the second derivative above is always negative. Thus,  
is unimodal with a unique mode. The mode does not have a closed form expression but can 
be obtained numerically by setting the first derivative to zero. That is, 

  
which is Equation (29) in the main text. 
 
A.3: Expectation and Variance of Untruncated MinLogistic Distribution 
 

 

1.  

, and rewriting, 
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2. For the variance, we need to compute  
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and   

 
 
A.4: Expectation and Variance of Truncated MinLogistic Distribution 
1.  (where I = Indefinite Integral) 

 

 

 

 

 
 
2. Variance of Truncated MinLogistic Distribution 
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APPENDIX B: Derivation of Forecasting Formula for Fractional Allocations 
 
In this appendix, we derive the formula for a good k, conditional on the good being chosen for 
consumption. The allocation to the entire product group in determined in the first-level Tobit 
model (all fractional allocations are immediately zero if there is no allocation to the product 
group as a whole). So, consider the case of positive allocation to the product group, in which 
case at least one inside good should be consumed. Without any loss in generality, assume that the 
first good is consumed in such a situation. If only this inside good is consumed, the fractional 
prediction for this good should be one (which we will demonstrate later). But consider the more 
general case of multiple inside goods (say M goods, including the first good, and assume that 
these are the first M goods), with a zero fraction for the non-consumed inside goods. From the 
KKT conditions in Equations (10) and (11),  
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As in the text, the baseline preferences are denoted by kψ , and the satiation parameters by kγ , 

because of the re-ordering of the goods from the highest value of kψ  to the lowest. That is, 

1 2 3 ... .Kψ ψ ψ ψ> > >     In particular, conditional on a positive allocation to the product group, the 
inside good with the highest baseline preference will definitely see some positive fractional 
allocation. Further, from the KKT conditions, the following should hold for the inside consumed 
goods 2 through M: 

1
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which immediately implies that op
mf > 0, m=2,3,…,M. Note also that the budget constraint 

1
1

M
op
j

j
f

=

=∑   should be preserved by the optimal allocation formula for the fractions. For now, 

assume this is preserved (we will get back to showing this later, once the formula is derived). 
Then, it must be true that,  
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Solving for 1
opf , and after some re-arrangement, we get: 



55 

( )1 1 1 1
2

1

1

.

M

j j
jop
M

j j
j

f
ψ γ γ γ ψ ψ

ψ γ

=

=

+ −
=

∑

∑

     



 

          (B.4) 

Note immediately that 1
opf >0, because 1ψ > jψ  for all j=2,3,…,K. Substituting for 1

opf  back in 

the formula for op
mf , and simplifying, we get the following: 

( )
1

1

1 1

1

1 1 , 2,3,..., .

M

m m m j m j
jop
j mop m

m m M

j j
j

ff m M

ψ γ γ γ ψ ψ
ψ γ
ψ γ ψ γ

=
≠

=

+ −
  

= + − = =  
   

∑

∑

     









 

 

    (B.5) 

Including good 1, we get the generic formula for any consumed good as in Equation (40) of the 
text:  

( )
1

1

, 1,...,

M

m m m j m j
j
j mop

m M

j j
j

f m M

ψ γ γ γ ψ ψ

ψ γ

=
≠

=

+ −

= =

∑

∑

     



 

       (B.6) 

We have already shown that op
mf >0, 1,...,m M= . It also is easy enough to show that 

1
1

M
op

m
m

f
=

=∑  , 

because the second term, when summed across all inside goods M that are consumed is zero; that 

is, ( )
1 1

0.
M M

m j m j
m j

j m

γ γ ψ ψ
= =

≠

− =∑ ∑     From the fact that op
mf >0 for all consumed inside goods m and 

1
1

M
op

m
m

f
=

=∑  , it immediately follows that 1op
mf ≤  for each consumed inside good m. Of course, if 

only one inside good is chosen (the top good or good 1 in the descending order of baseline 
preference arrangement), 1 1,opf =  as should be the case.  
 Next, note that, for any two consumed goods l and m, the KKT condition 

1 1

1 1
op op

m l
m l

m l

f fψ ψ
γ γ

− −
   

+ = +   
   

 

 

 

 or 1 / 1 /
op op

m l
m l

m l

f f ψ ψ
γ γ

   
+ + =   

   

 

 

 

 should hold. This is 
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guaranteed because 
( )

1
1

1 1

1
1 1 .

M
M

m j m j
m jop j

jj mm
M M

m
j j j j

j j

f
ψ γ ψ ψ ψ γ

γ ψ γ ψ γ

=
=≠

= =

 + − × +    + = + = 
 

∑ ∑

∑ ∑

   

 





   

 Similarly, 

1

1

1
1

M

l jop
jl

M
m

j j
j

f
ψ γ

γ ψ γ

=

=

 
× +    + = 

 

∑

∑

 





 

, and the necessary equality results.  

 Finally, note that, for non-consumed goods, the KKT conditions of Equation (10) imply 
that the following should hold: 

1

1
1

1

1 , 1, 2,..., .
op

k
f k M M Kψ ψ
γ

−
 

< + = + + 
 



.        (B.7) 

Substituting from Equation (B.4) for 1
opf , and after some algebra, we get: 

1 1
11

1

1

1 .

M

jop
j

M

j j
j

f
ψ ψ γ

γ ψ γ

=

=

+
 

+ = 
 

∑

∑



           (B.8) 

Using (B.8) in (B.7), the result is the following: 
 

1

1

0, 1, 2,..., ,
1

M

j j
j

k M

j
j

k M M K
ψ γ

ψ
γ

=

=

 
 
 − < = + +
 + 
 

∑

∑
 or, equivalently, 

( )1/

1
0, 1, 2,...., .

M

k k k k j k j
j

k M M Kσπ ψ γ γ γ ψ ψ−

=

= + − < = + +∑  


	ABSTRACT

