
 
 
 
 

An Integrated Model of Residential Location, Work Location, Vehicle Ownership, and 
Commute Tour Characteristics 

 
 
 
 
 
 
 

Rajesh Paleti 
The University of Texas at Austin 

Department of Civil, Architectural and Environmental Engineering 
301 E. Dean Keeton St. Stop C1761, Austin TX 78712-1172 

Phone: 512-471-4535, Fax: 512-475-8744 
E-mail: rajeshp@mail.utexas.edu 

 
 

Chandra R. Bhat (corresponding author) 
The University of Texas at Austin 

Department of Civil, Architectural and Environmental Engineering 
301 E. Dean Keeton St. Stop C1761, Austin TX 78712-1172 

Phone: 512-471-4535, Fax: 512-475-8744 
E-mail: bhat@mail.utexas.edu 

 
 

Ram M. Pendyala 
Arizona State University 

School of Sustainable Engineering and the Built Environment 
Room ECG252, Tempe, AZ 85287-5306 

Phone: 480-727-9164; Fax: 480-965-0557 
Email: ram.pendyala@asu.edu 

 
 
 
 
 
 

 
November 15, 2012



    

 
 

ABSTRACT 
This paper offers an econometric model system that simultaneously considers six different 
activity-travel choice dimensions in a unifying framework. The six dimensions include 
residential location choice, work location choice, auto ownership, commuting distance, commute 
mode, and number of stops on commute tours. The paper presents the modeling methodology in 
detail as well as estimation results for a joint model system estimated on a data set extracted 
from the 2009 National Household Travel Survey. Estimation results show substantial presence 
of correlated unobserved effects (self-selection) across choice dimensions, underscoring the 
value offered by joint equations model systems in the travel modeling field.   
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INTRODUCTION 
There is a growing and important body of evidence that supports the notion that people make a 
multitude of choices as a “bundle”, choosing a series of location and activity-travel attributes that 
define their lifestyle jointly. This simultaneous selection of a number of choice dimensions 
across the varied temporal scales calls for the development and deployment of model systems 
wherein a number of choice behaviors are captured jointly while accounting for both observed 
and unobserved effects that affect the behaviors of interest. This paper is aimed at formulating 
and estimating a multi-dimensional integrated choice model system that connects a multitude of 
choices across disparate temporal scales, i.e., the long term, the medium term, and the short term.   
 The evidence in favor of attempting to model a multitude of choice dimensions in a joint 
modeling framework is quite irrefutable and growing (Abraham and Hunt, 1997). Notably, the 
body of work examining the impact of land use measures on travel behavior suggests that there 
are considerable self-selection effects wherein households tend to locate in neighborhoods that 
have attributes consistent with their lifestyle and mobility preferences (Bhat and Guo, 2007; Cao 
et al., 2008a). For example, households that are not auto-oriented choose to locate in transit and 
pedestrian friendly neighborhoods that are characterized by mixed and high land use density, and 
then the good transit service may also further structurally influence mode choice behaviors. If 
that is the case, then it is likely that the choices of residential location, vehicle ownership, and 
commute mode choice (for example) are being made jointly as a bundle. That is, residential 
location may structurally affect vehicle ownership and commute mode choice, but underlying 
propensities for vehicle ownership and commute mode may themselves affect residential 
location in the first place to create a bundled choice. This is distinct from a sequential decision 
process in which residential location choice is chosen first (with no effects whatsoever of 
underlying propensities for vehicle ownership and commute mode on residential choice), then 
residential location affects vehicle ownership (which is chosen second, and in which the 
underlying propensity for commute mode does not matter), and finally vehicle ownership affects 
commute mode choice (which is chosen third). The sequential model is likely to over-estimate 
the impacts of residential location (land use) attributes on activity-travel behavior because it 
ignores self-selection effects wherein people who locate themselves in such neighborhoods were 
auto-disoriented to begin with. These lifestyle preferences and attitudes constitute unobserved 
factors that simultaneously impact long term location choices, medium term vehicle ownership 
choices, and short term activity-travel choices; the only way to accurately reflect their impacts 
and capture the “bundling” of choices is to model the choice dimensions together in a joint 
equations modeling framework that accounts for correlated unobserved lifestyle (and other) 
effects as well as possible structural effects.1   
                                                            
1 In joint limited-dependent variable systems in which one or more dependent variables are not observed on a 
continuous scale, such as the joint system considered in the current paper that has several discrete dependent 
variables, the structural effects of one discrete variable on another can only be in a single direction. That is, it is not 
possible to have correlated unobserved effects underlying the propensities determining two observed discrete 
dependent variables, as well as have the observed discrete variables themselves structurally affect each other in a bi-
directional fashion. This creates a logical inconsistency problem. For example, in the example provided earlier, the 
underlying propensity for vehicle ownership can impact the propensity to reside in a certain type of location (due to 
observed factors such as income levels and unobserved factors such as auto-orientation), and residential location 
itself can have a structural impact on vehicle ownership propensity. But then it is not possible to have vehicle 
ownership level also structurally impact the propensity to reside in a certain type of location. Doing so would lead to 
a situation where the probabilities of all the possible combinations of discrete observations will not sum to one (see 
Maddala, 1983, page 119 for a good discussion). Intuitively, the propensities are the precursors to the actual 
observed variables, and, when both the decisions are co-determined, it is impossible to have both observed variables 
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 There is a large body of work on joint equations modeling in location and activity-travel 
choices with a view to better understand the bundling of choice behaviors while addressing the 
challenges associated with estimating such econometric model systems. The formulation, 
specification, and estimation of multi-dimensional choice model systems in which there are a 
variety of dependent variable types (continuous, ordinal, multinomial, count) has proven to be a 
challenging task because of the need to evaluate large multi-dimensional integrals of mixtures of 
distributions in such model systems. As a result, a number of papers in this domain have limited 
the number of choice dimensions considered to two or have adopted alternative approaches (such 
as structural equations modeling methods which cannot adequately handle multinomial choice 
variables) to estimate models with more than two dependent variables.   
 This paper attempts to overcome the limitations associated with previous work in the 
specification and estimation of multi-dimensional model systems of location and activity-travel 
choices.  In this study, six choice dimensions are tied together in a joint modeling framework.  
Residential location and workplace location choices are long term multinomial choice variables, 
commute distance (which is an outcome of residential location and workplace location choices) 
is a long term continuous variable, household vehicle ownership is a medium term ordinal 
dependent variable, commute mode choice is a short-term multinomial travel choice variable, 
and finally, number of stops made during commute tour is an ordinal dependent variable. These 
six variables are tied together in a temporal framework as shown in Figure 1a while recognizing 
the bundling of these choice dimensions associated with the jointness or simultaneity in decision-
making.  The model system is estimated on a San Francisco Bay Area subsample of the 2009 
National Household Travel Survey (NHTS) using the Maximum Approximate Composite 
Marginal Likelihood (MACML) approach (Bhat, 2011) that provides both computational 
tractability and numerical accuracy in the estimation of such multi-dimensional econometric 
model systems with mixtures of dependent variables.   
 The remainder of this paper is organized as follows. The next section provides a brief 
review of the literature on simultaneous equations modeling in activity-travel behavior. The third 
section offers a description of the data, while the fourth section presents the methodology in 
detail. The fifth section presents model estimation results, while the sixth and final section offers 
concluding thoughts.   
 
MULTI-DIMENSIONAL ACTIVITY-TRAVEL CHOICE MODELING 
The recognition of simultaneity in choice making behaviors has its roots in microeconomic 
consumer choice theory as evidenced by the partial or general equilibrium class of models 
developed by LeRoy and Sonstelie (1983) who investigated relationships between residential 
choice, income, and mode choice, Brown (1986) who postulated that residential location and 
commute travel mode are goods that consumed simultaneously, and DeSalvo and Huq (1996, 
2005) who jointly model residential location, income, and commute mode choice.   
 In the transportation domain, examples of simultaneous equations models of location and 
activity-travel choice behaviors abound. Bagley and Mokhtarian (2002) specify and estimate a 
nine-equation structural equations model system to explore relationships across residential 

                                                                                                                                                                                                
structurally affect one another. In the current paper, we estimate models with each possible structural direction 
impact, and choose the one that provides a better data fit (which also turns out to one the one that is conceptually 
intuitive). However, it is critical to note that, regardless of which directionality of structural effects comes out to be 
better (or even if both directions are not statistically significant), the system is a joint bundled system because of the 
correlation in unobserved factors impacting the underlying propensities.  
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location, travel choices, work location, and attitudinal variables. Choo and Mokhtarian (2004) 
also explore the influence of attitudinal variables on traveler choices by focusing on vehicle type 
choice. Attitudinal variables, that are often unobserved, play an important role in shaping a 
multitude of choices, thus calling for the bundling of choices in a simultaneous equations 
framework where such correlated unobserved factors can be adequately reflected. Van Acker and 
Witlox (2010a, 2010b) also use structural equations modeling approaches to explore 
relationships between built environment attributes and vehicle use in a simultaneous equations 
modeling framework. Vance and Hedel (2007) model the choice of driver status and vehicle use 
(distance traveled) simultaneously using an instrumental variables approach. Vega and 
Reynolds-Feighan (2009) employ a cross-nested logit model to study the simultaneous choices of 
residential location and travel mode under two scenarios of employment (central city versus 
suburb). Ye et al. (2007) use a bivariate probit modeling framework to examine the relationship 
between trip chaining and mode choice, while Konduri et al. (2011) employed a probit-based 
joint discrete-continuous model to tie vehicle type choice and tour length (distance) together.  
The latter study was further extended in Paleti et al. (2011) who jointly modeled four key 
dimensions of tours – namely, tour complexity, passenger accompaniment, vehicle type choice, 
and tour length.  Brownstone and Golob (2009) used Bayesian estimation approaches to jointly 
analyze residential location choice in the context of vehicle type choice and usage and find 
significant presence of endogeneity in the choice dimensions examined. A similar study was 
undertaken by Eluru et al. (2009), except that they employed Copula-based estimation 
approaches.  Krizek (2003) introduces a tour-based framework to analyze relationships jointly 
among neighborhood access, number of tours, tour type, and tour distance, while Waddell et al 
(2007) jointly modeled residential location and work place location by assuming strict 
sequentiality between the two decisions, but allowing the sequentiality structure to vary across 
households using an endogenous discrete mixture approach.     
 More recently, Eluru et al. (2010) and Pinjari et al. (2011) constitute key efforts to build 
integrated multi-dimensional choice models that tie longer term location choices and shorter term 
activity-travel choices together. Both of these studies showed strong evidence of the bundling of 
choices with correlated unobserved effects. Many of the studies cited in this section have noted 
the computational challenges associated with estimating multi-dimensional choice models, 
particularly in the presence of a mixture of dependent variable types. However, recent advances 
in estimation methods, and in particular, the emergence of the Maximum Approximate 
Composite Marginal Likelihood (MACML) approach (Bhat, 2011), have provided the much 
needed computational breakthroughs needed to estimate multi-dimensional choice model 
systems and bring them closer to modeling practice.     
  
DATA 
The data for this study is derived from the 2009 National Household Travel Survey (NHTS) 
which is conducted by the US Department of Transportation on a periodic basis to obtain 
information about the travel characteristics of the population for a 24 hour travel diary period. 
For the current study, the survey subsample from the San Francisco Bay Area is extracted for 
analysis and model estimation purposes. This was done to limit the scope of the geographic 
region, deal with manageable sample sizes, and take advantage of secondary census data for the 
region (available from a previous study) that can be merged to the records of the NHTS. As the 
paper involves the modeling of work location (among other dimensions), the subsample 
extracted for this study includes only employed individuals who have a fixed work location 
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outside home and who have provided complete travel diary data that includes information on 
commute tours, mode choice, and stop-making behavior. 
 Census tract data for the San Francisco Bay Area was merged with the NHTS data 
records to help characterize household and workplace locations.  Instead of using the classic 
definition of spatial unit choice (identified by census tract or traffic analysis zone), this paper 
employs categories of land use density to characterize location choices. This helps make the 
definition of choice alternatives clear and manageable and more effectively captures the notion 
that people are looking for a built environment (land use density) that suits their mobility and 
lifestyle preferences.  In other words, people are not choosing between tract A or B, but rather 
between a unit that offers a built environment of certain attributes versus another unit that offers 
a different built environment. Residence and workplace locations are categorized into four 
possible alternatives based on housing unit density (housing units per square mile). 
 After extensive data cleaning, the final estimation sample includes 1,480 employed 
individuals.  Besides residence and work locations, a number of other dependent variables were 
constructed for this sample. The commute distance is simply a measure of separation between 
the residence and work locations as reported in the travel diary. Vehicle ownership is reported by 
respondents as well.  For commute tour mode, the mode that was used in the work-to-home 
(half) tour was designated as the chosen alternative. If transit was used for any leg of the journey, 
then the commute tour mode was designated as transit. Four modal alternatives – drive alone, 
shared ride, transit, and walk/bike – characterized the mode choice for more than 99 percent of 
the tours. The few people whose commute tours did not fall within one of these four modal 
alternatives were omitted from the final estimation sample. Finally, the total number of stops 
made during the home-to-work and work-to-home tours constituted the last dependent variable 
of the study.   
 The sample of 1,480 employed individuals exhibited socio-economic and demographic 
characteristics suitable for undertaking a model estimation effort such as that undertaken in this 
paper. The distribution of individuals in the four residential location alternatives is as follows: 

• 0-499 housing units per square mile:   22.6% 
• 500-1999 housing units per square mile:  30.9% 
• 2000-3999 housing units per square mile:  29.9% 
• ≥ 4000 housing units per square mile:  16.6% 

The distribution of individuals with respect to work locations is somewhat similar except that 
higher percent of individuals (32.4%) work in low density (0-499) tracts while a smaller percent 
(20.5%) of individuals work in higher density (2000-3999) tracts. With respect to vehicle 
ownership, 1.8 percent of the employed individuals indicate residing in households with no 
vehicle. This fraction is lower than that for the general population, but such differences are 
expected when considering a pure worker sample. About 47 percent of individuals reside in two-
vehicle households, 23.2 percent reside in three-vehicle households, and 15 percent reside in 
households with four or more vehicles.   
 An examination of commute mode share shows that 72.6 percent of individuals commute 
by drive alone, 16.1 percent by shared ride, 8 percent by transit, and 3.2 percent by bicycle/walk.  
The average commute distance is 13.5 miles with a standard deviation of 14.4 miles. The 
distribution of stop-making shows that 47 percent of commuters make zero (non-work) stops 
within the commute tours. This is in contrast to 17.4 percent of commuters who make one stop, 
16.7 percent who make two stops, 8.8 percent reporting three stops, 5.5 percent reporting four 
stops, and 4.5 percent reporting five or more stops.   
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 In summary, the data set offered a rich source of information and appropriate variation in 
dependent variables suitable for estimating a multi-dimensional choice model system with a 
mixture of dependent variable types. The model specification included a range of individual, 
household, and employment characteristics.  
 
MODELING METHODOLOGY 
This section presents a detailed description of the modeling methodology developed for 
estimating a multi-dimensional choice model system involving a mixture of dependent variable 
types. Figure 1a shows the various interdependencies that might exist in the choice continuum 
that this study intends to explore. The solid lines represent possible relationships within single 
time bands while the hollow lines represent relationships across temporal bands (scales). There 
can be joint decisions within a single temporal band as well as decisions that are interlinked 
across different temporal bands. The remainder of this section presents the formulation.   
   
Model Framework 
Let there be G nominal (unordered-response) variables for an individual, and let g be the index 
for the nominal variables (g = 1, 2, 3, …, G). In the empirical context of the current paper, G=3 
(the nominal variables are residential location, work location, and commute mode choice). Also, 
let Ig be the number of alternatives corresponding to the gth nominal variable (Ig≥ 3) and let ig be 
the corresponding index (ig = 1, 2, 3, …, Ig). Note that Ig may vary across individuals, but index 
for individuals is suppressed at this time for ease of presentation. Also, it is possible that some 
nominal variables do not apply for some individuals, in which case G itself is a function of the 
individual q. However, the model is developed at the individual level, and so this notational 
nuance does not appear in the presentation here. 

Consider the gth nominal variable and assume that the individual under consideration 
chooses the alternative mg. Also, assume the usual random utility structure for each alternative ig. 

,
ggg gigiggiU ε+′= xβ  (1) 

where 
ggix is a (Kg×1)-column vector of exogenous attributes, gβ  is a column vector of 

corresponding coefficients, and 
ggiε is a normal error term. Let the variance-covariance matrix of 

the vertically stacked vector of errors ]) ..., , ,([ 21 ′=
ggIggg εεεε  be gΩ . As usual, appropriate 

scale and level normalization must be imposed on gΩ  for identification. Under the utility 
maximization paradigm, 

gg gmgi UU − must be less than zero for all gg mi ≠ , since the individual 
chose alternative gm . Let )(*

gggmgimgi miUUu
gggg

≠−= ,  and stack the latent utility differentials 

into a vector ( ) ⎥⎦
⎤

⎢⎣
⎡ ≠

′
= ggmgImgmg miuuu

gggg
;,...,, **

2
*

1
*
gu . *

gu  has a mean vector of 

,),....,( '
gggg mgI

'
1g2m

'
1g1m

'
1g zβzβzβb where gggg miIi ≠=−=  ; ..., ,2 ,1,

gggg gmgimgi xxz . To obtain the 

covariance matrix of *
gu , define gM  as an gg II ×− )1(  matrix that corresponds to an )1( −gI  

identity matrix with an extra column of –1’s added as the th
gm  column. Then, one may write:  

( ),,~ *
gΣg

*
g bu N  where '

gg MM g
*
g ΩΣ = . (2) 



  6 

 
 

The discussion above focuses on a single nominal variable g. When there are G nominal 

variables, consider the stacked −×⎥
⎦

⎤
⎢
⎣
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1
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g
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, ... ,, '*

G
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1

* uuuu , each of whose 

element vectors is formed by differencing utilities of alternatives from the chosen alternative mg 
for the gth nominal variable. Next, one may write: 

),,(~ ** Σbu N  where ( )'bbbb '
G

'
2

'
1  ..., , ,= and *Σ  is a ⎥
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⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

*
G
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*
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*
2
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*
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*
1

*

  Σ...  Σ  Σ
......
......
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  Σ...  Σ  Σ
  Σ...  Σ  Σ

Σ

 

(3) 

The off-diagonal elements in *Σ  capture the dependencies across the utility differentials of 
different nominal variables, the differential being taken with respect to the chosen alternative for 
each nominal variable. 

Let there be L ordinal variables for an individual, and l be the index for the ordinal 
variables ) ..., ,2 ,1( Ll = . In the empirical context of the current paper, L=2 (the ordinal variables 
are vehicle ownership and number of stops in the commute). Also, let lJ  be the number of 
outcome categories for the lth ordinal variable )2( ≥lJ  and let the corresponding index 
be lj ) ..., ,2 ,1( ll Jj = . Let *

ly  be the latent underlying variable whose horizontal partitioning 
leads to the observed choices for the lth ordinal variable. Assume that the individual under 
consideration chooses the ln th ordinal category. Then, in the usual ordered response formulation: 

, if , *
1

*
ll nlnllllll ynjy ψψξ <<=+′= −wδ

             

(4) 

where lw  is a vector of exogenous variables relevant to the lth ordinal variable, lδ  is a 
corresponding vector of coefficients to be estimated, the ψ terms represent thresholds, le  is the 
index for the observed outcome for the ordinal variable ) ..., ,2 ,1( ll Jj = , and lξ  is the standard 
normal random error for the lth ordinal variable. Stack the L latent variables *

ly  into an 
)1( ×L vector *y , and let ( )*,~*

yN Σfy , where ( )LLl wδwδwδf ′′′== ,......,,( 221  and *y
Σ  is the 

covariance matrix of ) ..., , ,( 21 Lξξξ=ξ . Also, stack the lower thresholds ( )Ll
ln  ..., ,2 ,11 =−ψ  into 

an )1( ×L  vector lowψ  and the upper thresholds ( )Ll
ln  ..., ,2 ,1=ψ  into another vector .upψ   

 Finally, let there be H continuous variables ) ..., , ,( 21 Hyyy with an associated index h 
) ..., ,2 ,1( Hh = . In the empirical context of the current paper, H=1 (the continuous variable is 

natural logarithm of commute distance). Let hhhy η+′= sγh  in the usual linear regression fashion. 
Stacking the H continuous variables into a )1( ×H -vector y, one may write ),,( yNy Σc=  where 
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M0  is another (M×1)-column vector of zeros. The conditional distribution of u~  given y, is 

multivariate normal with mean ( )cygg −+= −1
~

~~~
yyu ΣΣ and variance '

yu
1-
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Next, let θ  be the collection of parameters to be estimated: 
, )](  );(  ; ..., , ,  );( ; ..., , ,  ; ..., , ,[ ~21~2121 yΣΣΣδδδ uyuL VechVechVech HG γγγβββθ =  where Vech(A) 

represents the vector of upper triangle elements of A. Then the likelihood function for the 
individual may be written as: 

[ ] ,~~~ Pr)|()( uplowyHL ψuψcyθ ≤≤×−= Σφ               (6) 

,~)
~~,

~~|~()|( ~~

~

uduLG
D

yH

u

ΣΣ gucy
+∫×−= φφ  

where the integration domain }~~~:~{~ uplowu
D ψuψu ≤≤=  is simply the multivariate region of the 

elements of the u~  vector determined by the vector of chosen alternatives in nominal variables 



  8 

 
 

and observed outcomes of ordinal variables, and (.)~ LG +φ  is the multivariate normal density 

function of dimension ,~ LG + where .)1( ~
1
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⎟
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The above likelihood function involves the evaluation of a LG +

~ -dimensional integral 
for each individual, which can be very computationally expensive if there are several nominal 
variables, or if each nominal variable can take a large number of values, or if there are several 
ordinal variables, or combinations of these. So, the Maximum Approximated Composite 
Marginal Likelihood (MACML) approach of Bhat (2011), in which the likelihood function only 
involves the computation of univariate and bivariate cumulative distributive functions, is used in 
this paper. 

 
The MACML Estimation Approach 
Consider the following (pairwise) composite marginal likelihood function formed by taking the 
products (across the G nominal variables and L ordinal variables) of the joint pairwise 
probability of the chosen alternatives for an individual. 
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  (7) 

where 
gid is an index for the individual’s choice for the gth nominal variable. The net result is 

that the pairwise likelihood function now only needs the evaluation of 
 ~ and ,~,~

' glllgg GGG ′ dimensional cumulative normal distribution functions (rather than the LG +
~ -

dimensional cumulative distribution function in the maximum likelihood function), where 
 ~and2,~,2~

' gglllgggg IGGIIG ==−+= ′′ . This leads to substantial computational efficiency. 
However, in cases where there are several alternatives for one or more nominal variables, the 
dimension glgg GG ~ and ~

′  can still be quite high. This is where the use of an analytic 
approximation of the multivariate normal cumulative distribution (MVNCD) function, as shown 
in Bhat (2011), is convenient. The resulting maximum approximated composite marginal 
likelihood (MACML) of Bhat (2011), which combines the CML approach with the analytic 
approximation for the MVNCD function evaluation, is solely based on bivariate and univariate 
cumulative normal computations. The MACML approach can be applied using a simple 
optimization approach for likelihood estimation. It also represents a conceptually simpler 
alternative to simulation techniques. Also, the MACML estimator MACMLθ̂  is asymptotically 
normal distributed with mean θ  and covariance matrix given by the inverse of the Godambe’s 
(1960) sandwich information matrix )(θG .     

There are important identification and positive definiteness issues that must be taken into 
account during model estimation. These issues and the methods to deal with them are discussed 
in Paleti et al. (2011). In addition to the identification conditions discussed in that paper, the 
scale of all ordinal variables must be normalized to one in the current model system to ensure 
identification.  
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MODEL ESTIMATION RESULTS 
Model estimation results are described in this section. In the interest of brevity, only key findings 
and highlights of model estimation results are presented. In order to arrive at the final model 
specification, a number of model structures depicting alternative structural relationships among 
endogenous variables were estimated and examined with respect to statistical measures of fit. In 
the end, after extensive testing, plausibility checks, and goodness-of-fit assessment, the final 
model specification and set of structural relationships were identified. Figure 1b shows the 
structural relationships among dependent variables in the final model structure adopted in this 
study. It is found that residential location affects work location choice utility, both of which 
affect commute distance. All three long-term choice variables (residential location, work 
location, and commute distance) affect vehicle ownership propensity.  In turn, long term location 
choices and vehicle ownership structurally influence commute mode choice utility, which 
structurally impacts trip chaining patterns (number of stops propensity on the commute). It 
should be emphasized again that these are the structural flow of relationships in the final model 
specification. The model system itself is a joint equations model that treats the set of dependent 
variables as a “bundle” with common unobserved effects affecting multiple choice dimensions.   
   
Long Term Choice Model Components 
Table 1 presents estimation results for long term choices. The residential location choice 
component of the model suggests that households with younger children have a greater 
propensity to locate in medium- to high-density neighborhoods, but households with older 
children shun the highest density neighborhoods, possibly in search of lower density suburban 
neighborhoods with good schools. Pinjari et al. (2008) also reported that households with 
children are less likely to live in high density neighborhoods. Individuals with higher education 
levels favor residential locations in high density neighborhoods, suggesting that they are 
interested in urban lifestyles that are more environmentally friendly. This result is different from 
the U-shaped effect of education on residential location reported in the Brownstone and Fang 
(2009) study, which modeled logarithm of residential block density as a function of several 
household demographics. Lower income individuals tend to locate in high density neighborhoods 
while those seeking home ownership appear to do so in lowest density neighborhoods (likely to 
be in the suburbs) (see Brownstone and Fang, 2009 for similar results). Immigrant households 
are more likely to favor higher density neighborhoods, a result also reported by Wilson and 
Singer (2011) in their analysis of the 2010 American Community Survey data. The relative 
magnitude of the constants suggests that there is a baseline preference for low-to-medium 
density neighborhoods.    
 In terms of work location choice, it is found that there is a strong positive association 
between residential location density and work location density utility. It appears that people may 
be working in locations that are at least as dense as their residential neighborhoods, which is not 
surprising given that employment tends to locate such that workers can easily access jobs. Ebertz 
(2009) found similar results when jointly examining residential and work location choices of a 
household. Specifically, the study found that households have the highest baseline utility 
preference for living and working in metropolitan areas. Males are less likely to work in higher 
density locations. Individuals with higher education levels tend to find jobs in higher density 
areas (consistent with their residential location). Full time workers are less likely to work in high 
density areas, but self-employed individuals are more likely to do so. It is possible that self-
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employed individuals seek high density areas where business opportunities abound. Immigrants 
are less likely to work in high density areas (in contrast to their residential location choice), but 
tend to favor higher density locations (similar to non-immigrant households) as they assimilate 
into the country over a period of time. Asians are less likely to work in higher density 
neighborhoods, while African Americans are more likely to do so.   
 The commute distance is similarly affected by a number of socio-economic variables.  
Males, full-time employees, and African Americans exhibit longer commutes, while lower 
income individuals and those with children have lower commuting distances. The first result that 
men have longer commutes than women is consistent with the findings of earlier literature on 
commute travel patterns (see Sermons and Koppelman, 2001, and Vovsha et al., 2012). Full-time 
workers, on the hand, might be trading off commute distance with higher wages (Ebertz, 2009). 
Those who own a home have longer commutes, presumably because they reside in distant 
suburbs to a greater degree. As residential location density or work location density increases, 
the commuting distance decreases; suggesting that there is an observed impact of density on 
commuting distance even after controlling for other factors and reflecting endogeneity through a 
simultaneous equations model system.   
 
Medium Term Choice Model Component 
The vehicle ownership model takes the form of an ordered response model. The results are 
presented in Table 2. Higher levels of auto ownership are associated with a larger number of 
persons in the household. Thus, as number of adults, number of children, number of full time 
workers, number of self-employed individuals, and number of individuals with more than one 
job in the household (in which the sample respondent resides) increase, so does auto ownership. 
On the other hand, the presence of senior adults in the household or the prevalence of a medical 
condition has a negative impact on auto ownership presumably because these individuals have 
mobility limitations. As income levels fall, so do auto ownership levels as evidenced by the trend 
in negative coefficients associated with income dummy variables. Higher density residential 
location is associated with lower levels of auto ownership, presumably because these 
neighborhoods are better served by alternative modes and people who locate in such 
neighborhoods are not necessarily auto-oriented to begin with. Home ownership and longer 
commutes appear to contribute to higher levels of auto ownership. All of these indications are 
consistent with expectations and with the now vast literature on auto ownership modeling (for 
example, see Potoglou and Susilo, 2008, Ma and Srinivasan, 2010, and Pinjari et al., 2011)     
 
Short Term Choice Model Component 
Table 3 presents the model estimation results for the short-term choice components. There is 
negative baseline preference associated with the use of alternative modes of transport as 
evidenced by the negative constants. Older individuals are less likely to share a ride or 
bike/walk, possibly due to physical limitations. Males are less likely to share a ride, but more 
likely (than females) to use transit or bicycle and walk (see Pinjari et al., 2011). Low education 
levels are associated with alternative mode use, possibly because these individuals are in low 
paying jobs, having lower income, and cannot afford to commute by car. Self-employed 
individuals are more likely to drive alone, possibly due to the flexibility that they need in seeking 
business opportunities. Those with a flexible work schedule are more likely to use alternative 
modes of transport. Immigrants are more likely to share a ride or use transit, but this effect 
dampens as the immigrants stay longer in the US and assimilate into the general population, as 
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also noticed by Blumenberg and Norton (2010). Even after controlling for all other factors and 
endogeneity across choice dimensions, it is found that residential and workplace location density 
impact commute mode choice utility. Higher density location choices appear to contribute to 
greater levels of transit mode choice. Those working in high density tracts show a lower 
propensity to bicycle and walk, possibly because the areas are not conducive to non-motorized 
mode use (although conducive to transit use). As expected, and observed in earlier studies (for 
example, Van Acker and Witlox, 2010b), high levels of vehicle ownership negatively impact 
alternative mode use due to increased auto availability).   
 The final dependent variable is that of number of stops on the commute tours (an ordinal 
response variable). Consistent with expectations, higher levels of education, holding multiple 
jobs, and flexible work schedules are associated with higher levels of stop-making propensity. 
Immigrants tend to have a lower stop-making propensity, while Caucasians and individuals with 
children in the household tend to have a higher stop-making propensity (due to serve-child trips). 
As the number of adults increases, stop making responsibilities are likely shared through 
household interactions, and stop-making propensity at the individual level drops (see Ye et al., 
2007). Similar task allocation effects are seen with respect to number of workers and number of 
self-employed individuals in the household. Lower income individuals have a lower stop-making 
propensity, possibly because the lower income does not afford them the opportunity to 
participate in other discretionary activities (Portoghese et al., 2011 also observe this result). 
Those residing in the highest density neighborhoods tend to engage in more stops, possibly 
because there are more destination opportunities that can be visited during the commute tour. In 
other words, higher residential density does not necessarily bring about inefficiencies in tour 
formation or activity engagement (where a person repeatedly returns home and starts a new tour 
to engage in new activities). Mode choice affects stop making behavior with those in shared ride 
mode likely to make more stops (to drop off and pick up passengers) and bicycle and walk 
commuters engaging in fewer stops, possibly in an effort to keep commuting distance and times 
manageable (see Cao et al., 2008b for similar results).      
 
Self-Selection Effects and Model Assessment 
Table 4 presents estimation results corresponding to the covariance matrix of utility differences, 
latent propensities, and continuous variables considered in this study. A number of interesting 
observations can be made. The significant parameter of 0.8009 in the block of covariances 
between modal utility differences, suggests that there are common unobserved factors affecting 
the choice of transit (relative to drive alone) and the choice of bicycle/walk (relative to drive 
alone). In other words, people’s attitudes about the environment and the desire to live a “green” 
lifestyle (which are unobserved effects) may be simultaneously (and positively) impacting 
preference for transit and bicycle/walk modes. There do not appear to be any significant 
endogeneity effects across residential and workplace location choices. The model estimation 
results revealed an observed impact of residential location choice on work location choice; there 
do not seem to be any common unobserved effects influencing these long term location choice 
decisions (at least in the context of this study).   
 It appears that there are self-selection effects across work location choice and commute 
mode.  The negative parameter of -0.1507 suggests that unobserved factors that contribute to a 
person choosing a low density area as work location are correlated with unobserved factors that 
make a person intrinsically less likely to walk or bicycle. These may be individuals who are 
more auto oriented by nature. Conversely, there are positive covariances (0.0555 and 0.2883) 
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reflecting a positive disposition across the choice to work in high density areas and the choice of 
transit or shared ride as a commute mode. The unobserved factors that motivate an individual to 
seek a high density work place (desire for transit and pedestrian friendly options) are likely the 
very factors that contribute to higher level of transit and shared ride mode usage. Unobserved 
factors that contribute to an individual owning more vehicles (such as desiring an auto-oriented 
lifestyle) contribute negatively to the choice of bicycle and walk as a commute mode.   

Similar self-selection effects are observed across residential location choice and number 
of stops, where it appears that the unobserved effects contributing to a choice of a high density 
residential location or work location positively impact stop-making behavior. This is plausible as 
a fun-loving activity-seeking person who is an extrovert may choose residential and work 
locations that are high density (and provide such opportunities) and support their desire to 
engage in a variety of activities (stops) on the way to and from work.   

The log-likelihood of the final model is -10508.1 and that of the model which ignores all 
potential correlations between the choices considered is -10520.4. The log-likelihood ratio test 
statistic of comparison between the two models is 24.54. This value is significantly greater than 
15.51 which is the critical chi-squared value corresponding to 8 degrees of freedom at a 95 
percent confidence level, thus demonstrating the superior statistical fit in the joint model. 
 
CONCLUSIONS 
This paper presents an integrated econometric model system that ties together residential location 
choice, work location choice, commuting distance, vehicle ownership, commute mode choice, 
and number of stops made on commute tours. Thus, the model system includes a variety of 
dependent variable types commonly encountered in transport modeling contexts. The model 
system is estimated on a San Francisco Bay Area subsample of commuters drawn from the 2009 
National Household Travel Survey data set in the United States. The paper presents the model 
formulation and estimation procedures; recognizing that traditional estimation methods are 
computationally infeasible for the type of model system specified in this paper, the study 
employs the maximum approximate composite marginal likelihood (MACML) estimation 
procedure together with a numerical approximation method to evaluate multi-dimensional 
integrals of the cumulative normal distribution function. The methodological breakthrough 
presented in this paper offers the potential to bring integrated model systems of the nature 
estimated in this study closer to practical reality.  
 Model estimation results show that the choice dimensions considered in this paper are 
inter-related, both through direct observed structural relationships and through correlations 
across unobserved factors (error terms) affecting multiple choice dimensions. The significant 
presence of self-selection effects (endogeneity) suggests that modeling the various choice 
processes in an independent sequence of models is not reflective of the true relationships that 
exist across these choice dimensions. The study findings suggest the following: 

• Residential location choice affects work location choice utilities 
• Both residential and work location choices together impact commuting distance 
• Residential and work location choices, together with commuting distance, impact vehicle 

ownership propensity 
• Both location choices, and vehicle ownership, affect commute mode choice propensities 
• Commute mode choice and residential location affect number of stops propensity on 

commute tours.  
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In addition to these observed structural relationships, the examination of error covariances shows 
that people with a propensity for non-auto oriented lifestyles (i.e., greener lifestyles) tend to 
locate in higher density neighborhoods, adopt alternative modes of transport for their commute, 
and exhibit lower levels of automobile ownership. Clearly, attitudes and lifestyle preferences 
play an important role in shaping the multitude of choice dimensions considered and ignoring 
such self-selection effects can prove costly in policy forecasting and decision making processes. 
Future research efforts are aimed at operationalizing integrated econometric model systems (such 
as that presented in this paper) within activity-based travel forecasting models so that the types 
of endogeneity effects uncovered in this paper can be better reflected in forecasts of travel 
demand under a wide range of modal and land use scenarios. For instance, the residential and 
work location choices are modeled as density choices and not as actual spatial location choices 
such as traffic analysis zones (TAZs). One way to operationalize the model developed in the 
paper would be to first predict the density of location choice, and subsequently use another 
spatial location choice model that operates on a choice set comprising of travel analysis zones 
(TAZs) in the predicted range of location density.  

The work undertaken in this paper can be extended in two important ways. First, the 
model structure in the study is a restrictive version of a modeling system that allows mixtures of 
structural relationships among endogenous variables. A latent segmentation model that 
determines the joint probability of the observed bundle of choices as a summation (over all 
possible structural relationships) of the product of the probability of each structural relationship 
among the endogenous variables and the probability of the observed bundle of choices 
conditional on the structural relationship may be developed in the future to accommodate 
different structural relationships for different population segments. This is conceptually similar 
to the discrete mixture segment model of Waddell et al. (2007), though our system already 
considers jointness through the error correlations for each segment (as opposed to the sequential 
process of decisions for each segment in Waddell et al., 2007). Of course, the consideration of 
many more variables than in Waddell et al. will be an interesting estimation challenge. Second, 
we consider decision making at individual level. The model system, as it is, cannot be 
operationalized into an activity-based model system because it becomes difficult to maintain 
consistency in the household level choices across different household members. The current 
modeling framework can be extended to consider an even larger set of 
multinomial/ordinal/continuous choices at different levels of decision making (some at the 
household level, and some at the individual level) given that the MACML estimation technique 
used in the paper is robust and can be used to estimate any number of choices within a unifying 
framework as long as adequate data is available to extract out the system relationships. Future 
research should work towards developing such integrated models at different decision making 
levels. 
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FIGURE 1  Interdependencies in the choice continuum. 

Figure 1a  Possible interdependencies in the choice continuum. 

Figure 1b  Relationships among endogenous variables in final model specification. 
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TABLE 1  Integrated Model Estimation Results – Long Term Choices 

Variable Description Coef t-stat Coef t-stat Coef t-stat 
Residential Loc. Utility (Base Alt.: 0-499 housing units per square mile) 500-1,999 2000-3,999 ≥4,000 
Constant 0.2413 2.10 0.2071 1.75 -0.0090 -0.05 
Socio-economic Attributes             

Presence of children aged 6 to 10 years (Yes=1,No=0)     0.2427 2.14     
Presence of children aged 11-15 years (Yes=1,No=0)     0.2427 2.14 -0.4706 -3.96 
Highest education attainment in household: College degree         0.4448 2.83 
Highest education attainment in household: Post-doctoral degree         0.4807 3.05 
Number of full time workers         0.1875 2.01 
Number of self employed individuals     -0.1061 -1.77 -0.1061 -1.77 
Number of workers with option to work from home 0.1889 2.70 0.1889 2.70 0.1889 2.70 
Household income: Less than $20K (Yes=1 or No=0)     0.5132 2.71 0.5884 2.80 
Housing tenure: Own house( Yes=1, No=0) -0.1704 -1.41 -0.2501 -2.11 -0.8529 -7.12 
Immigration status: Combination household     0.2153 2.67 0.2276 2.38 

  Immigration status: Immigrant household     0.1829 1.57 0.2378 1.87 
Work Location Utility (Base Alt.: 0-499 housing units per square mile) 500-1,999 2000-3,999 >=4,000 
Constant -0.2174 -2.76 -0.7019 -4.33 -0.8493 -5.20 
Socio-economic Attributes             

Gender (Male = 1, Female = 0)     -0.1199 -2.00 -0.1199 -2.00 
  Education attainment of the worker: College degree         0.1503 1.64 
  Education attainment of the worker: Post doctoral degree         0.1052 1.14 

Full-time employment indicator (Yes = 1, No = 0)     -0.1270 -1.51 -0.1270 -1.51 
Self employed (Yes=1, No=0)     0.5575 5.08 0.3336 2.54 
Immigration status (Yes=1, No=0)     -0.2598 -2.70 -0.1614 -1.61 
Immigration status: Number of years since entered the US 0.0047 1.51 0.0047 1.51 0.0047 1.51 
Race of household respondent: African American         0.2687 1.35 
Race of household respondent: Asian -0.2033 -2.22 -0.2033 -2.22 -0.2033 -2.22 

Residential Location             
500-1,999 housing units per square mile 0.2850 2.81 0.3915 3.50 0.3749 2.94 
2,000-3,999 housing units per square mile 0.3451 3.32 0.6285 5.61 0.5331 4.11 
≥4,000 housing units per square mile 0.3218 2.49 0.4793 3.27 1.1748 8.03 

Natural Logarithm of Commute Distance (in miles)  
Constant 1.6760 13.28 
Socio-economic Attributes     

Gender (Male = 1, Female = 0) 0.2950 5.19 
Full-time employment indicator (Yes = 1, No = 0) 0.3970 5.69 
Self-employed (Yes=1,No=0) -0.3960 -4.64 
Flexible work schedule (Yes=1, No=0) 0.1400 2.32 
Immigration status (Yes=1,No=0) 0.2490 3.13 
Race of household respondent: African American 0.4060 1.83 
Race of household respondent: Asian -0.0860 -0.96 
Presence of children 0-15 years (Yes=1, No-0) -0.0960 -1.52 
Household income: Less than $20K (Yes=1 or No=0) -0.4590 -2.73 
Household income: $20K-$45K (Yes=1 or No=0) -0.4690 -4.27 
Household income: $45K-$60K (Yes=1 or No=0) -0.1830 -2.05 
Household income: $60K-$75K (Yes=1 or No=0) -0.1730 -1.74 
Housing tenure: Own house( Yes=1, No=0) 0.2930 3.72 

Residential Location     
500-1,999 housing units per square mile -0.1250 -1.64 
2,000-3,999 housing units per square mile -0.2710 -3.30 
≥4,000 housing units per square mile -0.5520 -5.55 

Work Location     
500-1,999 housing units per square mile -0.1030 -1.40 
2,000-3,999 housing units per square mile -0.0980 -1.33 
≥4,000 housing units per square mile -0.0980 -1.33 
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TABLE 2  Integrated Model Estimation Results – Medium Term Choice 

(Vehicle Ownership Propensity)  

Variable Description Coef t-stat 

Thresholds 
Threshold 1 (1-2 vehicles) -0.5866 -2.86 
Threshold 2(2-3 vehicles) 0.9779 6.01 
Threshold 3 (3-4 vehicles) 2.8345 17.35 
Threshold 4 (4 or more vehicles) 3.8146 22.40 

Socio-economic Attributes 
Number of adults in household 0.8614 20.76 
Presence of children aged 11-15 years (Yes=1,No=0) 0.1481 1.71 
Presence of senior adults aged 65 or over (Yes=1, No=0) -0.2211 -2.27 
Presence of an individual with prolonged medical condition (Yes=1, No=0) -0.2293 -1.52 
Highest education attainment in household: College degree -0.2338 -2.87 
Highest education attainment in household: Post-doctoral degree -0.2997 -3.70 
Number of full time workers 0.1524 2.74 
Number of self employed individuals 0.1850 2.99 
Number of individuals with more than one job 0.1322 1.46 
Household income: Less than $20K (Yes=1 or No=0) -0.7407 -5.13 
Household income: $20K-$45K (Yes=1 or No=0) -0.5459 -4.34 
Household income: $45K-$60K (Yes=1 or No=0) -0.3617 -3.28 
Housing tenure: Own house( Yes=1, No=0) 0.7057 8.08 

Residential Location 
500-1,999 housing units per square mile -0.1078 -1.20 
2,000-3,999 housing units per square mile -0.1275 -1.39 
≥4,000 housing units per square mile -0.6695 -6.10 

Work Location 
≥4,000 housing units per square mile -0.2824 -3.16 

Natural logarithm of commute distance (in miles) 0.0799 2.68 
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TABLE 3  Integrated Model Estimation Results – Short Term Choices 

Variable Description Coef t-stat Coef t-stat Coef t-stat 

Commute Mode Utility (Base Alternative: Drive Alone) Shared Ride Transit Walk/Bike 
Constant -0.6794 -3.56 -2.8180 -11.51 -2.0918 -3.85
Socio-economic Attributes             

Age (in years) -0.0143 -3.88     -0.0110 -1.52
Gender (Male = 1, Female = 0) -0.0878 -1.05 0.1527 1.23 0.8706 4.08

  Education attainment of the worker: Less than High school 0.3578 1.35 0.3578 1.35 0.3578 1.35
Self employed (Yes=1, No=0) -0.1851 -1.27 -0.7354 -2.59 -0.9086 -2.33
Option to work from home (Yes=1, No=0)     0.2340 1.82 0.4062 1.52
Flexible work schedule (Yes=1, No=0) 0.2906 3.37 0.3087 2.43 0.6569 2.91
Immigration status (Yes=1, No=0) 0.2612 1.74 0.3838 2.18     
Immigration status: Number of years since entered the US -0.0053 -1.05 -0.0053 -1.05 -0.0053 -1.05
Race of household respondent: African American -0.5177 -1.80 0.3201 1.25     

Residential Location             
500-1,999 housing units per square mile         0.8108 2.25
2,000-3,999 housing units per square mile     0.2191 1.57 0.8325 2.23
≥4,000 housing units per square mile 0.2193 1.93 0.9416 5.44 0.9486 2.43

Work Location             
500-1,999 housing units per square mile     0.2670 1.73     
2,000-3,999 housing units per square mile     0.6852 2.70 -0.6038 -2.49
≥4,000 housing units per square mile     0.6852 2.70 -0.6038 -2.49

Natural logarithm of Commute distance (in miles)      0.1555 2.17 -0.8513 -5.47
Vehicle Ownership             

Four or more vehicles -0.1759 -3.89 -0.1759 -3.89 -0.1759 -3.89
Number of Commute Stops propensity 
Thresholds     

Threshold 1 (1-2 stops) 0.2830 1.87 
Threshold 2(2-3 stops) 0.7738 5.04 
Threshold 3 (3-4 stops) 1.3366 8.57 
Threshold 4 (4 -5 stops) 1.7713 11.04 
Threshold 4 (5 or more vehicles) 2.2254 13.60 

Socio-economic Attributes     
  Education attainment of the worker: College degree 0.1763 1.86 
  Education attainment of the worker: Post-doctoral degree 0.1654 1.57 

Has more than one job (Yes=1,No=0) 0.3465 3.45 
Flexible work schedule (Yes=1, No=0) 0.3431 5.08 
Immigration status (Yes=1,No=0) -0.1882 -2.23 
Race of household respondent: Caucasian 0.0946 1.18 
Presence of children 0-10 years (Yes=1, No-0) 0.1841 2.06 
Number of adults in household -0.1894 -4.48 
Number of full time workers 0.1578 3.08 
Number of self employed individuals 0.2466 3.89 
Household income: Less than $20K (Yes=1 or No=0) -0.2675 -1.46 
Household income: $20K-$45K (Yes=1 or No=0) -0.2976 -2.17 

Residential Location     
≥4,000 housing units per square mile 0.1276 1.54 

Commute Mode     
Shared ride 0.6481 7.58 
Walk or bike -0.5388 -2.48 
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TABLE 4  Covariance Matrix for the Integrated Model System 

  Res Res Res Work Work Work Mode Mode Mode 
# Veh # Stops

Ln 
Comm 

Dist     (500-1,999) (2,000-3,999) (≥4,000) (500-1,999) (2,000-3,999) (≥4,000) SR TR WB 

Res (500-1,999) 1.0                       

Res (2,000-3,999) 0.5 1.0                     

Res (≥4,000) 0.5 0.5 1.0                   

Work (500-1,999) 0.0 0.0 0.0 1.0                 

Work (2,000-3,999) 0.0 0.0 0.0 0.5 1.0               

Work (≥4,000) 0.0 0.0 0.0 0.5 0.5 1.0             

Mode SR 0.0 0.0 0.0 0.0 0.0 0.0555 (1.03) 1.0           

Mode TR 0.0 0.0 0.0 0.0 0.0 0.2883 (2.12) 0.5 1.0         

Mode WB 0.0 0.0 0.0  -0.1507 (-1.1) 0.0 0.0 0.5 0.8009 (1.98)* 1.0       

# Veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  -0.3317 (-2.09) 1.0     

# Stops  -0.0826 (-1.35) 0.0973 (1.72) 0.0 0.0 0.0 0.1004 (1.03) 0.0 0.0 0.0 0.0 1.0   

Ln Comm Dist 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9804 
(25.43) 

* T-statistic computed against 0.5 corresponding to the value in independent MNP model. 


